aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Sets
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:37 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:37 +0000
commitffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch)
tree5368562b42af1aeef7e19b4bd897c9fc5655769b /theories/Sets
parenta46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff)
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago by the automatic 7.x -> 8.0 translator git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Sets')
-rw-r--r--theories/Sets/Classical_sets.v16
-rw-r--r--theories/Sets/Constructive_sets.v16
-rw-r--r--theories/Sets/Finite_sets.v4
-rw-r--r--theories/Sets/Finite_sets_facts.v18
-rw-r--r--theories/Sets/Image.v10
-rw-r--r--theories/Sets/Infinite_sets.v12
-rw-r--r--theories/Sets/Integers.v22
-rw-r--r--theories/Sets/Multiset.v16
-rw-r--r--theories/Sets/Partial_Order.v18
-rw-r--r--theories/Sets/Powerset.v26
-rw-r--r--theories/Sets/Powerset_Classical_facts.v40
-rw-r--r--theories/Sets/Powerset_facts.v34
-rw-r--r--theories/Sets/Relations_1_facts.v18
-rw-r--r--theories/Sets/Relations_2_facts.v12
-rw-r--r--theories/Sets/Relations_3_facts.v26
-rw-r--r--theories/Sets/Uniset.v28
16 files changed, 158 insertions, 158 deletions
diff --git a/theories/Sets/Classical_sets.v b/theories/Sets/Classical_sets.v
index f93631c7e..bf7b52b22 100644
--- a/theories/Sets/Classical_sets.v
+++ b/theories/Sets/Classical_sets.v
@@ -38,8 +38,8 @@ Section Ensembles_classical.
elim (not_all_ex_not U (fun x:U => ~ In U A x)).
intros x H; apply Inhabited_intro with x.
apply NNPP; auto with sets.
- red in |- *; intro.
- apply NI; red in |- *.
+ red; intro.
+ apply NI; red.
intros x H'; elim (H x); trivial with sets.
Qed.
@@ -47,7 +47,7 @@ Section Ensembles_classical.
forall A:Ensemble U, A <> Empty_set U -> Inhabited U A.
Proof.
intros; apply not_included_empty_Inhabited.
- red in |- *; auto with sets.
+ red; auto with sets.
Qed.
Lemma Inhabited_Setminus :
@@ -73,7 +73,7 @@ Section Ensembles_classical.
Lemma Subtract_intro :
forall (A:Ensemble U) (x y:U), In U A y -> x <> y -> In U (Subtract U A x) y.
Proof.
- unfold Subtract at 1 in |- *; auto with sets.
+ unfold Subtract at 1; auto with sets.
Qed.
Hint Resolve Subtract_intro : sets.
@@ -103,7 +103,7 @@ Section Ensembles_classical.
Lemma not_SIncl_empty :
forall X:Ensemble U, ~ Strict_Included U X (Empty_set U).
Proof.
- intro X; red in |- *; intro H'; try exact H'.
+ intro X; red; intro H'; try exact H'.
lapply (Strict_Included_inv X (Empty_set U)); auto with sets.
intro H'0; elim H'0; intros H'1 H'2; elim H'2; clear H'0.
intros x H'0; elim H'0.
@@ -113,10 +113,10 @@ Section Ensembles_classical.
Lemma Complement_Complement :
forall A:Ensemble U, Complement U (Complement U A) = A.
Proof.
- unfold Complement in |- *; intros; apply Extensionality_Ensembles;
+ unfold Complement; intros; apply Extensionality_Ensembles;
auto with sets.
- red in |- *; split; auto with sets.
- red in |- *; intros; apply NNPP; auto with sets.
+ red; split; auto with sets.
+ red; intros; apply NNPP; auto with sets.
Qed.
End Ensembles_classical.
diff --git a/theories/Sets/Constructive_sets.v b/theories/Sets/Constructive_sets.v
index e6dd83810..324255f6d 100644
--- a/theories/Sets/Constructive_sets.v
+++ b/theories/Sets/Constructive_sets.v
@@ -36,24 +36,24 @@ Section Ensembles_facts.
Lemma Noone_in_empty : forall x:U, ~ In U (Empty_set U) x.
Proof.
- red in |- *; destruct 1.
+ red; destruct 1.
Qed.
Lemma Included_Empty : forall A:Ensemble U, Included U (Empty_set U) A.
Proof.
- intro; red in |- *.
+ intro; red.
intros x H; elim (Noone_in_empty x); auto with sets.
Qed.
Lemma Add_intro1 :
forall (A:Ensemble U) (x y:U), In U A y -> In U (Add U A x) y.
Proof.
- unfold Add at 1 in |- *; auto with sets.
+ unfold Add at 1; auto with sets.
Qed.
Lemma Add_intro2 : forall (A:Ensemble U) (x:U), In U (Add U A x) x.
Proof.
- unfold Add at 1 in |- *; auto with sets.
+ unfold Add at 1; auto with sets.
Qed.
Lemma Inhabited_add : forall (A:Ensemble U) (x:U), Inhabited U (Add U A x).
@@ -66,7 +66,7 @@ Section Ensembles_facts.
forall X:Ensemble U, Inhabited U X -> X <> Empty_set U.
Proof.
intros X H'; elim H'.
- intros x H'0; red in |- *; intro H'1.
+ intros x H'0; red; intro H'1.
absurd (In U X x); auto with sets.
rewrite H'1; auto using Noone_in_empty with sets.
Qed.
@@ -78,7 +78,7 @@ Section Ensembles_facts.
Lemma not_Empty_Add : forall (A:Ensemble U) (x:U), Empty_set U <> Add U A x.
Proof.
- intros; red in |- *; intro H; generalize (Add_not_Empty A x); auto with sets.
+ intros; red; intro H; generalize (Add_not_Empty A x); auto with sets.
Qed.
Lemma Singleton_inv : forall x y:U, In U (Singleton U x) y -> x = y.
@@ -121,7 +121,7 @@ Section Ensembles_facts.
forall (A B:Ensemble U) (x:U),
In U A x -> ~ In U B x -> In U (Setminus U A B) x.
Proof.
- unfold Setminus at 1 in |- *; red in |- *; auto with sets.
+ unfold Setminus at 1; red; auto with sets.
Qed.
Lemma Strict_Included_intro :
@@ -132,7 +132,7 @@ Section Ensembles_facts.
Lemma Strict_Included_strict : forall X:Ensemble U, ~ Strict_Included U X X.
Proof.
- intro X; red in |- *; intro H'; elim H'.
+ intro X; red; intro H'; elim H'.
intros H'0 H'1; elim H'1; auto with sets.
Qed.
diff --git a/theories/Sets/Finite_sets.v b/theories/Sets/Finite_sets.v
index f08436754..07543276b 100644
--- a/theories/Sets/Finite_sets.v
+++ b/theories/Sets/Finite_sets.v
@@ -61,7 +61,7 @@ Section Ensembles_finis_facts.
(exists x : _, X = Add U A x /\ ~ In U A x /\ cardinal U A n)
end.
Proof.
- induction 1; simpl in |- *; auto.
+ induction 1; simpl; auto.
exists A; exists x; auto.
Qed.
@@ -73,7 +73,7 @@ Section Ensembles_finis_facts.
| S n => Inhabited U X
end.
Proof.
- intros X p C; elim C; simpl in |- *; trivial with sets.
+ intros X p C; elim C; simpl; trivial with sets.
Qed.
End Ensembles_finis_facts.
diff --git a/theories/Sets/Finite_sets_facts.v b/theories/Sets/Finite_sets_facts.v
index 350cd783c..8895e4569 100644
--- a/theories/Sets/Finite_sets_facts.v
+++ b/theories/Sets/Finite_sets_facts.v
@@ -62,7 +62,7 @@ Section Finite_sets_facts.
Theorem Singleton_is_finite : forall x:U, Finite U (Singleton U x).
Proof.
intro x; rewrite <- (Empty_set_zero U (Singleton U x)).
- change (Finite U (Add U (Empty_set U) x)) in |- *; auto with sets.
+ change (Finite U (Add U (Empty_set U) x)); auto with sets.
Qed.
Theorem Union_preserves_Finite :
@@ -134,15 +134,15 @@ Section Finite_sets_facts.
cut (S (pred n) = pred (S n)).
intro H'5; rewrite <- H'5.
apply card_add; auto with sets.
- red in |- *; intro H'6; elim H'6.
+ red; intro H'6; elim H'6.
intros H'7 H'8; try assumption.
elim H'1; auto with sets.
- unfold pred at 2 in |- *; symmetry in |- *.
+ unfold pred at 2; symmetry .
apply S_pred with (m := 0).
- change (n > 0) in |- *.
+ change (n > 0).
apply inh_card_gt_O with (X := X); auto with sets.
apply Inhabited_intro with (x := x0); auto with sets.
- red in |- *; intro H'3.
+ red; intro H'3.
apply H'1.
elim H'3; auto with sets.
rewrite H'3; auto with sets.
@@ -152,7 +152,7 @@ Section Finite_sets_facts.
intro H'4; rewrite H'4; auto with sets.
intros H'3 H'4; try assumption.
absurd (In U (Add U X x) x0); auto with sets.
- red in |- *; intro H'5; try exact H'5.
+ red; intro H'5; try exact H'5.
lapply (Add_inv U X x x0); tauto.
Qed.
@@ -183,11 +183,11 @@ Section Finite_sets_facts.
intros H'6 H'7; apply f_equal.
apply H'0 with (Y := X0); auto with sets.
apply Simplify_add with (x := x); auto with sets.
- pattern x at 2 in |- *; rewrite H'6; auto with sets.
+ pattern x at 2; rewrite H'6; auto with sets.
intros H'6 H'7.
absurd (Add U X x = Add U X0 x0); auto with sets.
clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2.
- red in |- *; intro H'.
+ red; intro H'.
lapply (Extension U (Add U X x) (Add U X0 x0)); auto with sets.
clear H'.
intro H'; red in H'.
@@ -254,7 +254,7 @@ Section Finite_sets_facts.
apply H'0 with (Y := X0); auto with sets arith.
apply sincl_add_x with (x := x0).
rewrite <- H'6; auto with sets arith.
- pattern x0 at 1 in |- *; rewrite <- H'6; trivial with sets arith.
+ pattern x0 at 1; rewrite <- H'6; trivial with sets arith.
intros H'6 H'7; red in H'5.
elim H'5; intros H'8 H'9; try exact H'8; clear H'5.
red in H'8.
diff --git a/theories/Sets/Image.v b/theories/Sets/Image.v
index 24facb6f6..440e636cb 100644
--- a/theories/Sets/Image.v
+++ b/theories/Sets/Image.v
@@ -55,7 +55,7 @@ Section Image.
Proof.
intros X x f.
apply Extensionality_Ensembles.
- split; red in |- *; intros x0 H'.
+ split; red; intros x0 H'.
elim H'; intros.
rewrite H0.
elim Add_inv with U X x x1; auto using Im_def with sets.
@@ -72,7 +72,7 @@ Section Image.
intro f; try assumption.
apply Extensionality_Ensembles.
split; auto with sets.
- red in |- *.
+ red.
intros x H'; elim H'.
intros x0 H'0; elim H'0; auto with sets.
Qed.
@@ -102,7 +102,7 @@ Section Image.
forall f:U -> V,
~ injective f -> exists x : _, (exists y : _, f x = f y /\ x <> y).
Proof.
- unfold injective in |- *; intros f H.
+ unfold injective; intros f H.
cut (exists x : _, ~ (forall y:U, f x = f y -> x = y)).
2: apply not_all_ex_not with (P := fun x:U => forall y:U, f x = f y -> x = y);
trivial with sets.
@@ -153,7 +153,7 @@ Section Image.
apply cardinal_unicity with V (Add _ (Im A f) (f x)); trivial with sets.
apply card_add; auto with sets.
rewrite <- H1; trivial with sets.
- red in |- *; intro; apply H'2.
+ red; intro; apply H'2.
apply In_Image_elim with f; trivial with sets.
Qed.
@@ -180,7 +180,7 @@ Section Image.
cardinal U A n ->
forall n':nat, cardinal V (Im A f) n' -> n' < n -> ~ injective f.
Proof.
- unfold not in |- *; intros A f n CAn n' CIfn' ltn'n I.
+ unfold not; intros A f n CAn n' CIfn' ltn'n I.
cut (n' = n).
intro E; generalize ltn'n; rewrite E; exact (lt_irrefl n).
apply injective_preserves_cardinal with (A := A) (f := f) (n := n);
diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v
index a21fe880c..f2862e14e 100644
--- a/theories/Sets/Infinite_sets.v
+++ b/theories/Sets/Infinite_sets.v
@@ -56,7 +56,7 @@ Section Infinite_sets.
intros A X H' H'0.
elim H'0; intros H'1 H'2.
apply Strict_super_set_contains_new_element; auto with sets.
- red in |- *; intro H'3; apply H'.
+ red; intro H'3; apply H'.
rewrite <- H'3; auto with sets.
Qed.
@@ -76,7 +76,7 @@ Section Infinite_sets.
split.
apply card_add; auto with sets.
cut (In U A x).
- intro H'4; red in |- *; auto with sets.
+ intro H'4; red; auto with sets.
intros x0 H'5; elim H'5; auto with sets.
intros x1 H'6; elim H'6; auto with sets.
elim H'3; auto with sets.
@@ -91,7 +91,7 @@ Section Infinite_sets.
split.
apply card_add; auto with sets.
elim H'2; auto with sets.
- red in |- *.
+ red.
intros x2 H'9; elim H'9; auto with sets.
intros x3 H'10; elim H'10; auto with sets.
elim H'2; auto with sets.
@@ -167,11 +167,11 @@ Section Infinite_sets.
apply ex_intro with (x := Add U x0 x1).
split; [ split; [ try assumption | idtac ] | idtac ].
apply card_add; auto with sets.
- red in |- *; intro H'9; try exact H'9.
+ red; intro H'9; try exact H'9.
apply H'1.
elim H'4; intros H'10 H'11; rewrite <- H'11; clear H'4; auto with sets.
elim H'4; intros H'9 H'10; try exact H'9; clear H'4; auto with sets.
- red in |- *; auto with sets.
+ red; auto with sets.
intros x2 H'4; elim H'4; auto with sets.
intros x3 H'11; elim H'11; auto with sets.
elim H'4; intros H'9 H'10; rewrite <- H'10; clear H'4; auto with sets.
@@ -235,7 +235,7 @@ Section Infinite_sets.
Proof.
intros A f H' H'0 H'1.
apply NNPP.
- red in |- *; intro H'2.
+ red; intro H'2.
elim (Pigeonhole_bis A f); auto with sets.
Qed.
diff --git a/theories/Sets/Integers.v b/theories/Sets/Integers.v
index 2c94a2e16..5ba7856eb 100644
--- a/theories/Sets/Integers.v
+++ b/theories/Sets/Integers.v
@@ -49,17 +49,17 @@ Section Integers_sect.
Lemma le_reflexive : Reflexive nat le.
Proof.
- red in |- *; auto with arith.
+ red; auto with arith.
Qed.
Lemma le_antisym : Antisymmetric nat le.
Proof.
- red in |- *; intros x y H H'; rewrite (le_antisym x y); auto.
+ red; intros x y H H'; rewrite (le_antisym x y); auto.
Qed.
Lemma le_trans : Transitive nat le.
Proof.
- red in |- *; intros; apply le_trans with y; auto.
+ red; intros; apply le_trans with y; auto.
Qed.
Lemma le_Order : Order nat le.
@@ -83,7 +83,7 @@ Section Integers_sect.
Lemma le_total_order : Totally_ordered nat nat_po Integers.
Proof.
apply Totally_ordered_definition.
- simpl in |- *.
+ simpl.
intros H' x y H'0.
elim le_or_lt with (n := x) (m := y).
intro H'1; left; auto with sets arith.
@@ -103,7 +103,7 @@ Section Integers_sect.
intros A H'0 H'1 x H'2; try assumption.
elim H'1; intros x0 H'3; clear H'1.
elim le_total_order.
- simpl in |- *.
+ simpl.
intro H'1; try assumption.
lapply H'1; [ intro H'4; idtac | try assumption ]; auto with sets arith.
generalize (H'4 x0 x).
@@ -114,28 +114,28 @@ Section Integers_sect.
[ intro H'5; try exact H'5; clear H'4 H'1 | intro H'5; clear H'4 H'1 ]
| clear H'1 ].
exists x.
- apply Upper_Bound_definition. simpl in |- *. apply triv_nat.
+ apply Upper_Bound_definition. simpl. apply triv_nat.
intros y H'1; elim H'1.
generalize le_trans.
intro H'4; red in H'4.
intros x1 H'6; try assumption.
- apply H'4 with (y := x0). elim H'3; simpl in |- *; auto with sets arith. trivial.
+ apply H'4 with (y := x0). elim H'3; simpl; auto with sets arith. trivial.
intros x1 H'4; elim H'4. unfold nat_po; simpl; trivial.
exists x0.
apply Upper_Bound_definition.
unfold nat_po. simpl. apply triv_nat.
intros y H'1; elim H'1.
intros x1 H'4; try assumption.
- elim H'3; simpl in |- *; auto with sets arith.
+ elim H'3; simpl; auto with sets arith.
intros x1 H'4; elim H'4; auto with sets arith.
- red in |- *.
+ red.
intros x1 H'1; elim H'1; apply triv_nat.
Qed.
Lemma Integers_has_no_ub :
~ (exists m : nat, Upper_Bound nat nat_po Integers m).
Proof.
- red in |- *; intro H'; elim H'.
+ red; intro H'; elim H'.
intros x H'0.
elim H'0; intros H'1 H'2.
cut (In nat Integers (S x)).
@@ -150,7 +150,7 @@ Section Integers_sect.
Lemma Integers_infinite : ~ Finite nat Integers.
Proof.
generalize Integers_has_no_ub.
- intro H'; red in |- *; intro H'0; try exact H'0.
+ intro H'; red; intro H'0; try exact H'0.
apply H'.
apply Finite_subset_has_lub; auto with sets arith.
Qed.
diff --git a/theories/Sets/Multiset.v b/theories/Sets/Multiset.v
index 5f21335fd..4159d3877 100644
--- a/theories/Sets/Multiset.v
+++ b/theories/Sets/Multiset.v
@@ -42,14 +42,14 @@ Section multiset_defs.
Lemma meq_trans : forall x y z:multiset, meq x y -> meq y z -> meq x z.
Proof.
- unfold meq in |- *.
+ unfold meq.
destruct x; destruct y; destruct z.
intros; rewrite H; auto.
Qed.
Lemma meq_sym : forall x y:multiset, meq x y -> meq y x.
Proof.
- unfold meq in |- *.
+ unfold meq.
destruct x; destruct y; auto.
Qed.
@@ -59,12 +59,12 @@ Section multiset_defs.
Lemma munion_empty_left : forall x:multiset, meq x (munion EmptyBag x).
Proof.
- unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto.
+ unfold meq; unfold munion; simpl; auto.
Qed.
Lemma munion_empty_right : forall x:multiset, meq x (munion x EmptyBag).
Proof.
- unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto.
+ unfold meq; unfold munion; simpl; auto.
Qed.
@@ -72,21 +72,21 @@ Section multiset_defs.
Lemma munion_comm : forall x y:multiset, meq (munion x y) (munion y x).
Proof.
- unfold meq in |- *; unfold multiplicity in |- *; unfold munion in |- *.
+ unfold meq; unfold multiplicity; unfold munion.
destruct x; destruct y; auto with arith.
Qed.
Lemma munion_ass :
forall x y z:multiset, meq (munion (munion x y) z) (munion x (munion y z)).
Proof.
- unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
+ unfold meq; unfold munion; unfold multiplicity.
destruct x; destruct y; destruct z; auto with arith.
Qed.
Lemma meq_left :
forall x y z:multiset, meq x y -> meq (munion x z) (munion y z).
Proof.
- unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
+ unfold meq; unfold munion; unfold multiplicity.
destruct x; destruct y; destruct z.
intros; elim H; auto with arith.
Qed.
@@ -94,7 +94,7 @@ Section multiset_defs.
Lemma meq_right :
forall x y z:multiset, meq x y -> meq (munion z x) (munion z y).
Proof.
- unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
+ unfold meq; unfold munion; unfold multiplicity.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
diff --git a/theories/Sets/Partial_Order.v b/theories/Sets/Partial_Order.v
index a319b9832..bb1cf7083 100644
--- a/theories/Sets/Partial_Order.v
+++ b/theories/Sets/Partial_Order.v
@@ -63,13 +63,13 @@ Section Partial_order_facts.
forall x y z:U,
Strict_Rel_of U D x y -> Rel_of U D y z -> Strict_Rel_of U D x z.
Proof.
- unfold Strict_Rel_of at 1 in |- *.
- red in |- *.
- elim D; simpl in |- *.
+ unfold Strict_Rel_of at 1.
+ red.
+ elim D; simpl.
intros C R H' H'0; elim H'0.
intros H'1 H'2 H'3 x y z H'4 H'5; split.
apply H'2 with (y := y); tauto.
- red in |- *; intro H'6.
+ red; intro H'6.
elim H'4; intros H'7 H'8; apply H'8; clear H'4.
apply H'3; auto.
rewrite H'6; tauto.
@@ -79,20 +79,20 @@ Section Partial_order_facts.
forall x y z:U,
Rel_of U D x y -> Strict_Rel_of U D y z -> Strict_Rel_of U D x z.
Proof.
- unfold Strict_Rel_of at 1 in |- *.
- red in |- *.
- elim D; simpl in |- *.
+ unfold Strict_Rel_of at 1.
+ red.
+ elim D; simpl.
intros C R H' H'0; elim H'0.
intros H'1 H'2 H'3 x y z H'4 H'5; split.
apply H'2 with (y := y); tauto.
- red in |- *; intro H'6.
+ red; intro H'6.
elim H'5; intros H'7 H'8; apply H'8; clear H'5.
apply H'3; auto.
rewrite <- H'6; auto.
Qed.
Lemma Strict_Rel_Transitive : Transitive U (Strict_Rel_of U D).
- red in |- *.
+ red.
intros x y z H' H'0.
apply Strict_Rel_Transitive_with_Rel with (y := y);
[ intuition | unfold Strict_Rel_of in H', H'0; intuition ].
diff --git a/theories/Sets/Powerset.v b/theories/Sets/Powerset.v
index f8b24e747..f3b7c4deb 100644
--- a/theories/Sets/Powerset.v
+++ b/theories/Sets/Powerset.v
@@ -39,7 +39,7 @@ Inductive Power_set (A:Ensemble U) : Ensemble (Ensemble U) :=
Hint Resolve Definition_of_Power_set.
Theorem Empty_set_minimal : forall X:Ensemble U, Included U (Empty_set U) X.
-intro X; red in |- *.
+intro X; red.
intros x H'; elim H'.
Qed.
Hint Resolve Empty_set_minimal.
@@ -79,7 +79,7 @@ Lemma Strict_inclusion_is_transitive_with_inclusion :
Strict_Included U x y -> Included U y z -> Strict_Included U x z.
intros x y z H' H'0; try assumption.
elim Strict_Rel_is_Strict_Included.
-unfold contains in |- *.
+unfold contains.
intros H'1 H'2; try assumption.
apply H'1.
apply Strict_Rel_Transitive_with_Rel with (y := y); auto with sets.
@@ -90,7 +90,7 @@ Lemma Strict_inclusion_is_transitive_with_inclusion_left :
Included U x y -> Strict_Included U y z -> Strict_Included U x z.
intros x y z H' H'0; try assumption.
elim Strict_Rel_is_Strict_Included.
-unfold contains in |- *.
+unfold contains.
intros H'1 H'2; try assumption.
apply H'1.
apply Strict_Rel_Transitive_with_Rel_left with (y := y); auto with sets.
@@ -105,14 +105,14 @@ Qed.
Theorem Empty_set_is_Bottom :
forall A:Ensemble U, Bottom (Ensemble U) (Power_set_PO A) (Empty_set U).
-intro A; apply Bottom_definition; simpl in |- *; auto with sets.
+intro A; apply Bottom_definition; simpl; auto with sets.
Qed.
Hint Resolve Empty_set_is_Bottom.
Theorem Union_minimal :
forall a b X:Ensemble U,
Included U a X -> Included U b X -> Included U (Union U a b) X.
-intros a b X H' H'0; red in |- *.
+intros a b X H' H'0; red.
intros x H'1; elim H'1; auto with sets.
Qed.
Hint Resolve Union_minimal.
@@ -133,13 +133,13 @@ Qed.
Theorem Intersection_decreases_l :
forall a b:Ensemble U, Included U (Intersection U a b) a.
-intros a b; red in |- *.
+intros a b; red.
intros x H'; elim H'; auto with sets.
Qed.
Theorem Intersection_decreases_r :
forall a b:Ensemble U, Included U (Intersection U a b) b.
-intros a b; red in |- *.
+intros a b; red.
intros x H'; elim H'; auto with sets.
Qed.
Hint Resolve Union_increases_l Union_increases_r Intersection_decreases_l
@@ -151,10 +151,10 @@ Theorem Union_is_Lub :
Included U b A ->
Lub (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b) (Union U a b).
intros A a b H' H'0.
-apply Lub_definition; simpl in |- *.
-apply Upper_Bound_definition; simpl in |- *; auto with sets.
+apply Lub_definition; simpl.
+apply Upper_Bound_definition; simpl; auto with sets.
intros y H'1; elim H'1; auto with sets.
-intros y H'1; elim H'1; simpl in |- *; auto with sets.
+intros y H'1; elim H'1; simpl; auto with sets.
Qed.
Theorem Intersection_is_Glb :
@@ -164,13 +164,13 @@ Theorem Intersection_is_Glb :
Glb (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b)
(Intersection U a b).
intros A a b H' H'0.
-apply Glb_definition; simpl in |- *.
-apply Lower_Bound_definition; simpl in |- *; auto with sets.
+apply Glb_definition; simpl.
+apply Lower_Bound_definition; simpl; auto with sets.
apply Definition_of_Power_set.
generalize Inclusion_is_transitive; intro IT; red in IT; apply IT with a;
auto with sets.
intros y H'1; elim H'1; auto with sets.
-intros y H'1; elim H'1; simpl in |- *; auto with sets.
+intros y H'1; elim H'1; simpl; auto with sets.
Qed.
End The_power_set_partial_order.
diff --git a/theories/Sets/Powerset_Classical_facts.v b/theories/Sets/Powerset_Classical_facts.v
index 09fc20948..a7601aaaf 100644
--- a/theories/Sets/Powerset_Classical_facts.v
+++ b/theories/Sets/Powerset_Classical_facts.v
@@ -44,13 +44,13 @@ Section Sets_as_an_algebra.
~ In U A x ->
Strict_Included U (Add U A x) (Add U B x) -> Strict_Included U A B.
Proof.
- intros A B x H' H'0; red in |- *.
+ intros A B x H' H'0; red.
lapply (Strict_Included_inv U (Add U A x) (Add U B x)); auto with sets.
clear H'0; intro H'0; split.
apply incl_add_x with (x := x); tauto.
elim H'0; intros H'1 H'2; elim H'2; clear H'0 H'2.
intros x0 H'0.
- red in |- *; intro H'2.
+ red; intro H'2.
elim H'0; clear H'0.
rewrite <- H'2; auto with sets.
Qed.
@@ -58,7 +58,7 @@ Section Sets_as_an_algebra.
Lemma incl_soustr_in :
forall (X:Ensemble U) (x:U), In U X x -> Included U (Subtract U X x) X.
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; elim H'0; auto with sets.
Qed.
@@ -66,7 +66,7 @@ Section Sets_as_an_algebra.
forall (X Y:Ensemble U) (x:U),
Included U X Y -> Included U (Subtract U X x) (Subtract U Y x).
Proof.
- intros X Y x H'; red in |- *.
+ intros X Y x H'; red.
intros x0 H'0; elim H'0.
intros H'1 H'2.
apply Subtract_intro; auto with sets.
@@ -75,7 +75,7 @@ Section Sets_as_an_algebra.
Lemma incl_soustr_add_l :
forall (X:Ensemble U) (x:U), Included U (Subtract U (Add U X x) x) X.
Proof.
- intros X x; red in |- *.
+ intros X x; red.
intros x0 H'; elim H'; auto with sets.
intro H'0; elim H'0; auto with sets.
intros t H'1 H'2; elim H'2; auto with sets.
@@ -85,10 +85,10 @@ Section Sets_as_an_algebra.
forall (X:Ensemble U) (x:U),
~ In U X x -> Included U X (Subtract U (Add U X x) x).
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; try assumption.
apply Subtract_intro; auto with sets.
- red in |- *; intro H'1; apply H'; rewrite H'1; auto with sets.
+ red; intro H'1; apply H'; rewrite H'1; auto with sets.
Qed.
Hint Resolve incl_soustr_add_r: sets v62.
@@ -96,7 +96,7 @@ Section Sets_as_an_algebra.
forall (X:Ensemble U) (x:U),
In U X x -> Included U X (Add U (Subtract U X x) x).
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; try assumption.
elim (classic (x = x0)); intro K; auto with sets.
elim K; auto with sets.
@@ -106,7 +106,7 @@ Section Sets_as_an_algebra.
forall (X:Ensemble U) (x:U),
In U X x -> Included U (Add U (Subtract U X x) x) X.
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; elim H'0; auto with sets.
intros y H'1; elim H'1; auto with sets.
intros t H'1; try assumption.
@@ -118,7 +118,7 @@ Section Sets_as_an_algebra.
x <> y -> Subtract U (Add U X x) y = Add U (Subtract U X y) x.
Proof.
intros X x y H'; apply Extensionality_Ensembles.
- split; red in |- *.
+ split; red.
intros x0 H'0; elim H'0; auto with sets.
intro H'1; elim H'1.
intros u H'2 H'3; try assumption.
@@ -146,7 +146,7 @@ Section Sets_as_an_algebra.
apply H'4 with (y := Y); auto using add_soustr_2 with sets.
red in H'0.
elim H'0; intros H'1 H'2; try exact H'1; clear H'0. (* PB *)
- red in |- *; intro H'0; apply H'2.
+ red; intro H'0; apply H'2.
rewrite H'0; auto 8 using add_soustr_xy, add_soustr_1, add_soustr_2 with sets.
Qed.
@@ -177,7 +177,7 @@ Section Sets_as_an_algebra.
exists (Subtract U X x).
split; auto using incl_soustr_in, add_soustr_xy, add_soustr_1, add_soustr_2 with sets.
red in H'0.
- red in |- *.
+ red.
intros x0 H'2; try assumption.
lapply (Subtract_inv U X x x0); auto with sets.
intro H'3; elim H'3; intros K K'; clear H'3.
@@ -189,7 +189,7 @@ Section Sets_as_an_algebra.
elim K'; auto with sets.
intro H'1; left; try assumption.
red in H'0.
- red in |- *.
+ red.
intros x0 H'2; try assumption.
lapply (H'0 x0); auto with sets.
intro H'3; try assumption.
@@ -207,7 +207,7 @@ Section Sets_as_an_algebra.
(forall z:Ensemble U, Included U x z -> Included U z y -> x = z \/ z = y).
Proof.
intros A x y H'; elim H'.
- unfold Strict_Rel_of in |- *; simpl in |- *.
+ unfold Strict_Rel_of; simpl.
intros H'0 H'1; split; [ auto with sets | idtac ].
intros z H'2 H'3; try assumption.
elim (classic (x = z)); auto with sets.
@@ -227,11 +227,11 @@ Section Sets_as_an_algebra.
Proof.
intros A a H' x H'0 H'1; try assumption.
apply setcover_intro; auto with sets.
- red in |- *.
- split; [ idtac | red in |- *; intro H'2; try exact H'2 ]; auto with sets.
+ red.
+ split; [ idtac | red; intro H'2; try exact H'2 ]; auto with sets.
apply H'1.
rewrite H'2; auto with sets.
- red in |- *; intro H'2; elim H'2; clear H'2.
+ red; intro H'2; elim H'2; clear H'2.
intros z H'2; elim H'2; intros H'3 H'4; try exact H'3; clear H'2.
lapply (Strict_Included_inv U a z); auto with sets; clear H'3.
intro H'2; elim H'2; intros H'3 H'5; elim H'5; clear H'2 H'5.
@@ -249,7 +249,7 @@ Section Sets_as_an_algebra.
red in K.
elim K; intros H'11 H'12; apply H'12; clear K; auto with sets.
rewrite H'15.
- red in |- *.
+ red.
intros x1 H'10; elim H'10; auto with sets.
intros x2 H'11; elim H'11; auto with sets.
Qed.
@@ -275,11 +275,11 @@ Section Sets_as_an_algebra.
elim (H'7 (Add U a x)); auto with sets.
intro H'1.
absurd (a = Add U a x); auto with sets.
- red in |- *; intro H'8; try exact H'8.
+ red; intro H'8; try exact H'8.
apply H'3.
rewrite H'8; auto with sets.
auto with sets.
- red in |- *.
+ red.
intros x0 H'1; elim H'1; auto with sets.
intros x1 H'8; elim H'8; auto with sets.
split; [ idtac | try assumption ].
diff --git a/theories/Sets/Powerset_facts.v b/theories/Sets/Powerset_facts.v
index f756f9854..14a2d25cc 100644
--- a/theories/Sets/Powerset_facts.v
+++ b/theories/Sets/Powerset_facts.v
@@ -42,7 +42,7 @@ Section Sets_as_an_algebra.
Theorem Empty_set_zero' : forall x:U, Add U (Empty_set U) x = Singleton U x.
Proof.
- unfold Add at 1 in |- *; auto using Empty_set_zero with sets.
+ unfold Add at 1; auto using Empty_set_zero with sets.
Qed.
Lemma less_than_empty :
@@ -76,7 +76,7 @@ Section Sets_as_an_algebra.
Theorem Couple_as_union :
forall x y:U, Union U (Singleton U x) (Singleton U y) = Couple U x y.
Proof.
- intros x y; apply Extensionality_Ensembles; split; red in |- *.
+ intros x y; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'; (intros x1 H'0; elim H'0; auto with sets).
intros x0 H'; elim H'; auto with sets.
Qed.
@@ -86,7 +86,7 @@ Section Sets_as_an_algebra.
Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z) =
Triple U x y z.
Proof.
- intros x y z; apply Extensionality_Ensembles; split; red in |- *.
+ intros x y z; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'.
intros x1 H'0; elim H'0; (intros x2 H'1; elim H'1; auto with sets).
intros x1 H'0; elim H'0; auto with sets.
@@ -114,7 +114,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'; elim H'; auto with sets.
+ split; red; intros x H'; elim H'; auto with sets.
Qed.
Theorem Distributivity :
@@ -124,7 +124,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B C.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'.
+ split; red; intros x H'.
elim H'.
intros x0 H'0 H'1; generalize H'0.
elim H'1; auto with sets.
@@ -138,7 +138,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B C.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'.
+ split; red; intros x H'.
elim H'; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
elim H'.
@@ -151,15 +151,15 @@ Section Sets_as_an_algebra.
Theorem Union_add :
forall (A B:Ensemble U) (x:U), Add U (Union U A B) x = Union U A (Add U B x).
Proof.
- unfold Add in |- *; auto using Union_associative with sets.
+ unfold Add; auto using Union_associative with sets.
Qed.
Theorem Non_disjoint_union :
forall (X:Ensemble U) (x:U), In U X x -> Add U X x = X.
Proof.
- intros X x H'; unfold Add in |- *.
- apply Extensionality_Ensembles; red in |- *.
- split; red in |- *; auto with sets.
+ intros X x H'; unfold Add.
+ apply Extensionality_Ensembles; red.
+ split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros t H'1; elim H'1; auto with sets.
Qed.
@@ -167,12 +167,12 @@ Section Sets_as_an_algebra.
Theorem Non_disjoint_union' :
forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X.
Proof.
- intros X x H'; unfold Subtract in |- *.
+ intros X x H'; unfold Subtract.
apply Extensionality_Ensembles.
- split; red in |- *; auto with sets.
+ split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros x0 H'0; apply Setminus_intro; auto with sets.
- red in |- *; intro H'1; elim H'1.
+ red; intro H'1; elim H'1.
lapply (Singleton_inv U x x0); auto with sets.
intro H'4; apply H'; rewrite H'4; auto with sets.
Qed.
@@ -186,7 +186,7 @@ Section Sets_as_an_algebra.
forall (A B:Ensemble U) (x:U),
Included U A B -> Included U (Add U A x) (Add U B x).
Proof.
- intros A B x H'; red in |- *; auto with sets.
+ intros A B x H'; red; auto with sets.
intros x0 H'0.
lapply (Add_inv U A x x0); auto with sets.
intro H'1; elim H'1;
@@ -198,7 +198,7 @@ Section Sets_as_an_algebra.
forall (A B:Ensemble U) (x:U),
~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B.
Proof.
- unfold Included in |- *.
+ unfold Included.
intros A B x H' H'0 x0 H'1.
lapply (H'0 x0); auto with sets.
intro H'2; lapply (Add_inv U B x x0); auto with sets.
@@ -212,7 +212,7 @@ Section Sets_as_an_algebra.
forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x.
Proof.
intros A x y.
- unfold Add in |- *.
+ unfold Add.
rewrite (Union_associative A (Singleton U x) (Singleton U y)).
rewrite (Union_commutative (Singleton U x) (Singleton U y)).
rewrite <- (Union_associative A (Singleton U y) (Singleton U x));
@@ -234,7 +234,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B x y H'; try assumption.
rewrite <- (Union_add (Add U A x) B y).
- unfold Add at 4 in |- *.
+ unfold Add at 4.
rewrite (Union_commutative A (Singleton U x)).
rewrite Union_associative.
rewrite (Union_absorbs A B H').
diff --git a/theories/Sets/Relations_1_facts.v b/theories/Sets/Relations_1_facts.v
index 0c8329dd0..efd895e2c 100644
--- a/theories/Sets/Relations_1_facts.v
+++ b/theories/Sets/Relations_1_facts.v
@@ -33,8 +33,8 @@ Theorem Rsym_imp_notRsym :
forall (U:Type) (R:Relation U),
Symmetric U R -> Symmetric U (Complement U R).
Proof.
-unfold Symmetric, Complement in |- *.
-intros U R H' x y H'0; red in |- *; intro H'1; apply H'0; auto with sets.
+unfold Symmetric, Complement.
+intros U R H' x y H'0; red; intro H'1; apply H'0; auto with sets.
Qed.
Theorem Equiv_from_preorder :
@@ -44,8 +44,8 @@ Proof.
intros U R H'; elim H'; intros H'0 H'1.
apply Definition_of_equivalence.
red in H'0; auto 10 with sets.
-2: red in |- *; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
-red in H'1; red in |- *; auto 10 with sets.
+2: red; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
+red in H'1; red; auto 10 with sets.
intros x y z h; elim h; intros H'3 H'4; clear h.
intro h; elim h; intros H'5 H'6; clear h.
split; apply H'1 with y; auto 10 with sets.
@@ -70,7 +70,7 @@ Hint Resolve contains_is_preorder.
Theorem same_relation_is_equivalence :
forall U:Type, Equivalence (Relation U) (same_relation U).
Proof.
-unfold same_relation at 1 in |- *; auto 10 with sets.
+unfold same_relation at 1; auto 10 with sets.
Qed.
Hint Resolve same_relation_is_equivalence.
@@ -78,14 +78,14 @@ Theorem cong_reflexive_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Reflexive U R -> Reflexive U R'.
Proof.
-unfold same_relation in |- *; intuition.
+unfold same_relation; intuition.
Qed.
Theorem cong_symmetric_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Symmetric U R -> Symmetric U R'.
Proof.
- compute in |- *; intros; elim H; intros; clear H;
+ compute; intros; elim H; intros; clear H;
apply (H3 y x (H0 x y (H2 x y H1))).
(*Intuition.*)
Qed.
@@ -94,7 +94,7 @@ Theorem cong_antisymmetric_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Antisymmetric U R -> Antisymmetric U R'.
Proof.
- compute in |- *; intros; elim H; intros; clear H;
+ compute; intros; elim H; intros; clear H;
apply (H0 x y (H3 x y H1) (H3 y x H2)).
(*Intuition.*)
Qed.
@@ -103,7 +103,7 @@ Theorem cong_transitive_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Transitive U R -> Transitive U R'.
Proof.
-intros U R R' H' H'0; red in |- *.
+intros U R R' H' H'0; red.
elim H'.
intros H'1 H'2 x y z H'3 H'4; apply H'2.
apply H'0 with y; auto with sets.
diff --git a/theories/Sets/Relations_2_facts.v b/theories/Sets/Relations_2_facts.v
index 89b98c1f5..bc5960ebe 100644
--- a/theories/Sets/Relations_2_facts.v
+++ b/theories/Sets/Relations_2_facts.v
@@ -43,13 +43,13 @@ Qed.
Theorem Rstar_contains_R :
forall (U:Type) (R:Relation U), contains U (Rstar U R) R.
Proof.
-intros U R; red in |- *; intros x y H'; apply Rstar_n with y; auto with sets.
+intros U R; red; intros x y H'; apply Rstar_n with y; auto with sets.
Qed.
Theorem Rstar_contains_Rplus :
forall (U:Type) (R:Relation U), contains U (Rstar U R) (Rplus U R).
Proof.
-intros U R; red in |- *.
+intros U R; red.
intros x y H'; elim H'.
generalize Rstar_contains_R; intro T; red in T; auto with sets.
intros x0 y0 z H'0 H'1 H'2; apply Rstar_n with y0; auto with sets.
@@ -58,7 +58,7 @@ Qed.
Theorem Rstar_transitive :
forall (U:Type) (R:Relation U), Transitive U (Rstar U R).
Proof.
-intros U R; red in |- *.
+intros U R; red.
intros x y z H'; elim H'; auto with sets.
intros x0 y0 z0 H'0 H'1 H'2 H'3; apply Rstar_n with y0; auto with sets.
Qed.
@@ -75,7 +75,7 @@ Theorem Rstar_equiv_Rstar1 :
forall (U:Type) (R:Relation U), same_relation U (Rstar U R) (Rstar1 U R).
Proof.
generalize Rstar_contains_R; intro T; red in T.
-intros U R; unfold same_relation, contains in |- *.
+intros U R; unfold same_relation, contains.
split; intros x y H'; elim H'; auto with sets.
generalize Rstar_transitive; intro T1; red in T1.
intros x0 y0 z H'0 H'1 H'2 H'3; apply T1 with y0; auto with sets.
@@ -85,7 +85,7 @@ Qed.
Theorem Rsym_imp_Rstarsym :
forall (U:Type) (R:Relation U), Symmetric U R -> Symmetric U (Rstar U R).
Proof.
-intros U R H'; red in |- *.
+intros U R H'; red.
intros x y H'0; elim H'0; auto with sets.
intros x0 y0 z H'1 H'2 H'3.
generalize Rstar_transitive; intro T1; red in T1.
@@ -97,7 +97,7 @@ Theorem Sstar_contains_Rstar :
forall (U:Type) (R S:Relation U),
contains U (Rstar U S) R -> contains U (Rstar U S) (Rstar U R).
Proof.
-unfold contains in |- *.
+unfold contains.
intros U R S H' x y H'0; elim H'0; auto with sets.
generalize Rstar_transitive; intro T1; red in T1.
intros x0 y0 z H'1 H'2 H'3; apply T1 with y0; auto with sets.
diff --git a/theories/Sets/Relations_3_facts.v b/theories/Sets/Relations_3_facts.v
index 8ac6e7fb4..455ad5843 100644
--- a/theories/Sets/Relations_3_facts.v
+++ b/theories/Sets/Relations_3_facts.v
@@ -33,7 +33,7 @@ Require Export Relations_3.
Theorem Rstar_imp_coherent :
forall (U:Type) (R:Relation U) (x y:U), Rstar U R x y -> coherent U R x y.
Proof.
-intros U R x y H'; red in |- *.
+intros U R x y H'; red.
exists y; auto with sets.
Qed.
Hint Resolve Rstar_imp_coherent.
@@ -41,8 +41,8 @@ Hint Resolve Rstar_imp_coherent.
Theorem coherent_symmetric :
forall (U:Type) (R:Relation U), Symmetric U (coherent U R).
Proof.
-unfold coherent at 1 in |- *.
-intros U R; red in |- *.
+unfold coherent at 1.
+intros U R; red.
intros x y H'; elim H'.
intros z H'0; exists z; tauto.
Qed.
@@ -50,9 +50,9 @@ Qed.
Theorem Strong_confluence :
forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R.
Proof.
-intros U R H'; red in |- *.
-intro x; red in |- *; intros a b H'0.
-unfold coherent at 1 in |- *.
+intros U R H'; red.
+intro x; red; intros a b H'0.
+unfold coherent at 1.
generalize b; clear b.
elim H'0; clear H'0.
intros x0 b H'1; exists b; auto with sets.
@@ -75,9 +75,9 @@ Qed.
Theorem Strong_confluence_direct :
forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R.
Proof.
-intros U R H'; red in |- *.
-intro x; red in |- *; intros a b H'0.
-unfold coherent at 1 in |- *.
+intros U R H'; red.
+intro x; red; intros a b H'0.
+unfold coherent at 1.
generalize b; clear b.
elim H'0; clear H'0.
intros x0 b H'1; exists b; auto with sets.
@@ -111,7 +111,7 @@ Theorem Noetherian_contains_Noetherian :
forall (U:Type) (R R':Relation U),
Noetherian U R -> contains U R R' -> Noetherian U R'.
Proof.
-unfold Noetherian at 2 in |- *.
+unfold Noetherian at 2.
intros U R R' H' H'0 x.
elim (H' x); auto with sets.
Qed.
@@ -120,8 +120,8 @@ Theorem Newman :
forall (U:Type) (R:Relation U),
Noetherian U R -> Locally_confluent U R -> Confluent U R.
Proof.
-intros U R H' H'0; red in |- *; intro x.
-elim (H' x); unfold confluent in |- *.
+intros U R H' H'0; red; intro x.
+elim (H' x); unfold confluent.
intros x0 H'1 H'2 y z H'3 H'4.
generalize (Rstar_cases U R x0 y); intro h; lapply h;
[ intro h0; elim h0;
@@ -163,7 +163,7 @@ generalize (H'2 v); intro h; lapply h;
| clear h h0 ]
| clear h h0 ]
| clear h ]; auto with sets.
-red in |- *; (exists z1; split); auto with sets.
+red; (exists z1; split); auto with sets.
apply T with y1; auto with sets.
apply T with t; auto with sets.
Qed.
diff --git a/theories/Sets/Uniset.v b/theories/Sets/Uniset.v
index bf1aaf8db..ca4519ee4 100644
--- a/theories/Sets/Uniset.v
+++ b/theories/Sets/Uniset.v
@@ -51,37 +51,37 @@ Hint Unfold seq.
Lemma leb_refl : forall b:bool, leb b b.
Proof.
-destruct b; simpl in |- *; auto.
+destruct b; simpl; auto.
Qed.
Hint Resolve leb_refl.
Lemma incl_left : forall s1 s2:uniset, seq s1 s2 -> incl s1 s2.
Proof.
-unfold incl in |- *; intros s1 s2 E a; elim (E a); auto.
+unfold incl; intros s1 s2 E a; elim (E a); auto.
Qed.
Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1.
Proof.
-unfold incl in |- *; intros s1 s2 E a; elim (E a); auto.
+unfold incl; intros s1 s2 E a; elim (E a); auto.
Qed.
Lemma seq_refl : forall x:uniset, seq x x.
Proof.
-destruct x; unfold seq in |- *; auto.
+destruct x; unfold seq; auto.
Qed.
Hint Resolve seq_refl.
Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z.
Proof.
-unfold seq in |- *.
-destruct x; destruct y; destruct z; simpl in |- *; intros.
+unfold seq.
+destruct x; destruct y; destruct z; simpl; intros.
rewrite H; auto.
Qed.
Lemma seq_sym : forall x y:uniset, seq x y -> seq y x.
Proof.
-unfold seq in |- *.
-destruct x; destruct y; simpl in |- *; auto.
+unfold seq.
+destruct x; destruct y; simpl; auto.
Qed.
(** uniset union *)
@@ -90,20 +90,20 @@ Definition union (m1 m2:uniset) :=
Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x).
Proof.
-unfold seq in |- *; unfold union in |- *; simpl in |- *; auto.
+unfold seq; unfold union; simpl; auto.
Qed.
Hint Resolve union_empty_left.
Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset).
Proof.
-unfold seq in |- *; unfold union in |- *; simpl in |- *.
+unfold seq; unfold union; simpl.
intros x a; rewrite (orb_b_false (charac x a)); auto.
Qed.
Hint Resolve union_empty_right.
Lemma union_comm : forall x y:uniset, seq (union x y) (union y x).
Proof.
-unfold seq in |- *; unfold charac in |- *; unfold union in |- *.
+unfold seq; unfold charac; unfold union.
destruct x; destruct y; auto with bool.
Qed.
Hint Resolve union_comm.
@@ -111,14 +111,14 @@ Hint Resolve union_comm.
Lemma union_ass :
forall x y z:uniset, seq (union (union x y) z) (union x (union y z)).
Proof.
-unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
+unfold seq; unfold union; unfold charac.
destruct x; destruct y; destruct z; auto with bool.
Qed.
Hint Resolve union_ass.
Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z).
Proof.
-unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
+unfold seq; unfold union; unfold charac.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
@@ -126,7 +126,7 @@ Hint Resolve seq_left.
Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y).
Proof.
-unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
+unfold seq; unfold union; unfold charac.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.