aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zdigits.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:16 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:16 +0000
commitfc2613e871dffffa788d90044a81598f671d0a3b (patch)
treef6f308b3d6b02e1235446b2eb4a2d04b135a0462 /theories/ZArith/Zdigits.v
parentf93f073df630bb46ddd07802026c0326dc72dafd (diff)
ZArith + other : favor the use of modern names instead of compat notations
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/ZArith/Zdigits.v')
-rw-r--r--theories/ZArith/Zdigits.v30
1 files changed, 15 insertions, 15 deletions
diff --git a/theories/ZArith/Zdigits.v b/theories/ZArith/Zdigits.v
index ff1d96df4..a9348785a 100644
--- a/theories/ZArith/Zdigits.v
+++ b/theories/ZArith/Zdigits.v
@@ -64,7 +64,7 @@ Section ENCODING_VALUE.
(** We compute the binary value via a Horner scheme.
Computation stops at the vector length without checks.
- We define a function Zmod2 similar to Zdiv2 returning the
+ We define a function Zmod2 similar to Z.div2 returning the
quotient of division z=2q+r with 0<=r<=1.
The two's complement value is also computed via a Horner scheme
with Zmod2, the parameter is the size minus one.
@@ -88,7 +88,7 @@ Section ENCODING_VALUE.
Lemma Zmod2_twice :
- forall z:Z, z = (2 * Zmod2 z + bit_value (Zeven.Zodd_bool z))%Z.
+ forall z:Z, z = (2 * Zmod2 z + bit_value (Z.odd z))%Z.
Proof.
destruct z; simpl in |- *.
trivial.
@@ -97,7 +97,7 @@ Section ENCODING_VALUE.
destruct p; simpl in |- *.
destruct p as [p| p| ]; simpl in |- *.
- rewrite <- (Pdouble_minus_one_o_succ_eq_xI p); trivial.
+ rewrite <- (Pos.pred_double_succ p); trivial.
trivial.
@@ -113,15 +113,15 @@ Section ENCODING_VALUE.
simple induction n; intros.
exact Bnil.
- exact (Bcons (Zeven.Zodd_bool H0) n0 (H (Zeven.Zdiv2 H0))).
+ exact (Bcons (Z.odd H0) n0 (H (Z.div2 H0))).
Defined.
Lemma Z_to_two_compl : forall n:nat, Z -> Bvector (S n).
Proof.
simple induction n; intros.
- exact (Bcons (Zeven.Zodd_bool H) 0 Bnil).
+ exact (Bcons (Z.odd H) 0 Bnil).
- exact (Bcons (Zeven.Zodd_bool H0) (S n0) (H (Zmod2 H0))).
+ exact (Bcons (Z.odd H0) (S n0) (H (Zmod2 H0))).
Defined.
End ENCODING_VALUE.
@@ -175,27 +175,27 @@ Section Z_BRIC_A_BRAC.
destruct b; destruct z as [| p| p]; auto.
destruct p as [p| p| ]; auto.
destruct p as [p| p| ]; simpl in |- *; auto.
- intros; rewrite (Psucc_o_double_minus_one_eq_xO p); trivial.
+ intros; rewrite (Pos.succ_pred_double p); trivial.
Qed.
Lemma Z_to_binary_Sn_z :
forall (n:nat) (z:Z),
Z_to_binary (S n) z =
- Bcons (Zeven.Zodd_bool z) n (Z_to_binary n (Zeven.Zdiv2 z)).
+ Bcons (Z.odd z) n (Z_to_binary n (Z.div2 z)).
Proof.
intros; auto.
Qed.
Lemma Z_div2_value :
forall z:Z,
- (z >= 0)%Z -> (bit_value (Zeven.Zodd_bool z) + 2 * Zeven.Zdiv2 z)%Z = z.
+ (z >= 0)%Z -> (bit_value (Z.odd z) + 2 * Z.div2 z)%Z = z.
Proof.
destruct z as [| p| p]; auto.
destruct p; auto.
intro H; elim H; trivial.
Qed.
- Lemma Pdiv2 : forall z:Z, (z >= 0)%Z -> (Zeven.Zdiv2 z >= 0)%Z.
+ Lemma Pdiv2 : forall z:Z, (z >= 0)%Z -> (Z.div2 z >= 0)%Z.
Proof.
destruct z as [| p| p].
auto.
@@ -209,10 +209,10 @@ Section Z_BRIC_A_BRAC.
Lemma Zdiv2_two_power_nat :
forall (z:Z) (n:nat),
(z >= 0)%Z ->
- (z < two_power_nat (S n))%Z -> (Zeven.Zdiv2 z < two_power_nat n)%Z.
+ (z < two_power_nat (S n))%Z -> (Z.div2 z < two_power_nat n)%Z.
Proof.
intros.
- cut (2 * Zeven.Zdiv2 z < 2 * two_power_nat n)%Z; intros.
+ cut (2 * Z.div2 z < 2 * two_power_nat n)%Z; intros.
omega.
rewrite <- two_power_nat_S.
@@ -225,13 +225,13 @@ Section Z_BRIC_A_BRAC.
Lemma Z_to_two_compl_Sn_z :
forall (n:nat) (z:Z),
Z_to_two_compl (S n) z =
- Bcons (Zeven.Zodd_bool z) (S n) (Z_to_two_compl n (Zmod2 z)).
+ Bcons (Z.odd z) (S n) (Z_to_two_compl n (Zmod2 z)).
Proof.
intros; auto.
Qed.
Lemma Zeven_bit_value :
- forall z:Z, Zeven.Zeven z -> bit_value (Zeven.Zodd_bool z) = 0%Z.
+ forall z:Z, Zeven.Zeven z -> bit_value (Z.odd z) = 0%Z.
Proof.
destruct z; unfold bit_value in |- *; auto.
destruct p; tauto || (intro H; elim H).
@@ -239,7 +239,7 @@ Section Z_BRIC_A_BRAC.
Qed.
Lemma Zodd_bit_value :
- forall z:Z, Zeven.Zodd z -> bit_value (Zeven.Zodd_bool z) = 1%Z.
+ forall z:Z, Zeven.Zodd z -> bit_value (Z.odd z) = 1%Z.
Proof.
destruct z; unfold bit_value in |- *; auto.
intros; elim H.