aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zpow_facts.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-11-06 02:18:53 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-11-06 02:18:53 +0000
commitb3f67a99cf1013343d99f7cf8036bbabb566dce0 (patch)
treea19daf9cb9479563eb41e4f976551a8ae9e3aa49 /theories/ZArith/Zpow_facts.v
parenta17428b39d80a7da6dae16951be2b73eb0c7c4f5 (diff)
Integration of theories/Ints/Z/* in ZArith and large cleanup and extension of Zdiv
Some details: - ZAux.v is the only file left in Ints/Z. The few elements that remain in it are rather specific or compatibility oriented. Others parts and files have been either deleted when unused or pushed into some place of ZArith. - Ints/List/ is removed since it was not needed anymore - Ints/Tactic.v disappear: some of its tactic were unused, some already in Tactics.v (case_eq, f_equal instead of eq_tac), and the nice contradict has been added to Tactics.v - Znumtheory inherits lots of results about Zdivide, rel_prime, prime, Zgcd, ... - A new file Zpow_facts inherits lots of results about Zpower. Placing them into Zpower would have been difficult with respect to compatibility (import of ring) - A few things added to Zmax, Zabs, Znat, Zsqrt, Zeven, Zorder - Adequate adaptations to Ints/num/* (mainly renaming of lemmas) Now, concerning Zdiv, the behavior when dividing by a negative number is now fully proved. When this was possible, existing lemmas has been extended, either from strictly positive to non-zero divisor, or even to arbitrary divisor (especially when playing with Zmod). These extended lemmas are named with the suffix _full, whereas the original restrictive lemmas are retained for compatibility. Several lemmas now have shorter proofs (based on unicity lemmas). Lemmas are now more or less organized by themes (division and order, division and usual operations, etc). Three possible choices of spec for divisions on negative numbers are presented: this Zdiv, the ocaml approach and the remainder-always-positive approach. The ugly behavior of Zopp with the current choice of Zdiv/Zmod is now fully covered. A embryo of division "a la Ocaml" is given: Odiv and Omod. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10291 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/ZArith/Zpow_facts.v')
-rw-r--r--theories/ZArith/Zpow_facts.v451
1 files changed, 451 insertions, 0 deletions
diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v
new file mode 100644
index 000000000..448fa8602
--- /dev/null
+++ b/theories/ZArith/Zpow_facts.v
@@ -0,0 +1,451 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id$ i*)
+
+Require Import ZArith_base.
+Require Import ZArithRing.
+Require Import Zcomplements.
+Require Export Zpower.
+Require Import Zdiv.
+Require Import Znumtheory.
+Open Scope Z_scope.
+
+Lemma Zpower_pos_1_r: forall x, Zpower_pos x 1 = x.
+Proof.
+ intros x; unfold Zpower_pos; simpl; auto with zarith.
+Qed.
+
+Lemma Zpower_pos_1_l: forall p, Zpower_pos 1 p = 1.
+Proof.
+ induction p.
+ (* xI *)
+ rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
+ repeat rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r, IHp; auto.
+ (* xO *)
+ rewrite <- Pplus_diag.
+ repeat rewrite Zpower_pos_is_exp.
+ rewrite IHp; auto.
+ (* xH *)
+ rewrite Zpower_pos_1_r; auto.
+Qed.
+
+Lemma Zpower_pos_0_l: forall p, Zpower_pos 0 p = 0.
+Proof.
+ induction p.
+ change (xI p) with (1 + (xO p))%positive.
+ rewrite Zpower_pos_is_exp, Zpower_pos_1_r; auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp, IHp; auto.
+ rewrite Zpower_pos_1_r; auto.
+Qed.
+
+Lemma Zpower_pos_pos: forall x p,
+ 0 < x -> 0 < Zpower_pos x p.
+Proof.
+ induction p; intros.
+ (* xI *)
+ rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
+ repeat rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r.
+ repeat apply Zmult_lt_0_compat; auto.
+ (* xO *)
+ rewrite <- Pplus_diag.
+ repeat rewrite Zpower_pos_is_exp.
+ repeat apply Zmult_lt_0_compat; auto.
+ (* xH *)
+ rewrite Zpower_pos_1_r; auto.
+Qed.
+
+
+Theorem Zpower_1_r: forall z, z^1 = z.
+Proof.
+ exact Zpower_pos_1_r.
+Qed.
+
+Theorem Zpower_1_l: forall z, 0 <= z -> 1^z = 1.
+Proof.
+ destruct z; simpl; auto.
+ intros; apply Zpower_pos_1_l.
+ intros; compute in H; elim H; auto.
+Qed.
+
+Theorem Zpower_0_l: forall z, z<>0 -> 0^z = 0.
+Proof.
+ destruct z; simpl; auto with zarith.
+ intros; apply Zpower_pos_0_l.
+Qed.
+
+Theorem Zpower_0_r: forall z, z^0 = 1.
+Proof.
+ simpl; auto.
+Qed.
+
+Theorem Zpower_2: forall z, z^2 = z * z.
+Proof.
+ intros; ring.
+Qed.
+
+Theorem Zpower_gt_0: forall x y,
+ 0 < x -> 0 <= y -> 0 < x^y.
+Proof.
+ destruct y; simpl; auto with zarith.
+ intros; apply Zpower_pos_pos; auto.
+ intros; compute in H0; elim H0; auto.
+Qed.
+
+Theorem Zpower_Zabs: forall a b, Zabs (a^b) = (Zabs a)^b.
+Proof.
+ intros a b; case (Zle_or_lt 0 b).
+ intros Hb; pattern b; apply natlike_ind; auto with zarith.
+ intros x Hx Hx1; unfold Zsucc.
+ (repeat rewrite Zpower_exp); auto with zarith.
+ rewrite Zabs_Zmult; rewrite Hx1.
+ f_equal; auto.
+ replace (a ^ 1) with a; auto.
+ simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
+ simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
+ case b; simpl; auto with zarith.
+ intros p Hp; discriminate.
+Qed.
+
+Theorem Zpower_Zsucc: forall p n, 0 <= n -> p^(Zsucc n) = p * p^n.
+Proof.
+ intros p n H.
+ unfold Zsucc; rewrite Zpower_exp; auto with zarith.
+ rewrite Zpower_1_r; apply Zmult_comm.
+Qed.
+
+Theorem Zpower_mult: forall p q r, 0 <= q -> 0 <= r -> p^(q*r) = (p^q)^r.
+Proof.
+ intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
+ intros H3; rewrite Zmult_0_r; repeat rewrite Zpower_exp_0; auto.
+ intros r1 H3 H4 H5.
+ unfold Zsucc; rewrite Zpower_exp; auto with zarith.
+ rewrite <- H4; try rewrite Zpower_1_r; try rewrite <- Zpower_exp; try f_equal; auto with zarith.
+ ring.
+ apply Zle_ge; replace 0 with (0 * r1); try apply Zmult_le_compat_r; auto.
+Qed.
+
+Theorem Zpower_le_monotone: forall a b c,
+ 0 < a -> 0 <= b <= c -> a^b <= a^c.
+Proof.
+ intros a b c H (H1, H2).
+ rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_le_compat_l; auto with zarith.
+ assert (0 < a ^ (c - b)); auto with zarith.
+ apply Zpower_gt_0; auto with zarith.
+ apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
+Qed.
+
+Theorem Zpower_lt_monotone: forall a b c,
+ 1 < a -> 0 <= b < c -> a^b < a^c.
+Proof.
+ intros a b c H (H1, H2).
+ rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ apply Zpower_gt_0; auto with zarith.
+ assert (0 < a ^ (c - b)); auto with zarith.
+ apply Zpower_gt_0; auto with zarith.
+ apply Zlt_le_trans with (a ^1); auto with zarith.
+ rewrite Zpower_1_r; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+Qed.
+
+Theorem Zpower_gt_1 : forall x y,
+ 1 < x -> 0 < y -> 1 < x^y.
+Proof.
+ intros x y H1 H2.
+ replace 1 with (x ^ 0) by apply Zpower_0_r.
+ apply Zpower_lt_monotone; auto with zarith.
+Qed.
+
+Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y.
+Proof.
+ intros x y; case y; auto with zarith.
+ simpl; auto with zarith.
+ intros p H1; assert (H: 0 <= Zpos p); auto with zarith.
+ generalize H; pattern (Zpos p); apply natlike_ind; auto.
+ intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ generalize H1; case x; compute; intros; auto; discriminate.
+Qed.
+
+Theorem Zpower_le_monotone2:
+ forall a b c, 0 < a -> b <= c -> a^b <= a^c.
+Proof.
+ intros a b c H H2.
+ destruct (Z_le_gt_dec 0 b).
+ apply Zpower_le_monotone; auto.
+ replace (a^b) with 0.
+ destruct (Z_le_gt_dec 0 c).
+ destruct (Zle_lt_or_eq _ _ z0).
+ apply Zlt_le_weak;apply Zpower_gt_0;trivial.
+ rewrite <- H0;simpl;auto with zarith.
+ replace (a^c) with 0. auto with zarith.
+ destruct c;trivial;unfold Zgt in z0;discriminate z0.
+ destruct b;trivial;unfold Zgt in z;discriminate z.
+Qed.
+
+Theorem Zmult_power: forall p q r, 0 <= q -> 0 <= r ->
+ (p*q)^r = p^r * q^r.
+Proof.
+ intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
+ intros r1 H3 H4 H5.
+ unfold Zsucc; rewrite Zpower_exp; auto with zarith.
+ rewrite H4; repeat rewrite Zpower_exp; auto with zarith; ring.
+Qed.
+
+Hint Resolve Zpower_ge_0 Zpower_gt_0: zarith.
+
+Theorem Zpower_le_monotone3: forall a b c,
+ 0 <= c -> 0 <= a <= b -> a^c <= b^c.
+Proof.
+ intros a b c H (H1, H2).
+ generalize H; pattern c; apply natlike_ind; auto.
+ intros x HH HH1 _; unfold Zsucc; repeat rewrite Zpower_exp; auto with zarith.
+ repeat rewrite Zpower_1_r.
+ apply Zle_trans with (a^x * b); auto with zarith.
+Qed.
+
+Lemma Zpower_le_monotone_inv: forall a b c,
+ 1 < a -> 0 < b -> a^b <= a^c -> b <= c.
+Proof.
+ intros a b c H H0 H1.
+ destruct (Z_le_gt_dec b c);trivial.
+ assert (2 <= a^b).
+ apply Zle_trans with (2^b).
+ pattern 2 at 1;replace 2 with (2^1);trivial.
+ apply Zpower_le_monotone;auto with zarith.
+ apply Zpower_le_monotone3;auto with zarith.
+ assert (c > 0).
+ destruct (Z_le_gt_dec 0 c);trivial.
+ destruct (Zle_lt_or_eq _ _ z0);auto with zarith.
+ rewrite <- H3 in H1;simpl in H1; elimtype False;omega.
+ destruct c;try discriminate z0. simpl in H1. elimtype False;omega.
+ assert (H4 := Zpower_lt_monotone a c b H). elimtype False;omega.
+Qed.
+
+Theorem Zpower_nat_Zpower: forall p q, 0 <= q ->
+ p^q = Zpower_nat p (Zabs_nat q).
+Proof.
+ intros p1 q1; case q1; simpl.
+ intros _; exact (refl_equal _).
+ intros p2 _; apply Zpower_pos_nat.
+ intros p2 H1; case H1; auto.
+Qed.
+
+Theorem Zpower2_lt_lin: forall n, 0 <= n -> n < 2^n.
+Proof.
+ intros n; apply (natlike_ind (fun n => n < 2 ^n)); clear n.
+ simpl; auto with zarith.
+ intros n H1 H2; unfold Zsucc.
+ case (Zle_lt_or_eq _ _ H1); clear H1; intros H1.
+ apply Zle_lt_trans with (n + n); auto with zarith.
+ rewrite Zpower_exp; auto with zarith.
+ rewrite Zpower_1_r.
+ assert (tmp: forall p, p * 2 = p + p); intros; try ring;
+ rewrite tmp; auto with zarith.
+ subst n; simpl; unfold Zpower_pos; simpl; auto with zarith.
+Qed.
+
+Theorem Zpower2_le_lin: forall n, 0 <= n -> n <= 2^n.
+Proof.
+ intros; apply Zlt_le_weak; apply Zpower2_lt_lin; auto.
+Qed.
+
+
+(** * Zpower and modulo *)
+
+Theorem Zpower_mod: forall p q n, 0 < n ->
+ (p^q) mod n = ((p mod n)^q) mod n.
+Proof.
+ intros p q n Hn; case (Zle_or_lt 0 q); intros H1.
+ generalize H1; pattern q; apply natlike_ind; auto.
+ intros q1 Hq1 Rec _; unfold Zsucc; repeat rewrite Zpower_exp; repeat rewrite Zpower_1_r; auto with zarith.
+ rewrite (fun x => (Zmult_mod x p)); try rewrite Rec; auto with zarith.
+ rewrite (fun x y => (Zmult_mod (x ^y))); try f_equal; auto with zarith.
+ f_equal; auto; apply sym_equal; apply Zmod_mod; auto with zarith.
+ generalize H1; case q; simpl; auto.
+ intros; discriminate.
+Qed.
+
+(** A direct way to compute Zpower modulo **)
+
+Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) {struct m} : Z :=
+ match m with
+ | xH => a mod n
+ | xO m' =>
+ let z := Zpow_mod_pos a m' n in
+ match z with
+ | 0 => 0
+ | _ => (z * z) mod n
+ end
+ | xI m' =>
+ let z := Zpow_mod_pos a m' n in
+ match z with
+ | 0 => 0
+ | _ => (z * z * a) mod n
+ end
+ end.
+
+Definition Zpow_mod a m n :=
+ match m with
+ | 0 => 1
+ | Zpos p => Zpow_mod_pos a p n
+ | Zneg p => 0
+ end.
+
+Theorem Zpow_mod_pos_correct: forall a m n, 0 < n ->
+ Zpow_mod_pos a m n = (Zpower_pos a m) mod n.
+Proof.
+ intros a m; elim m; simpl; auto.
+ intros p Rec n H1; rewrite xI_succ_xO, Pplus_one_succ_r, <-Pplus_diag; auto.
+ repeat rewrite Zpower_pos_is_exp; auto.
+ repeat rewrite Rec; auto.
+ rewrite Zpower_pos_1_r.
+ repeat rewrite (fun x => (Zmult_mod x a)); auto with zarith.
+ rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
+ case (Zpower_pos a p mod n); auto.
+ intros p Rec n H1; rewrite <- Pplus_diag; auto.
+ repeat rewrite Zpower_pos_is_exp; auto.
+ repeat rewrite Rec; auto.
+ rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
+ case (Zpower_pos a p mod n); auto.
+ unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith.
+Qed.
+
+Theorem Zpow_mod_correct: forall a m n, 1 < n -> 0 <= m ->
+ Zpow_mod a m n = (a ^ m) mod n.
+Proof.
+ intros a m n; case m; simpl.
+ intros; apply sym_equal; apply Zmod_small; auto with zarith.
+ intros; apply Zpow_mod_pos_correct; auto with zarith.
+ intros p H H1; case H1; auto.
+Qed.
+
+(* Complements about power and number theory. *)
+
+Lemma Zpower_divide: forall p q, 0 < q -> (p | p ^ q).
+Proof.
+ intros p q H; exists (p ^(q - 1)).
+ pattern p at 3; rewrite <- (Zpower_1_r p); rewrite <- Zpower_exp; try f_equal; auto with zarith.
+Qed.
+
+Theorem rel_prime_Zpower_r: forall i p q, 0 < i ->
+ rel_prime p q -> rel_prime p (q^i).
+Proof.
+ intros i p q Hi Hpq; generalize Hi; pattern i; apply natlike_ind; auto with zarith; clear i Hi.
+ intros H; absurd_hyp H; auto with zarith.
+ intros i Hi Rec _; rewrite Zpower_Zsucc; auto.
+ apply rel_prime_mult; auto.
+ case Zle_lt_or_eq with (1 := Hi); intros Hi1; subst; auto.
+ rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
+Qed.
+
+Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j ->
+ rel_prime p q -> rel_prime (p^i) (q^j).
+Proof.
+ intros i j p q Hi; generalize Hi j p q; pattern i; apply natlike_ind; auto with zarith; clear i Hi j p q.
+ intros _ j p q H H1; rewrite Zpower_0_r; apply rel_prime_1.
+ intros n Hn Rec _ j p q Hj Hpq.
+ rewrite Zpower_Zsucc; auto.
+ case Zle_lt_or_eq with (1 := Hj); intros Hj1; subst.
+ apply rel_prime_sym; apply rel_prime_mult; auto.
+ apply rel_prime_sym; apply rel_prime_Zpower_r; auto with arith.
+ apply rel_prime_sym; apply Rec; auto.
+ rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
+Qed.
+
+Theorem prime_power_prime: forall p q n, 0 <= n ->
+ prime p -> prime q -> (p | q^n) -> p = q.
+Proof.
+ intros p q n Hn Hp Hq; pattern n; apply natlike_ind; auto; clear n Hn.
+ rewrite Zpower_0_r; intros.
+ assert (2<=p) by (apply prime_ge_2; auto).
+ assert (p<=1) by (apply Zdivide_le; auto with zarith).
+ omega.
+ intros n1 H H1.
+ unfold Zsucc; rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
+ assert (2<=p) by (apply prime_ge_2; auto).
+ assert (2<=q) by (apply prime_ge_2; auto).
+ intros H3; case prime_mult with (2 := H3); auto.
+ intros; apply prime_div_prime; auto.
+Qed.
+
+Theorem Zdivide_power_2: forall x p n, 0 <= n -> 0 <= x -> prime p ->
+ (x | p^n) -> exists m, x = p^m.
+Proof.
+ intros x p n Hn Hx; revert p n Hn; generalize Hx.
+ pattern x; apply Z_lt_induction; auto.
+ clear x Hx; intros x IH Hx p n Hn Hp H.
+ case Zle_lt_or_eq with (1 := Hx); auto; clear Hx; intros Hx; subst.
+ case (Zle_lt_or_eq 1 x); auto with zarith; clear Hx; intros Hx; subst.
+ (* x > 1 *)
+ case (prime_dec x); intros H2.
+ exists 1; rewrite Zpower_1_r; apply prime_power_prime with n; auto.
+ case not_prime_divide with (2 := H2); auto.
+ intros p1 ((H3, H4), (q1, Hq1)); subst.
+ case (IH p1) with p n; auto with zarith.
+ apply Zdivide_trans with (2 := H); exists q1; auto with zarith.
+ intros r1 Hr1.
+ case (IH q1) with p n; auto with zarith.
+ case (Zle_lt_or_eq 0 q1).
+ apply Zmult_le_0_reg_r with p1; auto with zarith.
+ split; auto with zarith.
+ pattern q1 at 1; replace q1 with (q1 * 1); auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ intros H5; subst; absurd_hyp Hx; auto with zarith.
+ apply Zmult_le_0_reg_r with p1; auto with zarith.
+ apply Zdivide_trans with (2 := H); exists p1; auto with zarith.
+ intros r2 Hr2; exists (r2 + r1); subst.
+ apply sym_equal; apply Zpower_exp.
+ generalize Hx; case r2; simpl; auto with zarith.
+ intros; red; simpl; intros; discriminate.
+ generalize H3; case r1; simpl; auto with zarith.
+ intros; red; simpl; intros; discriminate.
+ (* x = 1 *)
+ exists 0; rewrite Zpower_0_r; auto.
+ (* x = 0 *)
+ exists n; destruct H; rewrite Zmult_0_r in H; auto.
+Qed.
+
+(** * Zsquare: a direct definition of [z^2] *)
+
+Fixpoint Psquare (p: positive): positive :=
+ match p with
+ | xH => xH
+ | xO p => xO (xO (Psquare p))
+ | xI p => xI (xO (Pplus (Psquare p) p))
+ end.
+
+Definition Zsquare p :=
+ match p with
+ | Z0 => Z0
+ | Zpos p => Zpos (Psquare p)
+ | Zneg p => Zpos (Psquare p)
+ end.
+
+Theorem Psquare_correct: forall p, Psquare p = (p * p)%positive.
+Proof.
+ induction p; simpl; auto; f_equal; rewrite IHp.
+ apply trans_equal with (xO p + xO (p*p))%positive; auto.
+ rewrite (Pplus_comm (xO p)); auto.
+ rewrite Pmult_xI_permute_r; rewrite Pplus_assoc.
+ f_equal; auto.
+ symmetry; apply Pplus_diag.
+ symmetry; apply Pmult_xO_permute_r.
+Qed.
+
+Theorem Zsquare_correct: forall p, Zsquare p = p * p.
+Proof.
+ intro p; case p; simpl; auto; intros p1; rewrite Psquare_correct; auto.
+Qed.