diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2009-10-16 17:28:27 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2009-10-16 17:28:27 +0000 |
commit | 9d7a9ab7c8182dff99d5afd078747f5d6b1247f0 (patch) | |
tree | 14454550597ebc684d8f847c25cd4b2121e95201 /theories/Structures | |
parent | 980d315f7f6d5e05eabbda84f95e11bfa30a0033 (diff) |
OrderedType2 : trivial lemmas are turned into tests for order.
In particular we remove them from the hint db, a few autos become
calls to order. Moreover, lt_antirefl --> lt_irrefl for uniformity.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12398 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Structures')
-rw-r--r-- | theories/Structures/OrderTac.v | 6 | ||||
-rw-r--r-- | theories/Structures/OrderedType2.v | 76 |
2 files changed, 40 insertions, 42 deletions
diff --git a/theories/Structures/OrderTac.v b/theories/Structures/OrderTac.v index 11e3bdf9d..c2990f283 100644 --- a/theories/Structures/OrderTac.v +++ b/theories/Structures/OrderTac.v @@ -77,7 +77,7 @@ Proof. reflexivity. Qed. Lemma le_refl : forall x, x<=x. Proof. intros; rewrite le_lteq; right; reflexivity. Qed. -Lemma lt_antirefl : forall x, ~ x<x. +Lemma lt_irrefl : forall x, ~ x<x. Proof. intros; apply StrictOrder_Irreflexive. Qed. (** Symmetry rules *) @@ -133,7 +133,7 @@ Proof. eauto using eq_trans, eq_sym. Qed. Lemma not_neq_eq : forall x y, ~~x==y -> x==y. Proof. intros x y H. destruct (lt_total x y) as [H'|[H'|H']]; auto; - destruct H; intro H; rewrite H in H'; eapply lt_antirefl; eauto. + destruct H; intro H; rewrite H in H'; eapply lt_irrefl; eauto. Qed. Lemma not_ge_lt : forall x y, ~y<=x -> x<y. @@ -208,7 +208,7 @@ Ltac order_prepare := Ltac order_loop := match goal with (* First, successful situations *) - | H : ?x < ?x |- _ => exact (lt_antirefl H) + | H : ?x < ?x |- _ => exact (lt_irrefl H) | H : ~ ?x == ?x |- _ => exact (H (eq_refl x)) (* Second, useless hyps *) | H : ?x <= ?x |- _ => clear H; order_loop diff --git a/theories/Structures/OrderedType2.v b/theories/Structures/OrderedType2.v index e223dba43..7258fe52f 100644 --- a/theories/Structures/OrderedType2.v +++ b/theories/Structures/OrderedType2.v @@ -96,8 +96,9 @@ Module OrderedTypeFacts (Import O: OrderedType). change lt with OrderElts.lt in *; OrderTac.order. - (** The following lemmas are re-phrasing of eq_equiv and lt_strorder. - Interest: compatibility, simple use (e.g. in tactic order), etc. *) + (** The following lemmas are either re-phrasing of [eq_equiv] and + [lt_strorder] or immediately provable by [order]. Interest: + compatibility, test of order, etc *) Definition eq_refl (x:t) : x==x := Equivalence_Reflexive x. @@ -109,32 +110,9 @@ Module OrderedTypeFacts (Import O: OrderedType). Definition lt_trans (x y z:t) : x<y -> y<z -> x<z := StrictOrder_Transitive x y z. - Definition lt_antirefl (x:t) : ~x<x := StrictOrder_Irreflexive x. + Definition lt_irrefl (x:t) : ~x<x := StrictOrder_Irreflexive x. - Lemma lt_not_eq x y : x<y -> ~x==y. Proof. order. Qed. - Lemma lt_eq x y z : x<y -> y==z -> x<z. Proof. order. Qed. - Lemma eq_lt x y z : x==y -> y<z -> x<z. Proof. order. Qed. - Lemma le_eq x y z : x<=y -> y==z -> x<=z. Proof. order. Qed. - Lemma eq_le x y z : x==y -> y<=z -> x<=z. Proof. order. Qed. - Lemma neq_eq x y z : ~x==y -> y==z -> ~x==z. Proof. order. Qed. - Lemma eq_neq x y z : x==y -> ~y==z -> ~x==z. Proof. order. Qed. - - Lemma le_lt_trans x y z : x<=y -> y<z -> x<z. Proof. order. Qed. - Lemma lt_le_trans x y z : x<y -> y<=z -> x<z. Proof. order. Qed. - Lemma le_trans x y z : x<=y -> y<=z -> x<=z. Proof. order. Qed. - Lemma le_antisym x y : x<=y -> y<=x -> x==y. Proof. order. Qed. - Lemma le_neq x y : x<=y -> ~x==y -> x<y. Proof. order. Qed. - Lemma neq_sym x y : ~x==y -> ~y==x. Proof. order. Qed. - Lemma lt_le x y : x<y -> x<=y. Proof. order. Qed. - Lemma gt_not_eq x y : y<x -> ~x==y. Proof. order. Qed. - Lemma eq_not_lt x y : x==y -> ~x<y. Proof. order. Qed. - Lemma eq_not_gt x y : x==y -> ~ y<x. Proof. order. Qed. - Lemma lt_not_gt x y : x<y -> ~ y<x. Proof. order. Qed. - - Hint Resolve eq_trans eq_refl lt_trans. - Hint Immediate eq_sym eq_lt lt_eq le_eq eq_le neq_eq eq_neq. - Hint Resolve gt_not_eq eq_not_lt. - Hint Resolve eq_not_gt lt_antirefl lt_not_gt. + (** Some more about [compare] *) Lemma compare_eq_iff : forall x y, (x ?= y) = Eq <-> x==y. Proof. @@ -184,7 +162,7 @@ Module OrderedTypeFacts (Import O: OrderedType). Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}. Proof. - intros; elim_compare x y; [ right | left | right ]; auto. + intros; elim_compare x y; [ right | left | right ]; order. Defined. Definition eqb x y : bool := if eq_dec x y then true else false. @@ -253,6 +231,36 @@ Hint Immediate In_eq Inf_lt. End OrderedTypeFacts. + +(** Some tests of [order] : is it at least capable of + proving some basic properties ? *) + +Module OrderedTypeTest (O:OrderedType). + Module Import MO := OrderedTypeFacts O. + Local Open Scope order. + Lemma lt_not_eq x y : x<y -> ~x==y. Proof. order. Qed. + Lemma lt_eq x y z : x<y -> y==z -> x<z. Proof. order. Qed. + Lemma eq_lt x y z : x==y -> y<z -> x<z. Proof. order. Qed. + Lemma le_eq x y z : x<=y -> y==z -> x<=z. Proof. order. Qed. + Lemma eq_le x y z : x==y -> y<=z -> x<=z. Proof. order. Qed. + Lemma neq_eq x y z : ~x==y -> y==z -> ~x==z. Proof. order. Qed. + Lemma eq_neq x y z : x==y -> ~y==z -> ~x==z. Proof. order. Qed. + Lemma le_lt_trans x y z : x<=y -> y<z -> x<z. Proof. order. Qed. + Lemma lt_le_trans x y z : x<y -> y<=z -> x<z. Proof. order. Qed. + Lemma le_trans x y z : x<=y -> y<=z -> x<=z. Proof. order. Qed. + Lemma le_antisym x y : x<=y -> y<=x -> x==y. Proof. order. Qed. + Lemma le_neq x y : x<=y -> ~x==y -> x<y. Proof. order. Qed. + Lemma neq_sym x y : ~x==y -> ~y==x. Proof. order. Qed. + Lemma lt_le x y : x<y -> x<=y. Proof. order. Qed. + Lemma gt_not_eq x y : y<x -> ~x==y. Proof. order. Qed. + Lemma eq_not_lt x y : x==y -> ~x<y. Proof. order. Qed. + Lemma eq_not_gt x y : x==y -> ~ y<x. Proof. order. Qed. + Lemma lt_not_gt x y : x<y -> ~ y<x. Proof. order. Qed. +End OrderedTypeTest. + + +(** * Relations over pairs (TO MIGRATE in some TypeClasses file) *) + Definition ProdRel {A B}(RA:relation A)(RB:relation B) : relation (A*B) := fun p p' => RA (fst p) (fst p') /\ RB (snd p) (snd p'). @@ -343,17 +351,6 @@ Module KeyOrderedType(Import O:OrderedType). Global Instance eqke_eqk : subrelation eqke eqk. Proof. unfold eqke, eqk; auto with *. Qed. -(* - (* ltk ignore the second components *) - - Lemma ltk_right_r : forall x k e e', ltk x (k,e) -> ltk x (k,e'). - Proof. auto. Qed. - - Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x. - Proof. auto. Qed. - Hint Immediate ltk_right_r ltk_right_l. -*) - (* eqk, eqke are equalities, ltk is a strict order *) Global Instance eqk_equiv : Equivalence eqk. @@ -531,3 +528,4 @@ Module KeyOrderedType(Import O:OrderedType). Hint Resolve In_inv_2 In_inv_3. End KeyOrderedType. + |