aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Structures/OrderedType.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-10-13 14:39:51 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-10-13 14:39:51 +0000
commitaa49d0523c769de01bc66f0f2b9e663ff0731cd6 (patch)
tree77a7c3f3837275d62a50e750dfb24ad6dd8d19cd /theories/Structures/OrderedType.v
parent562c684cd19c37e04901743c73933ea12148940b (diff)
MSets: a new generation of FSets
Same global ideas (in particular the use of modules/functors), but: - frequent use of Type Classes inside interfaces/implementation. For instance, no more eq_refl/eq_sym/eq_trans, but Equivalence. A class StrictOrder for lt in OrderedType. Extensive use of Proper and rewrite. - now that rewrite is mature, we write specifications of set operators via iff instead of many separate requirements based on ->. For instance add_spec : In y (add x s) <-> E.eq y x \/ In x s. Old-style specs are available in the functor Facts. - compare is now a pure function (t -> t -> comparison) instead of returning a dependent type Compare. - The "Raw" functors (the ones dealing with e.g. list with no sortedness proofs yet, but morally sorted when operating on them) are given proper interfaces and a generic functor allows to obtain a regular set implementation out of a "raw" one. The last two points allow to manipulate set objects that are completely free of proof-parts if one wants to. Later proofs will rely on type-classes instance search mechanism. No need to emphasis the fact that this new version is severely incompatible with the earlier one. I've no precise ideas yet on how allowing an easy transition (functors ?). For the moment, these new Sets are placed alongside the old ones, in directory MSets (M for Modular, to constrast with forthcoming CSets, see below). A few files exist currently in version foo.v and foo2.v, I'll try to merge them without breaking things. Old FSets will probably move to a contrib later. Still to be done: - adapt FMap in the same way - integrate misc stuff like multisets or the map function - CSets, i.e. Sets based on Type Classes : Integration of code contributed by S. Lescuyer is on the way. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12384 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Structures/OrderedType.v')
-rw-r--r--theories/Structures/OrderedType.v587
1 files changed, 587 insertions, 0 deletions
diff --git a/theories/Structures/OrderedType.v b/theories/Structures/OrderedType.v
new file mode 100644
index 000000000..f17eb43a9
--- /dev/null
+++ b/theories/Structures/OrderedType.v
@@ -0,0 +1,587 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export SetoidList.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Ordered types *)
+
+Inductive Compare (X : Type) (lt eq : X -> X -> Prop) (x y : X) : Type :=
+ | LT : lt x y -> Compare lt eq x y
+ | EQ : eq x y -> Compare lt eq x y
+ | GT : lt y x -> Compare lt eq x y.
+
+Module Type MiniOrderedType.
+
+ Parameter Inline t : Type.
+
+ Parameter Inline eq : t -> t -> Prop.
+ Parameter Inline lt : t -> t -> Prop.
+
+ Axiom eq_refl : forall x : t, eq x x.
+ Axiom eq_sym : forall x y : t, eq x y -> eq y x.
+ Axiom eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
+
+ Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
+ Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
+
+ Parameter compare : forall x y : t, Compare lt eq x y.
+
+ Hint Immediate eq_sym.
+ Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.
+
+End MiniOrderedType.
+
+Module Type OrderedType.
+ Include Type MiniOrderedType.
+
+ (** A [eq_dec] can be deduced from [compare] below. But adding this
+ redundant field allows to see an OrderedType as a DecidableType. *)
+ Parameter eq_dec : forall x y, { eq x y } + { ~ eq x y }.
+
+End OrderedType.
+
+Module MOT_to_OT (Import O : MiniOrderedType) <: OrderedType.
+ Include O.
+
+ Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
+ Proof.
+ intros; elim (compare x y); intro H; [ right | left | right ]; auto.
+ assert (~ eq y x); auto.
+ Defined.
+
+End MOT_to_OT.
+
+(** * Ordered types properties *)
+
+(** Additional properties that can be derived from signature
+ [OrderedType]. *)
+
+Module OrderedTypeFacts (Import O: OrderedType).
+
+ Lemma lt_antirefl : forall x, ~ lt x x.
+ Proof.
+ intros; intro; absurd (eq x x); auto.
+ Qed.
+
+ Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
+ Proof.
+ intros; destruct (compare x z); auto.
+ elim (lt_not_eq H); apply eq_trans with z; auto.
+ elim (lt_not_eq (lt_trans l H)); auto.
+ Qed.
+
+ Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
+ Proof.
+ intros; destruct (compare x z); auto.
+ elim (lt_not_eq H0); apply eq_trans with x; auto.
+ elim (lt_not_eq (lt_trans H0 l)); auto.
+ Qed.
+
+ Lemma le_eq : forall x y z, ~lt x y -> eq y z -> ~lt x z.
+ Proof.
+ intros; intro; destruct H; apply lt_eq with z; auto.
+ Qed.
+
+ Lemma eq_le : forall x y z, eq x y -> ~lt y z -> ~lt x z.
+ Proof.
+ intros; intro; destruct H0; apply eq_lt with x; auto.
+ Qed.
+
+ Lemma neq_eq : forall x y z, ~eq x y -> eq y z -> ~eq x z.
+ Proof.
+ intros; intro; destruct H; apply eq_trans with z; auto.
+ Qed.
+
+ Lemma eq_neq : forall x y z, eq x y -> ~eq y z -> ~eq x z.
+ Proof.
+ intros; intro; destruct H0; apply eq_trans with x; auto.
+ Qed.
+
+ Hint Immediate eq_lt lt_eq le_eq eq_le neq_eq eq_neq.
+
+ Lemma le_lt_trans : forall x y z, ~lt y x -> lt y z -> lt x z.
+ Proof.
+ intros; destruct (compare y x); auto.
+ elim (H l).
+ apply eq_lt with y; auto.
+ apply lt_trans with y; auto.
+ Qed.
+
+ Lemma lt_le_trans : forall x y z, lt x y -> ~lt z y -> lt x z.
+ Proof.
+ intros; destruct (compare z y); auto.
+ elim (H0 l).
+ apply lt_eq with y; auto.
+ apply lt_trans with y; auto.
+ Qed.
+
+ Lemma le_neq : forall x y, ~lt x y -> ~eq x y -> lt y x.
+ Proof.
+ intros; destruct (compare x y); intuition.
+ Qed.
+
+ Lemma neq_sym : forall x y, ~eq x y -> ~eq y x.
+ Proof.
+ intuition.
+ Qed.
+
+(* TODO concernant la tactique order:
+ * propagate_lt n'est sans doute pas complet
+ * un propagate_le
+ * exploiter les hypotheses negatives restant a la fin
+ * faire que ca marche meme quand une hypothese depend d'un eq ou lt.
+*)
+
+Ltac abstraction := match goal with
+ (* First, some obvious simplifications *)
+ | H : False |- _ => elim H
+ | H : lt ?x ?x |- _ => elim (lt_antirefl H)
+ | H : ~eq ?x ?x |- _ => elim (H (eq_refl x))
+ | H : eq ?x ?x |- _ => clear H; abstraction
+ | H : ~lt ?x ?x |- _ => clear H; abstraction
+ | |- eq ?x ?x => exact (eq_refl x)
+ | |- lt ?x ?x => exfalso; abstraction
+ | |- ~ _ => intro; abstraction
+ | H1: ~lt ?x ?y, H2: ~eq ?x ?y |- _ =>
+ generalize (le_neq H1 H2); clear H1 H2; intro; abstraction
+ | H1: ~lt ?x ?y, H2: ~eq ?y ?x |- _ =>
+ generalize (le_neq H1 (neq_sym H2)); clear H1 H2; intro; abstraction
+ (* Then, we generalize all interesting facts *)
+ | H : ~eq ?x ?y |- _ => revert H; abstraction
+ | H : ~lt ?x ?y |- _ => revert H; abstraction
+ | H : lt ?x ?y |- _ => revert H; abstraction
+ | H : eq ?x ?y |- _ => revert H; abstraction
+ | _ => idtac
+end.
+
+Ltac do_eq a b EQ := match goal with
+ | |- lt ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_lt (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (lt_eq H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- ~lt ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_le (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (le_eq H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- eq ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_trans (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (eq_trans H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- ~eq ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_neq (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (neq_eq H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- lt a ?y => apply eq_lt with b; [exact EQ|]
+ | |- lt ?y a => apply lt_eq with b; [|exact (eq_sym EQ)]
+ | |- eq a ?y => apply eq_trans with b; [exact EQ|]
+ | |- eq ?y a => apply eq_trans with b; [|exact (eq_sym EQ)]
+ | _ => idtac
+ end.
+
+Ltac propagate_eq := abstraction; clear; match goal with
+ (* the abstraction tactic leaves equality facts in head position...*)
+ | |- eq ?a ?b -> _ =>
+ let EQ := fresh "EQ" in (intro EQ; do_eq a b EQ; clear EQ);
+ propagate_eq
+ | _ => idtac
+end.
+
+Ltac do_lt x y LT := match goal with
+ (* LT *)
+ | |- lt x y -> _ => intros _; do_lt x y LT
+ | |- lt y ?z -> _ => let H := fresh "H" in
+ (intro H; generalize (lt_trans LT H); intro); do_lt x y LT
+ | |- lt ?z x -> _ => let H := fresh "H" in
+ (intro H; generalize (lt_trans H LT); intro); do_lt x y LT
+ | |- lt _ _ -> _ => intro; do_lt x y LT
+ (* GE *)
+ | |- ~lt y x -> _ => intros _; do_lt x y LT
+ | |- ~lt x ?z -> _ => let H := fresh "H" in
+ (intro H; generalize (le_lt_trans H LT); intro); do_lt x y LT
+ | |- ~lt ?z y -> _ => let H := fresh "H" in
+ (intro H; generalize (lt_le_trans LT H); intro); do_lt x y LT
+ | |- ~lt _ _ -> _ => intro; do_lt x y LT
+ | _ => idtac
+ end.
+
+Definition hide_lt := lt.
+
+Ltac propagate_lt := abstraction; match goal with
+ (* when no [=] remains, the abstraction tactic leaves [<] facts first. *)
+ | |- lt ?x ?y -> _ =>
+ let LT := fresh "LT" in (intro LT; do_lt x y LT;
+ change (hide_lt x y) in LT);
+ propagate_lt
+ | _ => unfold hide_lt in *
+end.
+
+Ltac order :=
+ intros;
+ propagate_eq;
+ propagate_lt;
+ auto;
+ propagate_lt;
+ eauto.
+
+Ltac false_order := exfalso; order.
+
+ Lemma gt_not_eq : forall x y, lt y x -> ~ eq x y.
+ Proof.
+ order.
+ Qed.
+
+ Lemma eq_not_lt : forall x y : t, eq x y -> ~ lt x y.
+ Proof.
+ order.
+ Qed.
+
+ Hint Resolve gt_not_eq eq_not_lt.
+
+ Lemma eq_not_gt : forall x y : t, eq x y -> ~ lt y x.
+ Proof.
+ order.
+ Qed.
+
+ Lemma lt_not_gt : forall x y : t, lt x y -> ~ lt y x.
+ Proof.
+ order.
+ Qed.
+
+ Hint Resolve eq_not_gt lt_antirefl lt_not_gt.
+
+ Lemma elim_compare_eq :
+ forall x y : t,
+ eq x y -> exists H : eq x y, compare x y = EQ _ H.
+ Proof.
+ intros; case (compare x y); intros H'; try solve [false_order].
+ exists H'; auto.
+ Qed.
+
+ Lemma elim_compare_lt :
+ forall x y : t,
+ lt x y -> exists H : lt x y, compare x y = LT _ H.
+ Proof.
+ intros; case (compare x y); intros H'; try solve [false_order].
+ exists H'; auto.
+ Qed.
+
+ Lemma elim_compare_gt :
+ forall x y : t,
+ lt y x -> exists H : lt y x, compare x y = GT _ H.
+ Proof.
+ intros; case (compare x y); intros H'; try solve [false_order].
+ exists H'; auto.
+ Qed.
+
+ Ltac elim_comp :=
+ match goal with
+ | |- ?e => match e with
+ | context ctx [ compare ?a ?b ] =>
+ let H := fresh in
+ (destruct (compare a b) as [H|H|H];
+ try solve [ intros; false_order])
+ end
+ end.
+
+ Ltac elim_comp_eq x y :=
+ elim (elim_compare_eq (x:=x) (y:=y));
+ [ intros _1 _2; rewrite _2; clear _1 _2 | auto ].
+
+ Ltac elim_comp_lt x y :=
+ elim (elim_compare_lt (x:=x) (y:=y));
+ [ intros _1 _2; rewrite _2; clear _1 _2 | auto ].
+
+ Ltac elim_comp_gt x y :=
+ elim (elim_compare_gt (x:=x) (y:=y));
+ [ intros _1 _2; rewrite _2; clear _1 _2 | auto ].
+
+ (** For compatibility reasons *)
+ Definition eq_dec := eq_dec.
+
+ Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
+ Proof.
+ intros; elim (compare x y); [ left | right | right ]; auto.
+ Defined.
+
+ Definition eqb x y : bool := if eq_dec x y then true else false.
+
+ Lemma eqb_alt :
+ forall x y, eqb x y = match compare x y with EQ _ => true | _ => false end.
+ Proof.
+ unfold eqb; intros; destruct (eq_dec x y); elim_comp; auto.
+ Qed.
+
+(* Specialization of resuts about lists modulo. *)
+
+Section ForNotations.
+
+Notation In:=(InA eq).
+Notation Inf:=(lelistA lt).
+Notation Sort:=(sort lt).
+Notation NoDup:=(NoDupA eq).
+
+Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+Proof. exact (InA_eqA eq_sym eq_trans). Qed.
+
+Lemma ListIn_In : forall l x, List.In x l -> In x l.
+Proof. exact (In_InA eq_refl). Qed.
+
+Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_ltA lt_trans). Qed.
+
+Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_eqA eq_lt). Qed.
+
+Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x.
+Proof. exact (SortA_InfA_InA eq_refl eq_sym lt_trans lt_eq eq_lt). Qed.
+
+Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l.
+Proof. exact (@In_InfA t lt). Qed.
+
+Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l.
+Proof. exact (InA_InfA eq_refl (ltA:=lt)). Qed.
+
+Lemma Inf_alt :
+ forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)).
+Proof. exact (InfA_alt eq_refl eq_sym lt_trans lt_eq eq_lt). Qed.
+
+Lemma Sort_NoDup : forall l, Sort l -> NoDup l.
+Proof. exact (SortA_NoDupA eq_refl eq_sym lt_trans lt_not_eq lt_eq eq_lt) . Qed.
+
+End ForNotations.
+
+Hint Resolve ListIn_In Sort_NoDup Inf_lt.
+Hint Immediate In_eq Inf_lt.
+
+End OrderedTypeFacts.
+
+Module KeyOrderedType(O:OrderedType).
+ Import O.
+ Module MO:=OrderedTypeFacts(O).
+ Import MO.
+
+ Section Elt.
+ Variable elt : Type.
+ Notation key:=t.
+
+ Definition eqk (p p':key*elt) := eq (fst p) (fst p').
+ Definition eqke (p p':key*elt) :=
+ eq (fst p) (fst p') /\ (snd p) = (snd p').
+ Definition ltk (p p':key*elt) := lt (fst p) (fst p').
+
+ Hint Unfold eqk eqke ltk.
+ Hint Extern 2 (eqke ?a ?b) => split.
+
+ (* eqke is stricter than eqk *)
+
+ Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'.
+ Proof.
+ unfold eqk, eqke; intuition.
+ Qed.
+
+ (* ltk ignore the second components *)
+
+ Lemma ltk_right_r : forall x k e e', ltk x (k,e) -> ltk x (k,e').
+ Proof. auto. Qed.
+
+ Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x.
+ Proof. auto. Qed.
+ Hint Immediate ltk_right_r ltk_right_l.
+
+ (* eqk, eqke are equalities, ltk is a strict order *)
+
+ Lemma eqk_refl : forall e, eqk e e.
+ Proof. auto. Qed.
+
+ Lemma eqke_refl : forall e, eqke e e.
+ Proof. auto. Qed.
+
+ Lemma eqk_sym : forall e e', eqk e e' -> eqk e' e.
+ Proof. auto. Qed.
+
+ Lemma eqke_sym : forall e e', eqke e e' -> eqke e' e.
+ Proof. unfold eqke; intuition. Qed.
+
+ Lemma eqk_trans : forall e e' e'', eqk e e' -> eqk e' e'' -> eqk e e''.
+ Proof. eauto. Qed.
+
+ Lemma eqke_trans : forall e e' e'', eqke e e' -> eqke e' e'' -> eqke e e''.
+ Proof.
+ unfold eqke; intuition; [ eauto | congruence ].
+ Qed.
+
+ Lemma ltk_trans : forall e e' e'', ltk e e' -> ltk e' e'' -> ltk e e''.
+ Proof. eauto. Qed.
+
+ Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
+ Proof. unfold eqk, ltk; auto. Qed.
+
+ Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
+ Proof.
+ unfold eqke, ltk; intuition; simpl in *; subst.
+ exact (lt_not_eq H H1).
+ Qed.
+
+ Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
+ Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke.
+ Hint Immediate eqk_sym eqke_sym.
+
+ (* Additionnal facts *)
+
+ Lemma eqk_not_ltk : forall x x', eqk x x' -> ~ltk x x'.
+ Proof.
+ unfold eqk, ltk; simpl; auto.
+ Qed.
+
+ Lemma ltk_eqk : forall e e' e'', ltk e e' -> eqk e' e'' -> ltk e e''.
+ Proof. eauto. Qed.
+
+ Lemma eqk_ltk : forall e e' e'', eqk e e' -> ltk e' e'' -> ltk e e''.
+ Proof.
+ intros (k,e) (k',e') (k'',e'').
+ unfold ltk, eqk; simpl; eauto.
+ Qed.
+ Hint Resolve eqk_not_ltk.
+ Hint Immediate ltk_eqk eqk_ltk.
+
+ Lemma InA_eqke_eqk :
+ forall x m, InA eqke x m -> InA eqk x m.
+ Proof.
+ unfold eqke; induction 1; intuition.
+ Qed.
+ Hint Resolve InA_eqke_eqk.
+
+ Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
+ Definition In k m := exists e:elt, MapsTo k e m.
+ Notation Sort := (sort ltk).
+ Notation Inf := (lelistA ltk).
+
+ Hint Unfold MapsTo In.
+
+ (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
+
+ Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
+ Proof.
+ firstorder.
+ exists x; auto.
+ induction H.
+ destruct y.
+ exists e; auto.
+ destruct IHInA as [e H0].
+ exists e; auto.
+ Qed.
+
+ Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
+ Proof.
+ intros; unfold MapsTo in *; apply InA_eqA with (x,e); eauto.
+ Qed.
+
+ Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+ Proof.
+ destruct 2 as (e,E); exists e; eapply MapsTo_eq; eauto.
+ Qed.
+
+ Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
+ Proof. exact (InfA_eqA eqk_ltk). Qed.
+
+ Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
+ Proof. exact (InfA_ltA ltk_trans). Qed.
+
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+
+ Lemma Sort_Inf_In :
+ forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
+ Proof.
+ exact (SortA_InfA_InA eqk_refl eqk_sym ltk_trans ltk_eqk eqk_ltk).
+ Qed.
+
+ Lemma Sort_Inf_NotIn :
+ forall l k e, Sort l -> Inf (k,e) l -> ~In k l.
+ Proof.
+ intros; red; intros.
+ destruct H1 as [e' H2].
+ elim (@ltk_not_eqk (k,e) (k,e')).
+ eapply Sort_Inf_In; eauto.
+ red; simpl; auto.
+ Qed.
+
+ Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l.
+ Proof.
+ exact (SortA_NoDupA eqk_refl eqk_sym ltk_trans ltk_not_eqk ltk_eqk eqk_ltk).
+ Qed.
+
+ Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
+ Proof.
+ inversion 1; intros; eapply Sort_Inf_In; eauto.
+ Qed.
+
+ Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
+ ltk e e' \/ eqk e e'.
+ Proof.
+ inversion_clear 2; auto.
+ left; apply Sort_In_cons_1 with l; auto.
+ Qed.
+
+ Lemma Sort_In_cons_3 :
+ forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
+ Proof.
+ inversion_clear 1; red; intros.
+ destruct (Sort_Inf_NotIn H0 H1 (In_eq H2 H)).
+ Qed.
+
+ Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
+ Proof.
+ inversion 1.
+ inversion_clear H0; eauto.
+ destruct H1; simpl in *; intuition.
+ Qed.
+
+ Lemma In_inv_2 : forall k k' e e' l,
+ InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
+ Proof.
+ inversion_clear 1; compute in H0; intuition.
+ Qed.
+
+ Lemma In_inv_3 : forall x x' l,
+ InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
+ Proof.
+ inversion_clear 1; compute in H0; intuition.
+ Qed.
+
+ End Elt.
+
+ Hint Unfold eqk eqke ltk.
+ Hint Extern 2 (eqke ?a ?b) => split.
+ Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
+ Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke.
+ Hint Immediate eqk_sym eqke_sym.
+ Hint Resolve eqk_not_ltk.
+ Hint Immediate ltk_eqk eqk_ltk.
+ Hint Resolve InA_eqke_eqk.
+ Hint Unfold MapsTo In.
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+ Hint Resolve Sort_Inf_NotIn.
+ Hint Resolve In_inv_2 In_inv_3.
+
+End KeyOrderedType.
+
+