aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-10-19 13:43:38 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-10-19 13:43:38 +0000
commitadd39fd4566c0e00293c2082077d08fb21178607 (patch)
treef0e0036098c54d9972c24b77581f587a1059068d /theories/Relations
parentcad1432683f0fa93efaf64f26803a44f64fd1bd0 (diff)
Retour en arrière sur la mise en paramètre du premier argument de
Coq.Relation.Relation_Operators.clos_refl_sym_trans car cela échange les arguments de rst_sym et casse la compatibilité (cf p.ex. Rocq/PTS). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11471 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Relations')
-rw-r--r--theories/Relations/Operators_Properties.v2
-rw-r--r--theories/Relations/Relation_Operators.v10
2 files changed, 6 insertions, 6 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 22582f75d..2ced22298 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -70,7 +70,7 @@ Section Properties.
apply Build_equivalence.
exact (rst_refl A R).
exact (rst_trans A R).
- exact (fun x y => rst_sym A R y x).
+ exact (rst_sym A R).
Qed.
(** Idempotency of the reflexive-symmetric-transitive closure operator *)
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index 2793da5b1..eec3f8ebd 100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -85,11 +85,11 @@ Section Reflexive_Symetric_Transitive_Closure.
(** Definition by direct reflexive-symmetric-transitive closure *)
- Inductive clos_refl_sym_trans (x:A) : A -> Prop :=
- | rst_step (y:A) : R x y -> clos_refl_sym_trans x y
- | rst_refl : clos_refl_sym_trans x x
- | rst_sym (y:A) : clos_refl_sym_trans y x -> clos_refl_sym_trans x y
- | rst_trans (y z:A) :
+ Inductive clos_refl_sym_trans : relation A :=
+ | rst_step (x y:A) : R x y -> clos_refl_sym_trans x y
+ | rst_refl (x:A) : clos_refl_sym_trans x x
+ | rst_sym (x y:A) : clos_refl_sym_trans x y -> clos_refl_sym_trans y x
+ | rst_trans (x y z:A) :
clos_refl_sym_trans x y ->
clos_refl_sym_trans y z -> clos_refl_sym_trans x z.