aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/auxiliary.v
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-11-05 13:43:45 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-11-05 13:43:45 +0000
commitb1e1be15990aef3fd76b28fad3d52cf6bc36a60b (patch)
treed9d4944e0cd7267e99583405a63b6f72c53f6182 /theories/ZArith/auxiliary.v
parent380a8c4a8e7fb56fa105a76694f60f262d27d1a1 (diff)
Restructuration ZArith et déport de la partie sur 'positive' dans NArith, de la partie Omega dans contrib/omega
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@4801 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/ZArith/auxiliary.v')
-rw-r--r--theories/ZArith/auxiliary.v614
1 files changed, 31 insertions, 583 deletions
diff --git a/theories/ZArith/auxiliary.v b/theories/ZArith/auxiliary.v
index aa34a201e..745c5c988 100644
--- a/theories/ZArith/auxiliary.v
+++ b/theories/ZArith/auxiliary.v
@@ -12,6 +12,7 @@
Require Export Arith.
Require fast_integer.
+Require Zorder.
Require zarith_aux.
Require Decidable.
Require Peano_dec.
@@ -20,9 +21,12 @@ Require Export Compare_dec.
Open Local Scope Z_scope.
Definition neq := [x,y:nat] ~(x=y).
-Definition Zne := [x,y:Z] ~(x=y).
+
+(**********************************************************************)
+(** Properties of the injection from nat into Z *)
Theorem inj_S : (y:nat) (inject_nat (S y)) = (Zs (inject_nat y)).
+Proof.
Induction y; [
Unfold Zs ; Simpl; Trivial with arith
| Intros n; Intros H;
@@ -32,7 +36,7 @@ Qed.
Theorem inj_plus :
(x,y:nat) (inject_nat (plus x y)) = (Zplus (inject_nat x) (inject_nat y)).
-
+Proof.
Induction x; Induction y; [
Simpl; Trivial with arith
| Simpl; Trivial with arith
@@ -44,7 +48,7 @@ Qed.
Theorem inj_mult :
(x,y:nat) (inject_nat (mult x y)) = (Zmult (inject_nat x) (inject_nat y)).
-
+Proof.
Induction x; [
Simpl; Trivial with arith
| Intros n H y; Rewrite -> inj_S; Rewrite <- Zmult_Sm_n;
@@ -53,7 +57,7 @@ Qed.
Theorem inj_neq:
(x,y:nat) (neq x y) -> (Zne (inject_nat x) (inject_nat y)).
-
+Proof.
Unfold neq Zne not ; Intros x y H1 H2; Apply H1; Generalize H2;
Case x; Case y; Intros; [
Auto with arith
@@ -64,7 +68,7 @@ Qed.
Theorem inj_le:
(x,y:nat) (le x y) -> (Zle (inject_nat x) (inject_nat y)).
-
+Proof.
Intros x y; Intros H; Elim H; [
Unfold Zle ; Elim (Zcompare_EGAL (inject_nat x) (inject_nat x));
Intros H1 H2; Rewrite H2; [ Discriminate | Trivial with arith]
@@ -73,25 +77,30 @@ Intros x y; Intros H; Elim H; [
Qed.
Theorem inj_lt: (x,y:nat) (lt x y) -> (Zlt (inject_nat x) (inject_nat y)).
+Proof.
Intros x y H; Apply Zgt_lt; Apply Zle_S_gt; Rewrite <- inj_S; Apply inj_le;
Exact H.
Qed.
Theorem inj_gt: (x,y:nat) (gt x y) -> (Zgt (inject_nat x) (inject_nat y)).
+Proof.
Intros x y H; Apply Zlt_gt; Apply inj_lt; Exact H.
Qed.
Theorem inj_ge: (x,y:nat) (ge x y) -> (Zge (inject_nat x) (inject_nat y)).
+Proof.
Intros x y H; Apply Zle_ge; Apply inj_le; Apply H.
Qed.
Theorem inj_eq: (x,y:nat) x=y -> (inject_nat x) = (inject_nat y).
+Proof.
Intros x y H; Rewrite H; Trivial with arith.
Qed.
Theorem intro_Z :
(x:nat) (EX y:Z | (inject_nat x)=y /\
(Zle ZERO (Zplus (Zmult y (POS xH)) ZERO))).
+Proof.
Intros x; Exists (inject_nat x); Split; [
Trivial with arith
| Rewrite Zmult_sym; Rewrite Zmult_one; Rewrite Zero_right;
@@ -101,99 +110,36 @@ Qed.
Theorem inj_minus1 :
(x,y:nat) (le y x) ->
(inject_nat (minus x y)) = (Zminus (inject_nat x) (inject_nat y)).
+Proof.
Intros x y H; Apply (Zsimpl_plus_l (inject_nat y)); Unfold Zminus ;
Rewrite Zplus_permute; Rewrite Zplus_inverse_r; Rewrite <- inj_plus;
Rewrite <- (le_plus_minus y x H);Rewrite Zero_right; Trivial with arith.
Qed.
Theorem inj_minus2: (x,y:nat) (gt y x) -> (inject_nat (minus x y)) = ZERO.
+Proof.
Intros x y H; Rewrite inj_minus_aux; [ Trivial with arith | Apply gt_not_le; Assumption].
Qed.
-Theorem dec_eq: (x,y:Z) (decidable (x=y)).
-Intros x y; Unfold decidable ; Elim (Zcompare_EGAL x y);
-Intros H1 H2; Elim (Dcompare (Zcompare x y)); [
- Tauto
- | Intros H3; Right; Unfold not ; Intros H4;
- Elim H3; Rewrite (H2 H4); Intros H5; Discriminate H5].
-Qed.
-
-Theorem dec_Zne: (x,y:Z) (decidable (Zne x y)).
-Intros x y; Unfold decidable Zne ; Elim (Zcompare_EGAL x y).
-Intros H1 H2; Elim (Dcompare (Zcompare x y));
- [ Right; Rewrite H1; Auto
- | Left; Unfold not; Intro; Absurd (Zcompare x y)=EGAL;
- [ Elim H; Intros HR; Rewrite HR; Discriminate
- | Auto]].
-Qed.
-
-Theorem dec_Zle: (x,y:Z) (decidable (Zle x y)).
-Intros x y; Unfold decidable Zle ; Elim (Zcompare x y); [
- Left; Discriminate
- | Left; Discriminate
- | Right; Unfold not ; Intros H; Apply H; Trivial with arith].
-Qed.
-
-Theorem dec_Zgt: (x,y:Z) (decidable (Zgt x y)).
-Intros x y; Unfold decidable Zgt ; Elim (Zcompare x y);
- [ Right; Discriminate | Right; Discriminate | Auto with arith].
-Qed.
-
-Theorem dec_Zge: (x,y:Z) (decidable (Zge x y)).
-Intros x y; Unfold decidable Zge ; Elim (Zcompare x y); [
- Left; Discriminate
-| Right; Unfold not ; Intros H; Apply H; Trivial with arith
-| Left; Discriminate].
-Qed.
-
-Theorem dec_Zlt: (x,y:Z) (decidable (Zlt x y)).
-Intros x y; Unfold decidable Zlt ; Elim (Zcompare x y);
- [ Right; Discriminate | Auto with arith | Right; Discriminate].
-Qed.
-
-Theorem not_Zge : (x,y:Z) ~(Zge x y) -> (Zlt x y).
-Unfold Zge Zlt ; Intros x y H; Apply dec_not_not;
- [ Exact (dec_Zlt x y) | Assumption].
-Qed.
-
-Theorem not_Zlt : (x,y:Z) ~(Zlt x y) -> (Zge x y).
-Unfold Zlt Zge; Auto with arith.
-Qed.
-
-Theorem not_Zle : (x,y:Z) ~(Zle x y) -> (Zgt x y).
-Unfold Zle Zgt ; Intros x y H; Apply dec_not_not;
- [ Exact (dec_Zgt x y) | Assumption].
- Qed.
-
-Theorem not_Zgt : (x,y:Z) ~(Zgt x y) -> (Zle x y).
-Unfold Zgt Zle; Auto with arith.
-Qed.
-
-Theorem not_Zeq : (x,y:Z) ~ x=y -> (Zlt x y) \/ (Zlt y x).
-
-Intros x y; Elim (Dcompare (Zcompare x y)); [
- Intros H1 H2; Absurd x=y; [ Assumption | Elim (Zcompare_EGAL x y); Auto with arith]
-| Unfold Zlt ; Intros H; Elim H; Intros H1;
- [Auto with arith | Right; Elim (Zcompare_ANTISYM x y); Auto with arith]].
-Qed.
-
-Lemma new_var: (x:Z) (EX y:Z |(x=y)).
-Intros x; Exists x; Trivial with arith.
-Qed.
+(**********************************************************************)
+(** Moving terms from one side to the other of an inequality *)
Theorem Zne_left : (x,y:Z) (Zne x y) -> (Zne (Zplus x (Zopp y)) ZERO).
+Proof.
Intros x y; Unfold Zne; Unfold not; Intros H1 H2; Apply H1;
Apply Zsimpl_plus_l with (Zopp y); Rewrite Zplus_inverse_l; Rewrite Zplus_sym;
Trivial with arith.
Qed.
Theorem Zegal_left : (x,y:Z) (x=y) -> (Zplus x (Zopp y)) = ZERO.
+Proof.
Intros x y H;
Apply (Zsimpl_plus_l y);Rewrite -> Zplus_permute;
Rewrite -> Zplus_inverse_r;Do 2 Rewrite -> Zero_right;Assumption.
Qed.
Theorem Zle_left : (x,y:Z) (Zle x y) -> (Zle ZERO (Zplus y (Zopp x))).
+Proof.
Intros x y H; Replace ZERO with (Zplus x (Zopp x)).
Apply Zle_reg_r; Trivial.
Apply Zplus_inverse_r.
@@ -201,18 +147,21 @@ Qed.
Theorem Zle_left_rev : (x,y:Z) (Zle ZERO (Zplus y (Zopp x)))
-> (Zle x y).
+Proof.
Intros x y H; Apply (Zsimpl_le_plus_r (Zopp x)).
Rewrite Zplus_inverse_r; Trivial.
Qed.
Theorem Zlt_left_rev : (x,y:Z) (Zlt ZERO (Zplus y (Zopp x)))
-> (Zlt x y).
+Proof.
Intros x y H; Apply Zsimpl_lt_plus_r with (Zopp x).
Rewrite Zplus_inverse_r; Trivial.
Qed.
Theorem Zlt_left :
(x,y:Z) (Zlt x y) -> (Zle ZERO (Zplus (Zplus y (NEG xH)) (Zopp x))).
+Proof.
Intros x y H; Apply Zle_left; Apply Zle_S_n;
Change (Zle (Zs x) (Zs (Zpred y))); Rewrite <- Zs_pred; Apply Zlt_le_S;
Assumption.
@@ -220,22 +169,26 @@ Qed.
Theorem Zlt_left_lt :
(x,y:Z) (Zlt x y) -> (Zlt ZERO (Zplus y (Zopp x))).
+Proof.
Intros x y H; Replace ZERO with (Zplus x (Zopp x)).
Apply Zlt_reg_r; Trivial.
Apply Zplus_inverse_r.
Qed.
Theorem Zge_left : (x,y:Z) (Zge x y) -> (Zle ZERO (Zplus x (Zopp y))).
+Proof.
Intros x y H; Apply Zle_left; Apply Zge_le; Assumption.
Qed.
Theorem Zgt_left :
(x,y:Z) (Zgt x y) -> (Zle ZERO (Zplus (Zplus x (NEG xH)) (Zopp y))).
+Proof.
Intros x y H; Apply Zlt_left; Apply Zgt_lt; Assumption.
Qed.
Theorem Zgt_left_gt :
(x,y:Z) (Zgt x y) -> (Zgt (Zplus x (Zopp y)) ZERO).
+Proof.
Intros x y H; Replace ZERO with (Zplus y (Zopp y)).
Apply Zgt_reg_r; Trivial.
Apply Zplus_inverse_r.
@@ -243,12 +196,13 @@ Qed.
Theorem Zgt_left_rev : (x,y:Z) (Zgt (Zplus x (Zopp y)) ZERO)
-> (Zgt x y).
+Proof.
Intros x y H; Apply Zsimpl_gt_plus_r with (Zopp y).
Rewrite Zplus_inverse_r; Trivial.
Qed.
(**********************************************************************)
-(** Omega lemmas *)
+(** Misc lemmas *)
Theorem Zred_factor0 : (x:Z) x = (Zmult x (POS xH)).
Intro x; Rewrite (Zmult_n_1 x); Reflexivity.
@@ -287,66 +241,6 @@ Theorem Zred_factor6 : (x:Z) x = (Zplus x ZERO).
Intro; Rewrite Zero_right; Trivial with arith.
Qed.
-Theorem Zmult_le:
- (x,y:Z) (Zgt x ZERO) -> (Zle ZERO (Zmult y x)) -> (Zle ZERO y).
-
-Intros x y; Case x; [
- Simpl; Unfold Zgt ; Simpl; Intros H; Discriminate H
-| Intros p H1; Unfold Zle; Rewrite -> Zmult_sym;
- Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p));
- Rewrite Zcompare_Zmult_compatible; Auto with arith
-| Intros p; Unfold Zgt ; Simpl; Intros H; Discriminate H].
-Qed.
-
-Theorem Zle_ZERO_mult :
- (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zmult x y)).
-Intros x y; Case x.
-Intros; Rewrite Zero_mult_left; Trivial.
-Intros p H1; Unfold Zle.
- Pattern 2 ZERO ; Rewrite <- (Zero_mult_right (POS p)).
- Rewrite Zcompare_Zmult_compatible; Trivial.
-Intros p H1 H2; Absurd (Zgt ZERO (NEG p)); Trivial.
-Unfold Zgt; Simpl; Auto with zarith.
-Qed.
-
-Lemma Zgt_ZERO_mult: (a,b:Z) (Zgt a ZERO)->(Zgt b ZERO)
- ->(Zgt (Zmult a b) ZERO).
-Intros x y; Case x.
-Intros H; Discriminate H.
-Intros p H1; Unfold Zgt;
-Pattern 2 ZERO ; Rewrite <- (Zero_mult_right (POS p)).
- Rewrite Zcompare_Zmult_compatible; Trivial.
-Intros p H; Discriminate H.
-Qed.
-
-Theorem Zle_mult:
- (x,y:Z) (Zgt x ZERO) -> (Zle ZERO y) -> (Zle ZERO (Zmult y x)).
-Intros x y H1 H2; Apply Zle_ZERO_mult; Trivial.
-Apply Zlt_le_weak; Apply Zgt_lt; Trivial.
-Qed.
-
-Theorem Zmult_lt:
- (x,y:Z) (Zgt x ZERO) -> (Zlt ZERO (Zmult y x)) -> (Zlt ZERO y).
-
-Intros x y; Case x; [
- Simpl; Unfold Zgt ; Simpl; Intros H; Discriminate H
-| Intros p H1; Unfold Zlt; Rewrite -> Zmult_sym;
- Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p));
- Rewrite Zcompare_Zmult_compatible; Auto with arith
-| Intros p; Unfold Zgt ; Simpl; Intros H; Discriminate H].
-Qed.
-
-Theorem Zmult_gt:
- (x,y:Z) (Zgt x ZERO) -> (Zgt (Zmult x y) ZERO) -> (Zgt y ZERO).
-
-Intros x y; Case x.
- Intros H; Discriminate H.
- Intros p H1; Unfold Zgt.
- Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)).
- Rewrite Zcompare_Zmult_compatible; Trivial.
-Intros p H; Discriminate H.
-Qed.
-
Theorem Zle_mult_approx:
(x,y,z:Z) (Zgt x ZERO) -> (Zgt z ZERO) -> (Zle ZERO y) ->
(Zle ZERO (Zplus (Zmult y x) z)).
@@ -357,74 +251,6 @@ Intros x y z H1 H2 H3; Apply Zle_trans with m:=(Zmult y x) ; [
Apply Zlt_le_weak; Apply Zgt_lt; Assumption].
Qed.
-Lemma Zle_Zmult_pos_right :
- (a,b,c : Z)
- (Zle a b) -> (Zle ZERO c) -> (Zle (Zmult a c) (Zmult b c)).
-Intros a b c H1 H2; Apply Zle_left_rev.
-Rewrite Zopp_Zmult_l.
-Rewrite <- Zmult_plus_distr_l.
-Apply Zle_ZERO_mult; Trivial.
-Apply Zle_left; Trivial.
-Qed.
-
-Lemma Zle_Zmult_pos_left :
- (a,b,c : Z)
- (Zle a b) -> (Zle ZERO c) -> (Zle (Zmult c a) (Zmult c b)).
-Intros a b c H1 H2; Rewrite (Zmult_sym c a);Rewrite (Zmult_sym c b).
-Apply Zle_Zmult_pos_right; Trivial.
-Qed.
-
-Lemma Zge_Zmult_pos_right :
- (a,b,c : Z)
- (Zge a b) -> (Zge c ZERO) -> (Zge (Zmult a c) (Zmult b c)).
-Intros a b c H1 H2; Apply Zle_ge.
-Apply Zle_Zmult_pos_right; Apply Zge_le; Trivial.
-Qed.
-
-Lemma Zge_Zmult_pos_left :
- (a,b,c : Z)
- (Zge a b) -> (Zge c ZERO) -> (Zge (Zmult c a) (Zmult c b)).
-Intros a b c H1 H2; Apply Zle_ge.
-Apply Zle_Zmult_pos_left; Apply Zge_le; Trivial.
-Qed.
-
-Lemma Zge_Zmult_pos_compat :
- (a,b,c,d : Z)
- (Zge a c) -> (Zge b d) -> (Zge c ZERO) -> (Zge d ZERO)
- -> (Zge (Zmult a b) (Zmult c d)).
-Intros a b c d H0 H1 H2 H3.
-Apply Zge_trans with (Zmult a d).
-Apply Zge_Zmult_pos_left; Trivial.
-Apply Zge_trans with c; Trivial.
-Apply Zge_Zmult_pos_right; Trivial.
-Qed.
-
-Lemma Zle_mult_simpl
- : (a,b,c:Z) (Zgt c ZERO)->(Zle (Zmult a c) (Zmult b c))->(Zle a b).
-Intros a b c H1 H2; Apply Zle_left_rev.
-Apply Zmult_le with c; Trivial.
-Rewrite Zmult_plus_distr_l.
-Rewrite <- Zopp_Zmult_l.
-Apply Zle_left; Trivial.
-Qed.
-
-
-Lemma Zge_mult_simpl
- : (a,b,c:Z) (Zgt c ZERO)->(Zge (Zmult a c) (Zmult b c))->(Zge a b).
-Intros a b c H1 H2; Apply Zle_ge; Apply Zle_mult_simpl with c; Trivial.
-Apply Zge_le; Trivial.
-Qed.
-
-Lemma Zgt_mult_simpl
- : (a,b,c:Z) (Zgt c ZERO)->(Zgt (Zmult a c) (Zmult b c))->(Zgt a b).
-Intros a b c H1 H2; Apply Zgt_left_rev.
-Apply Zmult_gt with c; Trivial.
-Rewrite Zmult_sym.
-Rewrite Zmult_plus_distr_l.
-Rewrite <- Zopp_Zmult_l.
-Apply Zgt_left_gt; Trivial.
-Qed.
-
Lemma Zgt_square_simpl:
(x, y : Z) (Zge x ZERO) -> (Zge y ZERO)
-> (Zgt (Zmult x x) (Zmult y y)) -> (Zgt x y).
@@ -451,383 +277,5 @@ Intros x y z H1 H2 H3; Apply Zlt_n_Sm_le; Apply (Zmult_lt x); [
Qed.
-Theorem OMEGA1 : (x,y:Z) (x=y) -> (Zle ZERO x) -> (Zle ZERO y).
-Intros x y H; Rewrite H; Auto with arith.
-Qed.
-
-Theorem OMEGA2 : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zplus x y)).
-Intros x y H1 H2;Rewrite <- (Zero_left ZERO); Apply Zle_plus_plus; Assumption.
-Qed.
-
-Theorem OMEGA3 :
- (x,y,k:Z)(Zgt k ZERO)-> (x=(Zmult y k)) -> (x=ZERO) -> (y=ZERO).
-
-Intros x y k H1 H2 H3; Apply (Zmult_eq k); [
- Unfold not ; Intros H4; Absurd (Zgt k ZERO); [
- Rewrite H4; Unfold Zgt ; Simpl; Discriminate | Assumption]
- | Rewrite <- H2; Assumption].
-Qed.
-
-Theorem OMEGA4 :
- (x,y,z:Z)(Zgt x ZERO) -> (Zgt y x) -> ~(Zplus (Zmult z y) x) = ZERO.
-
-Unfold not ; Intros x y z H1 H2 H3; Cut (Zgt y ZERO); [
- Intros H4; Cut (Zle ZERO (Zplus (Zmult z y) x)); [
- Intros H5; Generalize (Zmult_le_approx y z x H4 H2 H5) ; Intros H6;
- Absurd (Zgt (Zplus (Zmult z y) x) ZERO); [
- Rewrite -> H3; Unfold Zgt ; Simpl; Discriminate
- | Apply Zle_gt_trans with x ; [
- Pattern 1 x ; Rewrite <- (Zero_left x); Apply Zle_reg_r;
- Rewrite -> Zmult_sym; Generalize H4 ; Unfold Zgt;
- Case y; [
- Simpl; Intros H7; Discriminate H7
- | Intros p H7; Rewrite <- (Zero_mult_right (POS p));
- Unfold Zle ; Rewrite -> Zcompare_Zmult_compatible; Exact H6
- | Simpl; Intros p H7; Discriminate H7]
- | Assumption]]
- | Rewrite -> H3; Unfold Zle ; Simpl; Discriminate]
- | Apply Zgt_trans with x ; [ Assumption | Assumption]].
-Qed.
-
-Theorem OMEGA5: (x,y,z:Z)(x=ZERO) -> (y=ZERO) -> (Zplus x (Zmult y z)) = ZERO.
-
-Intros x y z H1 H2; Rewrite H1; Rewrite H2; Simpl; Trivial with arith.
-Qed.
-Theorem OMEGA6:
- (x,y,z:Z)(Zle ZERO x) -> (y=ZERO) -> (Zle ZERO (Zplus x (Zmult y z))).
-
-Intros x y z H1 H2; Rewrite H2; Simpl; Rewrite Zero_right; Assumption.
-Qed.
-
-Theorem OMEGA7:
- (x,y,z,t:Z)(Zgt z ZERO) -> (Zgt t ZERO) -> (Zle ZERO x) -> (Zle ZERO y) ->
- (Zle ZERO (Zplus (Zmult x z) (Zmult y t))).
-
-Intros x y z t H1 H2 H3 H4; Rewrite <- (Zero_left ZERO);
-Apply Zle_plus_plus; Apply Zle_mult; Assumption.
-Qed.
-
-Theorem OMEGA8:
- (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> x = (Zopp y) -> x = ZERO.
-
-Intros x y H1 H2 H3; Elim (Zle_lt_or_eq ZERO x H1); [
- Intros H4; Absurd (Zlt ZERO x); [
- Change (Zge ZERO x); Apply Zle_ge; Apply (Zsimpl_le_plus_l y);
- Rewrite -> H3; Rewrite Zplus_inverse_r; Rewrite Zero_right; Assumption
- | Assumption]
-| Intros H4; Rewrite -> H4; Trivial with arith].
-Qed.
-
-Theorem OMEGA9:(x,y,z,t:Z) y=ZERO -> x = z ->
- (Zplus y (Zmult (Zplus (Zopp x) z) t)) = ZERO.
-
-Intros x y z t H1 H2; Rewrite H2; Rewrite Zplus_inverse_l;
-Rewrite Zero_mult_left; Rewrite Zero_right; Assumption.
-Qed.
-Theorem OMEGA10:(v,c1,c2,l1,l2,k1,k2:Z)
- (Zplus (Zmult (Zplus (Zmult v c1) l1) k1) (Zmult (Zplus (Zmult v c2) l2) k2))
- = (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc;
-Rewrite (Zplus_permute (Zmult l1 k1) (Zmult (Zmult v c2) k2)); Trivial with arith.
-Qed.
-
-Theorem OMEGA11:(v1,c1,l1,l2,k1:Z)
- (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2)
- = (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith.
-Qed.
-
-Theorem OMEGA12:(v2,c2,l1,l2,k2:Z)
- (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2))
- = (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Rewrite Zplus_permute;
-Trivial with arith.
-Qed.
-
-Theorem OMEGA13:(v,l1,l2:Z)(x:positive)
- (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2))
- = (Zplus l1 l2).
-
-Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (POS x)) l1);
-Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r;
-Rewrite <- Zopp_NEG; Rewrite (Zplus_sym (Zopp (NEG x)) (NEG x));
-Rewrite Zplus_inverse_r; Rewrite Zero_mult_right; Rewrite Zero_right; Trivial with arith.
-Qed.
-
-Theorem OMEGA14:(v,l1,l2:Z)(x:positive)
- (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2))
- = (Zplus l1 l2).
-
-Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (NEG x)) l1);
-Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r;
-Rewrite <- Zopp_NEG; Rewrite Zplus_inverse_r; Rewrite Zero_mult_right;
-Rewrite Zero_right; Trivial with arith.
-Qed.
-Theorem OMEGA15:(v,c1,c2,l1,l2,k2:Z)
- (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2))
- = (Zplus (Zmult v (Zplus c1 (Zmult c2 k2)))
- (Zplus l1 (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc;
-Rewrite (Zplus_permute l1 (Zmult (Zmult v c2) k2)); Trivial with arith.
-Qed.
-
-Theorem OMEGA16:
- (v,c,l,k:Z)
- (Zmult (Zplus (Zmult v c) l) k) = (Zplus (Zmult v (Zmult c k)) (Zmult l k)).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith.
-Qed.
-
-Theorem OMEGA17:
- (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO).
-
-Unfold Zne not; Intros x y z H1 H2 H3; Apply H1;
-Apply Zsimpl_plus_l with (Zmult y z); Rewrite Zplus_sym; Rewrite H3;
-Rewrite H2; Auto with arith.
-Qed.
-
-Theorem OMEGA18:
- (x,y,k:Z) (x=(Zmult y k)) -> (Zne x ZERO) -> (Zne y ZERO).
-
-Unfold Zne not; Intros x y k H1 H2 H3; Apply H2; Rewrite H1; Rewrite H3; Auto with arith.
-Qed.
-
-Theorem OMEGA19:
- (x:Z) (Zne x ZERO) ->
- (Zle ZERO (Zplus x (NEG xH))) \/ (Zle ZERO (Zplus (Zmult x (NEG xH)) (NEG xH))).
-
-Unfold Zne ; Intros x H; Elim (Zle_or_lt ZERO x); [
- Intros H1; Elim Zle_lt_or_eq with 1:=H1; [
- Intros H2; Left; Change (Zle ZERO (Zpred x)); Apply Zle_S_n;
- Rewrite <- Zs_pred; Apply Zlt_le_S; Assumption
- | Intros H2; Absurd x=ZERO; Auto with arith]
-| Intros H1; Right; Rewrite <- Zopp_one; Rewrite Zplus_sym;
- Apply Zle_left; Apply Zle_S_n; Simpl; Apply Zlt_le_S; Auto with arith].
-Qed.
-
-Theorem OMEGA20:
- (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO).
-
-Unfold Zne not; Intros x y z H1 H2 H3; Apply H1; Rewrite H2 in H3;
-Simpl in H3; Rewrite Zero_right in H3; Trivial with arith.
-Qed.
-
-Definition fast_Zplus_sym :=
-[x,y:Z][P:Z -> Prop][H: (P (Zplus y x))]
- (eq_ind_r Z (Zplus y x) P H (Zplus x y) (Zplus_sym x y)).
-
-Definition fast_Zplus_assoc_r :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus n (Zplus m p)))]
- (eq_ind_r Z (Zplus n (Zplus m p)) P H (Zplus (Zplus n m) p) (Zplus_assoc_r n m p)).
-
-Definition fast_Zplus_assoc_l :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus (Zplus n m) p))]
- (eq_ind_r Z (Zplus (Zplus n m) p) P H (Zplus n (Zplus m p))
- (Zplus_assoc_l n m p)).
-
-Definition fast_Zplus_permute :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus m (Zplus n p)))]
- (eq_ind_r Z (Zplus m (Zplus n p)) P H (Zplus n (Zplus m p))
- (Zplus_permute n m p)).
-
-Definition fast_OMEGA10 :=
-[v,c1,c2,l1,l2,k1,k2:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2)))
- P H
- (Zplus (Zmult (Zplus (Zmult v c1) l1) k1)
- (Zmult (Zplus (Zmult v c2) l2) k2))
- (OMEGA10 v c1 c2 l1 l2 k1 k2)).
-
-Definition fast_OMEGA11 :=
-[v1,c1,l1,l2,k1:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)))]
- (eq_ind_r Z
- (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2))
- P H
- (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2)
- (OMEGA11 v1 c1 l1 l2 k1)).
-Definition fast_OMEGA12 :=
-[v2,c2,l1,l2,k2:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2)))
- P H
- (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2))
- (OMEGA12 v2 c2 l1 l2 k2)).
-
-Definition fast_OMEGA15 :=
-[v,c1,c2,l1,l2,k2 :Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2)))
- P H
- (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2))
- (OMEGA15 v c1 c2 l1 l2 k2)).
-Definition fast_OMEGA16 :=
-[v,c,l,k :Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zmult c k)) (Zmult l k)))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zmult c k)) (Zmult l k))
- P H
- (Zmult (Zplus (Zmult v c) l) k)
- (OMEGA16 v c l k)).
-
-Definition fast_OMEGA13 :=
-[v,l1,l2 :Z][x:positive][P:Z -> Prop]
-[H : (P (Zplus l1 l2))]
- (eq_ind_r Z
- (Zplus l1 l2)
- P H
- (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2))
- (OMEGA13 v l1 l2 x )).
-
-Definition fast_OMEGA14 :=
-[v,l1,l2 :Z][x:positive][P:Z -> Prop]
-[H : (P (Zplus l1 l2))]
- (eq_ind_r Z
- (Zplus l1 l2)
- P H
- (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2))
- (OMEGA14 v l1 l2 x )).
-Definition fast_Zred_factor0:=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (POS xH)) )]
- (eq_ind_r Z
- (Zmult x (POS xH))
- P H
- x
- (Zred_factor0 x)).
-
-Definition fast_Zopp_one :=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (NEG xH)))]
- (eq_ind_r Z
- (Zmult x (NEG xH))
- P H
- (Zopp x)
- (Zopp_one x)).
-
-Definition fast_Zmult_sym :=
-[x,y :Z][P:Z -> Prop]
-[H : (P (Zmult y x))]
- (eq_ind_r Z
-(Zmult y x)
- P H
-(Zmult x y)
- (Zmult_sym x y )).
-
-Definition fast_Zopp_Zplus :=
-[x,y :Z][P:Z -> Prop]
-[H : (P (Zplus (Zopp x) (Zopp y)) )]
- (eq_ind_r Z
- (Zplus (Zopp x) (Zopp y))
- P H
- (Zopp (Zplus x y))
- (Zopp_Zplus x y )).
-
-Definition fast_Zopp_Zopp :=
-[x:Z][P:Z -> Prop]
-[H : (P x )] (eq_ind_r Z x P H (Zopp (Zopp x)) (Zopp_Zopp x)).
-
-Definition fast_Zopp_Zmult_r :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zopp y)))]
- (eq_ind_r Z
- (Zmult x (Zopp y))
- P H
- (Zopp (Zmult x y))
- (Zopp_Zmult_r x y )).
-
-Definition fast_Zmult_plus_distr :=
-[n,m,p:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult n p) (Zmult m p)))]
- (eq_ind_r Z
- (Zplus (Zmult n p) (Zmult m p))
- P H
- (Zmult (Zplus n m) p)
- (Zmult_plus_distr_l n m p)).
-Definition fast_Zmult_Zopp_left:=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zopp y)))]
- (eq_ind_r Z
- (Zmult x (Zopp y))
- P H
- (Zmult (Zopp x) y)
- (Zmult_Zopp_left x y)).
-
-Definition fast_Zmult_assoc_r :=
-[n,m,p :Z][P:Z -> Prop]
-[H : (P (Zmult n (Zmult m p)))]
- (eq_ind_r Z
- (Zmult n (Zmult m p))
- P H
- (Zmult (Zmult n m) p)
- (Zmult_assoc_r n m p)).
-
-Definition fast_Zred_factor1 :=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (POS (xO xH))) )]
- (eq_ind_r Z
- (Zmult x (POS (xO xH)))
- P H
- (Zplus x x)
- (Zred_factor1 x)).
-
-Definition fast_Zred_factor2 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus (POS xH) y)))]
- (eq_ind_r Z
- (Zmult x (Zplus (POS xH) y))
- P H
- (Zplus x (Zmult x y))
- (Zred_factor2 x y)).
-Definition fast_Zred_factor3 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus (POS xH) y)))]
- (eq_ind_r Z
- (Zmult x (Zplus (POS xH) y))
- P H
- (Zplus (Zmult x y) x)
- (Zred_factor3 x y)).
-
-Definition fast_Zred_factor4 :=
-[x,y,z:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus y z)))]
- (eq_ind_r Z
- (Zmult x (Zplus y z))
- P H
- (Zplus (Zmult x y) (Zmult x z))
- (Zred_factor4 x y z)).
-
-Definition fast_Zred_factor5 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P y)]
- (eq_ind_r Z
- y
- P H
- (Zplus (Zmult x ZERO) y)
- (Zred_factor5 x y)).
-
-Definition fast_Zred_factor6 :=
-[x :Z][P:Z -> Prop]
-[H : (P(Zplus x ZERO) )]
- (eq_ind_r Z
- (Zplus x ZERO)
- P H
- x
- (Zred_factor6 x )).
+V7only [Notation OMEGA2 := Zle_0_plus.].