aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Wellfounded
diff options
context:
space:
mode:
authorGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-09-17 15:58:14 +0000
committerGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-09-17 15:58:14 +0000
commit61ccbc81a2f3b4662ed4a2bad9d07d2003dda3a2 (patch)
tree961cc88c714aa91a0276ea9fbf8bc53b2b9d5c28 /theories/Wellfounded
parent6d3fbdf36c6a47b49c2a4b16f498972c93c07574 (diff)
Delete trailing whitespaces in all *.{v,ml*} files
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Wellfounded')
-rw-r--r--theories/Wellfounded/Disjoint_Union.v8
-rw-r--r--theories/Wellfounded/Inclusion.v2
-rw-r--r--theories/Wellfounded/Inverse_Image.v4
-rw-r--r--theories/Wellfounded/Lexicographic_Exponentiation.v78
-rw-r--r--theories/Wellfounded/Lexicographic_Product.v26
-rw-r--r--theories/Wellfounded/Transitive_Closure.v2
-rw-r--r--theories/Wellfounded/Union.v10
-rw-r--r--theories/Wellfounded/Well_Ordering.v6
8 files changed, 68 insertions, 68 deletions
diff --git a/theories/Wellfounded/Disjoint_Union.v b/theories/Wellfounded/Disjoint_Union.v
index f6ce84f98..785d623b4 100644
--- a/theories/Wellfounded/Disjoint_Union.v
+++ b/theories/Wellfounded/Disjoint_Union.v
@@ -9,8 +9,8 @@
(*i $Id$ i*)
(** Author: Cristina Cornes
- From : Constructing Recursion Operators in Type Theory
- L. Paulson JSC (1986) 2, 325-355 *)
+ From : Constructing Recursion Operators in Type Theory
+ L. Paulson JSC (1986) 2, 325-355 *)
Require Import Relation_Operators.
@@ -20,7 +20,7 @@ Section Wf_Disjoint_Union.
Variable leB : B -> B -> Prop.
Notation Le_AsB := (le_AsB A B leA leB).
-
+
Lemma acc_A_sum : forall x:A, Acc leA x -> Acc Le_AsB (inl B x).
Proof.
induction 1.
@@ -47,7 +47,7 @@ Section Wf_Disjoint_Union.
destruct a as [a| b].
apply (acc_A_sum a).
apply (H a).
-
+
apply (acc_B_sum H b).
apply (H0 b).
Qed.
diff --git a/theories/Wellfounded/Inclusion.v b/theories/Wellfounded/Inclusion.v
index e72b1e11d..01049989e 100644
--- a/theories/Wellfounded/Inclusion.v
+++ b/theories/Wellfounded/Inclusion.v
@@ -21,7 +21,7 @@ Section WfInclusion.
induction 2.
apply Acc_intro; auto with sets.
Qed.
-
+
Hint Resolve Acc_incl.
Theorem wf_incl : inclusion A R1 R2 -> well_founded R2 -> well_founded R1.
diff --git a/theories/Wellfounded/Inverse_Image.v b/theories/Wellfounded/Inverse_Image.v
index df6a61198..c57e70725 100644
--- a/theories/Wellfounded/Inverse_Image.v
+++ b/theories/Wellfounded/Inverse_Image.v
@@ -47,8 +47,8 @@ Section Inverse_Image.
destruct H3.
apply (IHAcc x1); auto.
Qed.
-
-
+
+
Theorem wf_inverse_rel : well_founded R -> well_founded RoF.
Proof.
red in |- *; constructor; intros.
diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v
index 69421255d..ff1889000 100644
--- a/theories/Wellfounded/Lexicographic_Exponentiation.v
+++ b/theories/Wellfounded/Lexicographic_Exponentiation.v
@@ -10,7 +10,7 @@
(** Author: Cristina Cornes
- From : Constructing Recursion Operators in Type Theory
+ From : Constructing Recursion Operators in Type Theory
L. Paulson JSC (1986) 2, 325-355 *)
Require Import List.
@@ -20,12 +20,12 @@ Require Import Transitive_Closure.
Section Wf_Lexicographic_Exponentiation.
Variable A : Set.
Variable leA : A -> A -> Prop.
-
+
Notation Power := (Pow A leA).
Notation Lex_Exp := (lex_exp A leA).
Notation ltl := (Ltl A leA).
Notation Descl := (Desc A leA).
-
+
Notation List := (list A).
Notation Nil := (nil (A:=A)).
(* useless but symmetric *)
@@ -33,13 +33,13 @@ Section Wf_Lexicographic_Exponentiation.
Notation "<< x , y >>" := (exist Descl x y) (at level 0, x, y at level 100).
(* Hint Resolve d_one d_nil t_step. *)
-
+
Lemma left_prefix : forall x y z:List, ltl (x ++ y) z -> ltl x z.
Proof.
simple induction x.
simple induction z.
simpl in |- *; intros H.
- inversion_clear H.
+ inversion_clear H.
simpl in |- *; intros; apply (Lt_nil A leA).
intros a l HInd.
simpl in |- *.
@@ -71,12 +71,12 @@ Section Wf_Lexicographic_Exponentiation.
rewrite H8.
right; exists x2; auto with sets.
Qed.
-
+
Lemma desc_prefix : forall (x:List) (a:A), Descl (x ++ Cons a Nil) -> Descl x.
Proof.
intros.
inversion H.
- generalize (app_cons_not_nil _ _ _ H1); simple induction 1.
+ generalize (app_cons_not_nil _ _ _ H1); simple induction 1.
cut (x ++ Cons a Nil = Cons x0 Nil); auto with sets.
intro.
generalize (app_eq_unit _ _ H0).
@@ -87,7 +87,7 @@ Section Wf_Lexicographic_Exponentiation.
simple induction 1; intros.
rewrite <- H4; auto with sets.
Qed.
-
+
Lemma desc_tail :
forall (x:List) (a b:A),
Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b.
@@ -99,7 +99,7 @@ Section Wf_Lexicographic_Exponentiation.
forall a b:A,
Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b).
intros.
-
+
inversion H.
cut (Cons b (Cons a Nil) = (Nil ++ Cons b Nil) ++ Cons a Nil);
auto with sets; intro.
@@ -108,17 +108,17 @@ Section Wf_Lexicographic_Exponentiation.
generalize (app_inj_tail (l ++ Cons y Nil) (Nil ++ Cons b Nil) _ _ H4);
simple induction 1.
intros.
-
+
generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
generalize H1.
rewrite <- H10; rewrite <- H7; intro.
apply (t_step A leA); auto with sets.
-
+
intros.
inversion H0.
generalize (app_cons_not_nil _ _ _ H3); intro.
elim H1.
-
+
generalize H0.
generalize (app_comm_cons (l ++ Cons x0 Nil) (Cons a Nil) b);
simple induction 1.
@@ -127,11 +127,11 @@ Section Wf_Lexicographic_Exponentiation.
generalize (H x0 b H6).
intro.
apply t_trans with (A := A) (y := x0); auto with sets.
-
+
apply t_step.
generalize H1.
rewrite H4; intro.
-
+
generalize (app_inj_tail _ _ _ _ H8); simple induction 1.
intros.
generalize H2; generalize (app_comm_cons l (Cons x0 Nil) b).
@@ -154,7 +154,7 @@ Section Wf_Lexicographic_Exponentiation.
generalize (app_eq_nil _ _ H0); simple induction 1.
intros.
rewrite H2; rewrite H3; split; apply d_nil.
-
+
intros.
cut (x0 ++ y = Cons x Nil); auto with sets.
intros E.
@@ -162,15 +162,15 @@ Section Wf_Lexicographic_Exponentiation.
simple induction 1; intros.
rewrite H2; rewrite H3; split.
apply d_nil.
-
+
apply d_one.
-
+
simple induction 1; intros.
rewrite H2; rewrite H3; split.
apply d_one.
-
+
apply d_nil.
-
+
do 5 intro.
intros Hind.
do 2 intro.
@@ -181,13 +181,13 @@ Section Wf_Lexicographic_Exponentiation.
forall x0:List,
(l ++ Cons y Nil) ++ Cons x Nil = x0 ++ y0 ->
Descl x0 /\ Descl y0).
-
+
intro.
generalize (app_nil_end x1); simple induction 1; simple induction 1.
split. apply d_conc; auto with sets.
-
+
apply d_nil.
-
+
do 3 intro.
generalize x1.
apply rev_ind with
@@ -202,7 +202,7 @@ Section Wf_Lexicographic_Exponentiation.
split.
generalize (app_inj_tail _ _ _ _ H2); simple induction 1.
simple induction 1; auto with sets.
-
+
apply d_one.
do 5 intro.
generalize (app_ass x4 (l1 ++ Cons x2 Nil) (Cons x3 Nil)).
@@ -219,7 +219,7 @@ Section Wf_Lexicographic_Exponentiation.
generalize (Hind x4 (l1 ++ Cons x2 Nil) H11).
simple induction 1; split.
auto with sets.
-
+
generalize H14.
rewrite <- H10; intro.
apply d_conc; auto with sets.
@@ -233,11 +233,11 @@ Section Wf_Lexicographic_Exponentiation.
intros.
apply (dist_aux (x ++ y) H x y); auto with sets.
Qed.
-
+
Lemma desc_end :
forall (a b:A) (x:List),
Descl (x ++ Cons a Nil) /\ ltl (x ++ Cons a Nil) (Cons b Nil) ->
- clos_trans A leA a b.
+ clos_trans A leA a b.
Proof.
intros a b x.
case x.
@@ -246,14 +246,14 @@ Section Wf_Lexicographic_Exponentiation.
intros.
inversion H1; auto with sets.
inversion H3.
-
+
simple induction 1.
generalize (app_comm_cons l (Cons a Nil) a0).
intros E; rewrite <- E; intros.
generalize (desc_tail l a a0 H0); intro.
inversion H1.
apply t_trans with (y := a0); auto with sets.
-
+
inversion H4.
Qed.
@@ -268,15 +268,15 @@ Section Wf_Lexicographic_Exponentiation.
intro.
case x.
intros; apply (Lt_nil A leA).
-
+
simpl in |- *; intros.
inversion_clear H0.
apply (Lt_hd A leA a b); auto with sets.
-
+
inversion_clear H1.
Qed.
-
-
+
+
Lemma acc_app :
forall (x1 x2:List) (y1:Descl (x1 ++ x2)),
Acc Lex_Exp << x1 ++ x2, y1 >> ->
@@ -285,11 +285,11 @@ Section Wf_Lexicographic_Exponentiation.
intros.
apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)).
auto with sets.
-
+
unfold lex_exp in |- *; simpl in |- *; auto with sets.
Qed.
-
-
+
+
Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp.
Proof.
unfold well_founded at 2 in |- *.
@@ -303,7 +303,7 @@ Section Wf_Lexicographic_Exponentiation.
forall (x0:List) (y:Descl x0), ltl x0 x -> Acc Lex_Exp << x0, y >>).
intros.
inversion_clear H0.
-
+
intro.
generalize (well_founded_ind (wf_clos_trans A leA H)).
intros GR.
@@ -318,7 +318,7 @@ Section Wf_Lexicographic_Exponentiation.
generalize (right_prefix x2 l (Cons x1 Nil) H1).
simple induction 1.
intro; apply (H0 x2 y1 H3).
-
+
simple induction 1.
intro; simple induction 1.
clear H4 H2.
@@ -340,8 +340,8 @@ Section Wf_Lexicographic_Exponentiation.
unfold lex_exp at 1 in |- *.
simpl in |- *; intros x4 y3. intros.
apply (H0 x4 y3); auto with sets.
-
- intros.
+
+ intros.
generalize (dist_Desc_concat l (l0 ++ Cons x4 Nil) y1).
simple induction 1.
intros.
diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v
index f41b6e93d..5144c0bee 100644
--- a/theories/Wellfounded/Lexicographic_Product.v
+++ b/theories/Wellfounded/Lexicographic_Product.v
@@ -14,7 +14,7 @@ Require Import Eqdep.
Require Import Relation_Operators.
Require Import Transitive_Closure.
-(** From : Constructing Recursion Operators in Type Theory
+(** From : Constructing Recursion Operators in Type Theory
L. Paulson JSC (1986) 2, 325-355 *)
Section WfLexicographic_Product.
@@ -24,7 +24,7 @@ Section WfLexicographic_Product.
Variable leB : forall x:A, B x -> B x -> Prop.
Notation LexProd := (lexprod A B leA leB).
-
+
Lemma acc_A_B_lexprod :
forall x:A,
Acc leA x ->
@@ -41,16 +41,16 @@ Section WfLexicographic_Product.
intros.
apply H2.
apply t_trans with x2; auto with sets.
-
+
red in H2.
apply H2.
auto with sets.
-
+
injection H1.
destruct 2.
injection H3.
destruct 2; auto with sets.
-
+
rewrite <- H1.
injection H3; intros _ Hx1.
subst x1.
@@ -105,7 +105,7 @@ End Wf_Symmetric_Product.
Section Swap.
-
+
Variable A : Type.
Variable R : A -> A -> Prop.
@@ -121,13 +121,13 @@ Section Swap.
inversion_clear H; inversion_clear H1; apply H0.
apply sp_swap.
apply right_sym; auto with sets.
-
+
apply sp_swap.
apply left_sym; auto with sets.
-
+
apply sp_noswap.
apply right_sym; auto with sets.
-
+
apply sp_noswap.
apply left_sym; auto with sets.
Qed.
@@ -147,20 +147,20 @@ Section Swap.
destruct y; intro H5.
inversion_clear H5.
inversion_clear H0; auto with sets.
-
+
apply swap_Acc.
inversion_clear H0; auto with sets.
-
+
intros.
apply IHAcc1; auto with sets; intros.
apply Acc_inv with (y0, x1); auto with sets.
apply sp_noswap.
apply right_sym; auto with sets.
-
+
auto with sets.
Qed.
-
+
Lemma wf_swapprod : well_founded R -> well_founded SwapProd.
Proof.
red in |- *.
diff --git a/theories/Wellfounded/Transitive_Closure.v b/theories/Wellfounded/Transitive_Closure.v
index 5e33da5ff..bce32af48 100644
--- a/theories/Wellfounded/Transitive_Closure.v
+++ b/theories/Wellfounded/Transitive_Closure.v
@@ -18,7 +18,7 @@ Section Wf_Transitive_Closure.
Variable R : relation A.
Notation trans_clos := (clos_trans A R).
-
+
Lemma incl_clos_trans : inclusion A R trans_clos.
red in |- *; auto with sets.
Qed.
diff --git a/theories/Wellfounded/Union.v b/theories/Wellfounded/Union.v
index ebf4ba98e..fbb3d9e3c 100644
--- a/theories/Wellfounded/Union.v
+++ b/theories/Wellfounded/Union.v
@@ -17,9 +17,9 @@ Require Import Transitive_Closure.
Section WfUnion.
Variable A : Type.
Variables R1 R2 : relation A.
-
+
Notation Union := (union A R1 R2).
-
+
Remark strip_commut :
commut A R1 R2 ->
forall x y:A,
@@ -29,7 +29,7 @@ Section WfUnion.
induction 2 as [x y| x y z H0 IH1 H1 IH2]; intros.
elim H with y x z; auto with sets; intros x0 H2 H3.
exists x0; auto with sets.
-
+
elim IH1 with z0; auto with sets; intros.
elim IH2 with x0; auto with sets; intros.
exists x1; auto with sets.
@@ -50,7 +50,7 @@ Section WfUnion.
elim H8; intros.
apply H6; auto with sets.
apply t_trans with x0; auto with sets.
-
+
elim strip_commut with x x0 y0; auto with sets; intros.
apply Acc_inv_trans with x1; auto with sets.
unfold union in |- *.
@@ -63,7 +63,7 @@ Section WfUnion.
apply Acc_intro; auto with sets.
Qed.
-
+
Theorem wf_union :
commut A R1 R2 -> well_founded R1 -> well_founded R2 -> well_founded Union.
Proof.
diff --git a/theories/Wellfounded/Well_Ordering.v b/theories/Wellfounded/Well_Ordering.v
index 7296897ef..e11b89248 100644
--- a/theories/Wellfounded/Well_Ordering.v
+++ b/theories/Wellfounded/Well_Ordering.v
@@ -16,15 +16,15 @@ Require Import Eqdep.
Section WellOrdering.
Variable A : Type.
- Variable B : A -> Type.
-
+ Variable B : A -> Type.
+
Inductive WO : Type :=
sup : forall (a:A) (f:B a -> WO), WO.
Inductive le_WO : WO -> WO -> Prop :=
le_sup : forall (a:A) (f:B a -> WO) (v:B a), le_WO (f v) (sup a f).
-
+
Theorem wf_WO : well_founded le_WO.
Proof.
unfold well_founded in |- *; intro.