diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2001-02-14 15:57:26 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2001-02-14 15:57:26 +0000 |
commit | 41bf87dd6a35255596638f1b1983a0b2d0d071b8 (patch) | |
tree | ccbbad2e2d414c5fc73639bd20a205d6eea67ab5 /theories/Wellfounded | |
parent | a7de8633c23fe66ee32463d78dae89661805c2d1 (diff) |
Renommage des variables dans les schémas d'induction
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1387 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Wellfounded')
-rw-r--r-- | theories/Wellfounded/Disjoint_Union.v | 12 | ||||
-rw-r--r-- | theories/Wellfounded/Lexicographic_Exponentiation.v | 4 | ||||
-rw-r--r-- | theories/Wellfounded/Lexicographic_Product.v | 6 |
3 files changed, 11 insertions, 11 deletions
diff --git a/theories/Wellfounded/Disjoint_Union.v b/theories/Wellfounded/Disjoint_Union.v index 162a31e83..d29262427 100644 --- a/theories/Wellfounded/Disjoint_Union.v +++ b/theories/Wellfounded/Disjoint_Union.v @@ -42,13 +42,13 @@ Proof. Intros. Unfold well_founded . Induction a. - Intro. - Apply (acc_A_sum y). - Apply (H y). + Intro a0. + Apply (acc_A_sum a0). + Apply (H a0). - Intro. - Apply (acc_B_sum H y). - Apply (H0 y). + Intro b. + Apply (acc_B_sum H b). + Apply (H0 b). Qed. End Wf_Disjoint_Union. diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v index 06a9c123d..7b78ddb9c 100644 --- a/theories/Wellfounded/Lexicographic_Exponentiation.v +++ b/theories/Wellfounded/Lexicographic_Exponentiation.v @@ -301,7 +301,7 @@ Theorem wf_lex_exp : (well_founded A leA)->(well_founded Power Lex_Exp). Proof. Unfold 2 well_founded . - Induction a;Intros. + Induction a;Intros x y. Apply Acc_intro. Induction y0. Unfold 1 lex_exp ;Simpl. @@ -350,7 +350,7 @@ Proof. Apply Acc_intro. Induction y2. Unfold 1 lex_exp . - Simpl;Intros. + Simpl;Intros x4 y3. Intros. Apply (H0 x4 y3);Auto with sets. Intros. diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v index 157265047..a6da918e3 100644 --- a/theories/Wellfounded/Lexicographic_Product.v +++ b/theories/Wellfounded/Lexicographic_Product.v @@ -29,11 +29,11 @@ Lemma acc_A_B_lexprod : (x:A)(Acc A leA x) ->(y:(B x))(Acc (B x) (leB x) y) ->(Acc (sigS A B) LexProd (existS A B x y)). Proof. - Induction 1. - Induction 4;Intros. + Induction 1; Intros x0 H0 H1 H2 y. + Induction 1;Intros. Apply Acc_intro. Induction y0. - Intros. + Intros x2 y1 H6. Simple Inversion H6;Intros. Cut (leA x2 x0);Intros. Apply H1;Auto with sets. |