aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations
diff options
context:
space:
mode:
authorGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-09-17 15:58:14 +0000
committerGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-09-17 15:58:14 +0000
commit61ccbc81a2f3b4662ed4a2bad9d07d2003dda3a2 (patch)
tree961cc88c714aa91a0276ea9fbf8bc53b2b9d5c28 /theories/Relations
parent6d3fbdf36c6a47b49c2a4b16f498972c93c07574 (diff)
Delete trailing whitespaces in all *.{v,ml*} files
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Relations')
-rw-r--r--theories/Relations/Operators_Properties.v44
-rw-r--r--theories/Relations/Relation_Definitions.v26
-rw-r--r--theories/Relations/Relation_Operators.v14
3 files changed, 42 insertions, 42 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 2ced22298..d35841e00 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -24,7 +24,7 @@ Section Properties.
Variable R : relation A.
Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
-
+
Section Clos_Refl_Trans.
(** Correctness of the reflexive-transitive closure operator *)
@@ -33,7 +33,7 @@ Section Properties.
Proof.
apply Build_preorder.
exact (rt_refl A R).
-
+
exact (rt_trans A R).
Qed.
@@ -114,7 +114,7 @@ Section Properties.
apply t1n_trans; auto.
Qed.
- Lemma t1n_trans_equiv : forall x y,
+ Lemma t1n_trans_equiv : forall x y,
clos_trans A R x y <-> clos_trans_1n A R x y.
Proof.
split.
@@ -144,7 +144,7 @@ Section Properties.
right with y0; auto.
Qed.
- Lemma tn1_trans_equiv : forall x y,
+ Lemma tn1_trans_equiv : forall x y,
clos_trans A R x y <-> clos_trans_n1 A R x y.
Proof.
split.
@@ -152,7 +152,7 @@ Section Properties.
apply tn1_trans.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by left-step extension *)
Lemma R_rt1n : forall x y, R x y -> clos_refl_trans_1n A R x y.
@@ -167,7 +167,7 @@ Section Properties.
right with x;[assumption|left].
Qed.
- Lemma rt1n_trans : forall x y,
+ Lemma rt1n_trans : forall x y,
clos_refl_trans_1n A R x y -> clos_refl_trans A R x y.
Proof.
induction 1.
@@ -176,7 +176,7 @@ Section Properties.
constructor 1; auto.
Qed.
- Lemma trans_rt1n : forall x y,
+ Lemma trans_rt1n : forall x y,
clos_refl_trans A R x y -> clos_refl_trans_1n A R x y.
Proof.
induction 1.
@@ -190,7 +190,7 @@ Section Properties.
apply rt1n_trans; auto.
Qed.
- Lemma rt1n_trans_equiv : forall x y,
+ Lemma rt1n_trans_equiv : forall x y,
clos_refl_trans A R x y <-> clos_refl_trans_1n A R x y.
Proof.
split.
@@ -198,7 +198,7 @@ Section Properties.
apply rt1n_trans.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by right-step extension *)
Lemma rtn1_trans : forall x y,
@@ -210,7 +210,7 @@ Section Properties.
constructor 1; assumption.
Qed.
- Lemma trans_rtn1 : forall x y,
+ Lemma trans_rtn1 : forall x y,
clos_refl_trans A R x y -> clos_refl_trans_n1 A R x y.
Proof.
induction 1.
@@ -221,7 +221,7 @@ Section Properties.
right with y0; auto.
Qed.
- Lemma rtn1_trans_equiv : forall x y,
+ Lemma rtn1_trans_equiv : forall x y,
clos_refl_trans A R x y <-> clos_refl_trans_n1 A R x y.
Proof.
split.
@@ -240,7 +240,7 @@ Section Properties.
revert H H0.
induction H1; intros; auto with sets.
apply H1 with x; auto with sets.
-
+
apply IHclos_refl_trans2.
apply IHclos_refl_trans1; auto with sets.
@@ -270,10 +270,10 @@ Section Properties.
eauto.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric left-step extension *)
- Lemma rts1n_rts : forall x y,
+ Lemma rts1n_rts : forall x y,
clos_refl_sym_trans_1n A R x y -> clos_refl_sym_trans A R x y.
Proof.
induction 1.
@@ -283,7 +283,7 @@ Section Properties.
Qed.
Lemma rts_1n_trans : forall x y, clos_refl_sym_trans_1n A R x y ->
- forall z, clos_refl_sym_trans_1n A R y z ->
+ forall z, clos_refl_sym_trans_1n A R y z ->
clos_refl_sym_trans_1n A R x z.
induction 1.
auto.
@@ -301,7 +301,7 @@ Section Properties.
left.
Qed.
- Lemma rts_rts1n : forall x y,
+ Lemma rts_rts1n : forall x y,
clos_refl_sym_trans A R x y -> clos_refl_sym_trans_1n A R x y.
induction 1.
constructor 2 with y; auto.
@@ -311,7 +311,7 @@ Section Properties.
eapply rts_1n_trans; eauto.
Qed.
- Lemma rts_rts1n_equiv : forall x y,
+ Lemma rts_rts1n_equiv : forall x y,
clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_1n A R x y.
Proof.
split.
@@ -319,10 +319,10 @@ Section Properties.
apply rts1n_rts.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric right-step extension *)
- Lemma rtsn1_rts : forall x y,
+ Lemma rtsn1_rts : forall x y,
clos_refl_sym_trans_n1 A R x y -> clos_refl_sym_trans A R x y.
Proof.
induction 1.
@@ -332,7 +332,7 @@ Section Properties.
Qed.
Lemma rtsn1_trans : forall y z, clos_refl_sym_trans_n1 A R y z->
- forall x, clos_refl_sym_trans_n1 A R x y ->
+ forall x, clos_refl_sym_trans_n1 A R x y ->
clos_refl_sym_trans_n1 A R x z.
Proof.
induction 1.
@@ -352,7 +352,7 @@ Section Properties.
left.
Qed.
- Lemma rts_rtsn1 : forall x y,
+ Lemma rts_rtsn1 : forall x y,
clos_refl_sym_trans A R x y -> clos_refl_sym_trans_n1 A R x y.
Proof.
induction 1.
@@ -363,7 +363,7 @@ Section Properties.
eapply rtsn1_trans; eauto.
Qed.
- Lemma rts_rtsn1_equiv : forall x y,
+ Lemma rts_rtsn1_equiv : forall x y,
clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_n1 A R x y.
Proof.
split.
diff --git a/theories/Relations/Relation_Definitions.v b/theories/Relations/Relation_Definitions.v
index 977135fab..c03c4b95f 100644
--- a/theories/Relations/Relation_Definitions.v
+++ b/theories/Relations/Relation_Definitions.v
@@ -11,14 +11,14 @@
Section Relation_Definition.
Variable A : Type.
-
+
Definition relation := A -> A -> Prop.
Variable R : relation.
-
+
Section General_Properties_of_Relations.
-
+
Definition reflexive : Prop := forall x:A, R x x.
Definition transitive : Prop := forall x y z:A, R x y -> R y z -> R x z.
Definition symmetric : Prop := forall x y:A, R x y -> R y x.
@@ -32,33 +32,33 @@ Section Relation_Definition.
Section Sets_of_Relations.
-
- Record preorder : Prop :=
+
+ Record preorder : Prop :=
{ preord_refl : reflexive; preord_trans : transitive}.
-
- Record order : Prop :=
+
+ Record order : Prop :=
{ ord_refl : reflexive;
ord_trans : transitive;
ord_antisym : antisymmetric}.
-
- Record equivalence : Prop :=
+
+ Record equivalence : Prop :=
{ equiv_refl : reflexive;
equiv_trans : transitive;
equiv_sym : symmetric}.
-
+
Record PER : Prop := {per_sym : symmetric; per_trans : transitive}.
End Sets_of_Relations.
Section Relations_of_Relations.
-
+
Definition inclusion (R1 R2:relation) : Prop :=
forall x y:A, R1 x y -> R2 x y.
-
+
Definition same_relation (R1 R2:relation) : Prop :=
inclusion R1 R2 /\ inclusion R2 R1.
-
+
Definition commut (R1 R2:relation) : Prop :=
forall x y:A,
R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index eec3f8ebd..2d1503f23 100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -65,7 +65,7 @@ Section Reflexive_Transitive_Closure.
Inductive clos_refl_trans_1n (x: A) : A -> Prop :=
| rt1n_refl : clos_refl_trans_1n x x
- | rt1n_trans (y z:A) :
+ | rt1n_trans (y z:A) :
R x y -> clos_refl_trans_1n y z -> clos_refl_trans_1n x z.
(** Alternative definition by transitive extension on the right *)
@@ -82,7 +82,7 @@ End Reflexive_Transitive_Closure.
Section Reflexive_Symetric_Transitive_Closure.
Variable A : Type.
Variable R : relation A.
-
+
(** Definition by direct reflexive-symmetric-transitive closure *)
Inductive clos_refl_sym_trans : relation A :=
@@ -104,7 +104,7 @@ Section Reflexive_Symetric_Transitive_Closure.
Inductive clos_refl_sym_trans_n1 (x: A) : A -> Prop :=
| rtsn1_refl : clos_refl_sym_trans_n1 x x
- | rtsn1_trans (y z:A) : R y z \/ R z y ->
+ | rtsn1_trans (y z:A) : R y z \/ R z y ->
clos_refl_sym_trans_n1 x y -> clos_refl_sym_trans_n1 x z.
End Reflexive_Symetric_Transitive_Closure.
@@ -139,7 +139,7 @@ Inductive le_AsB : A + B -> A + B -> Prop :=
| le_ab (x:A) (y:B) : le_AsB (inl _ x) (inr _ y)
| le_bb (x y:B) : leB x y -> le_AsB (inr _ x) (inr _ y).
-End Disjoint_Union.
+End Disjoint_Union.
(** ** Lexicographic order on dependent pairs *)
@@ -189,12 +189,12 @@ End Swap.
Section Lexicographic_Exponentiation.
-
+
Variable A : Set.
Variable leA : A -> A -> Prop.
Let Nil := nil (A:=A).
Let List := list A.
-
+
Inductive Ltl : List -> List -> Prop :=
| Lt_nil (a:A) (x:List) : Ltl Nil (a :: x)
| Lt_hd (a b:A) : leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
@@ -207,7 +207,7 @@ Section Lexicographic_Exponentiation.
leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).
Definition Pow : Set := sig Desc.
-
+
Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
End Lexicographic_Exponentiation.