aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-11-12 17:59:15 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2001-11-12 17:59:15 +0000
commitf093a07ab0289c632b3f5600e8ad03bad23c13c5 (patch)
tree57bbbb8ca58ddcbc647a99832aa5ba93936e8bec /theories/Relations
parentecb17841e955ca888010d72876381a86cdcf09ad (diff)
suppression d'axiomes dans Rstar, Newman et Integers
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2187 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Relations')
-rwxr-xr-xtheories/Relations/Newman.v14
-rwxr-xr-xtheories/Relations/Rstar.v10
2 files changed, 22 insertions, 2 deletions
diff --git a/theories/Relations/Newman.v b/theories/Relations/Newman.v
index e7829b00e..2fe408543 100755
--- a/theories/Relations/Newman.v
+++ b/theories/Relations/Newman.v
@@ -10,6 +10,16 @@
Require Rstar.
+Section Newman.
+
+Variable A: Type.
+Variable R: A->A->Prop.
+
+Local Rstar := (Rstar A R).
+Local Rstar_reflexive := (Rstar_reflexive A R).
+Local Rstar_transitive := (Rstar_transitive A R).
+Local Rstar_Rstar' := (Rstar_Rstar' A R).
+
Definition coherence := [x:A][y:A] (exT2 ? (Rstar x) (Rstar y)).
Theorem coherence_intro : (x:A)(y:A)(z:A)(Rstar x z)->(Rstar y z)->(coherence x y).
@@ -99,3 +109,7 @@ Theorem Newman : (x:A)(confluence x).
Proof [x:A](Hyp1 x confluence Ind_proof).
End Newman_section.
+
+
+End Newman.
+
diff --git a/theories/Relations/Rstar.v b/theories/Relations/Rstar.v
index a0aaed9ad..ff2e02a4b 100755
--- a/theories/Relations/Rstar.v
+++ b/theories/Relations/Rstar.v
@@ -10,8 +10,10 @@
(* Properties of a binary relation R on type A *)
-Parameter A : Type.
-Parameter R : A->A->Prop.
+Section Rstar.
+
+Variable A : Type.
+Variable R : A->A->Prop.
(* Definition of the reflexive-transitive closure R* of R *)
(* Smallest reflexive P containing R o P *)
@@ -71,3 +73,7 @@ Theorem Rstar_Rstar': (x:A)(y:A)(Rstar x y)->(Rstar' x y).
Definition commut := [A:Set][R1,R2:A->A->Prop]
(x,y:A)(R1 y x)->(z:A)(R2 z y)
->(EX y':A |(R2 y' x) & (R1 z y')).
+
+
+End Rstar.
+