aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zmisc.v
diff options
context:
space:
mode:
authorGravatar bertot <bertot@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-07-09 07:59:19 +0000
committerGravatar bertot <bertot@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-07-09 07:59:19 +0000
commitdf9a4f1ae642cbbd2a6f1a3b82ad8169b7ec5ae6 (patch)
tree47f00369a7e6ceef22bdd4ab7406091b58108924 /theories/ZArith/Zmisc.v
parentc04fe01b5d33b5e091c8fd19047514a7e4c4f311 (diff)
Making the sumbool functions transparent, so that they can used to
compute even inside Coq. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2846 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/ZArith/Zmisc.v')
-rw-r--r--theories/ZArith/Zmisc.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/ZArith/Zmisc.v b/theories/ZArith/Zmisc.v
index 5f1eb0721..ad5db4b53 100644
--- a/theories/ZArith/Zmisc.v
+++ b/theories/ZArith/Zmisc.v
@@ -242,7 +242,7 @@ Definition Zodd_bool :=
| _ => true
end.
-Lemma Zeven_odd_dec : (z:Z) { (Zeven z) }+{ (Zodd z) }.
+Definition Zeven_odd_dec : (z:Z) { (Zeven z) }+{ (Zodd z) }.
Proof.
Intro z. Case z;
[ Left; Compute; Trivial
@@ -254,9 +254,9 @@ Proof.
Realizer Zeven_bool.
Repeat Program; Compute; Trivial.
i*)
-Qed.
+Defined.
-Lemma Zeven_dec : (z:Z) { (Zeven z) }+{ ~(Zeven z) }.
+Definition Zeven_dec : (z:Z) { (Zeven z) }+{ ~(Zeven z) }.
Proof.
Intro z. Case z;
[ Left; Compute; Trivial
@@ -268,9 +268,9 @@ Proof.
Realizer Zeven_bool.
Repeat Program; Compute; Trivial.
i*)
-Qed.
+Defined.
-Lemma Zodd_dec : (z:Z) { (Zodd z) }+{ ~(Zodd z) }.
+Definition Zodd_dec : (z:Z) { (Zodd z) }+{ ~(Zodd z) }.
Proof.
Intro z. Case z;
[ Right; Compute; Trivial
@@ -282,7 +282,7 @@ Proof.
Realizer Zodd_bool.
Repeat Program; Compute; Trivial.
i*)
-Qed.
+Defined.
Lemma Zeven_not_Zodd : (z:Z)(Zeven z) -> ~(Zodd z).
Proof.
@@ -486,14 +486,14 @@ Proof.
Apply Zle_bool_imp_le. Assumption.
Qed.
-Lemma Zle_bool_total : (x,y:Z) {(Zle_bool x y)=true}+{(Zle_bool y x)=true}.
+Definition Zle_bool_total : (x,y:Z) {(Zle_bool x y)=true}+{(Zle_bool y x)=true}.
Proof.
Intros. Unfold Zle_bool. Cut (Zcompare x y)=SUPERIEUR<->(Zcompare y x)=INFERIEUR.
Case (Zcompare x y). Left . Reflexivity.
Left . Reflexivity.
Right . Rewrite (proj1 ? ? H (refl_equal ? ?)). Reflexivity.
Apply Zcompare_ANTISYM.
-Qed.
+Defined.
Lemma Zle_bool_plus_mono : (x,y,z,t:Z) (Zle_bool x y)=true -> (Zle_bool z t)=true ->
(Zle_bool (Zplus x z) (Zplus y t))=true.