aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Structures
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-07-16 15:50:16 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-07-16 15:50:16 +0000
commit8bc0c8675a30eb54b6f9af5c19a6279de011c1ed (patch)
treeaabbec254b01295030188bb91fb386fc5a47cda3 /theories/Structures
parent3876e19812d6476b732d0fd1a16d24058398794d (diff)
FSetPositive: sets of positive inspired by FMapPositive.
Contributed by Alexandre Ren, Damien Pous, and Thomas Braibant. I've also included a MSets version, hence FSetPositive might become soon a mere wrapper for MSetPositive, as for other FSets implementations. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13287 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Structures')
-rw-r--r--theories/Structures/OrderedTypeEx.v90
1 files changed, 90 insertions, 0 deletions
diff --git a/theories/Structures/OrderedTypeEx.v b/theories/Structures/OrderedTypeEx.v
index 600eabf11..496fca074 100644
--- a/theories/Structures/OrderedTypeEx.v
+++ b/theories/Structures/OrderedTypeEx.v
@@ -239,3 +239,93 @@ Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
End PairOrderedType.
+
+(** Even if [positive] can be seen as an ordered type with respect to the
+ usual order (see above), we can also use a lexicographic order over bits
+ (lower bits are considered first). This is more natural when using
+ [positive] as indexes for sets or maps (see FSetPositive and FMapPositive. *)
+
+Module PositiveOrderedTypeBits <: UsualOrderedType.
+ Definition t:=positive.
+ Definition eq:=@eq positive.
+ Definition eq_refl := @refl_equal t.
+ Definition eq_sym := @sym_eq t.
+ Definition eq_trans := @trans_eq t.
+
+ Fixpoint bits_lt (p q:positive) : Prop :=
+ match p, q with
+ | xH, xI _ => True
+ | xH, _ => False
+ | xO p, xO q => bits_lt p q
+ | xO _, _ => True
+ | xI p, xI q => bits_lt p q
+ | xI _, _ => False
+ end.
+
+ Definition lt:=bits_lt.
+
+ Lemma bits_lt_trans :
+ forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
+ Proof.
+ induction x.
+ induction y; destruct z; simpl; eauto; intuition.
+ induction y; destruct z; simpl; eauto; intuition.
+ induction y; destruct z; simpl; eauto; intuition.
+ Qed.
+
+ Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
+ Proof.
+ exact bits_lt_trans.
+ Qed.
+
+ Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
+ Proof.
+ induction x; simpl; auto.
+ Qed.
+
+ Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
+ Proof.
+ intros; intro.
+ rewrite <- H0 in H; clear H0 y.
+ unfold lt in H.
+ exact (bits_lt_antirefl x H).
+ Qed.
+
+ Definition compare : forall x y : t, Compare lt eq x y.
+ Proof.
+ induction x; destruct y.
+ (* I I *)
+ destruct (IHx y).
+ apply LT; auto.
+ apply EQ; rewrite e; red; auto.
+ apply GT; auto.
+ (* I O *)
+ apply GT; simpl; auto.
+ (* I H *)
+ apply GT; simpl; auto.
+ (* O I *)
+ apply LT; simpl; auto.
+ (* O O *)
+ destruct (IHx y).
+ apply LT; auto.
+ apply EQ; rewrite e; red; auto.
+ apply GT; auto.
+ (* O H *)
+ apply LT; simpl; auto.
+ (* H I *)
+ apply LT; simpl; auto.
+ (* H O *)
+ apply GT; simpl; auto.
+ (* H H *)
+ apply EQ; red; auto.
+ Qed.
+
+ Lemma eq_dec (x y: positive): {x = y} + {x <> y}.
+ Proof.
+ intros. case_eq ((x ?= y) Eq); intros.
+ left. apply Pcompare_Eq_eq; auto.
+ right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
+ right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
+ Qed.
+
+End PositiveOrderedTypeBits.