aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations
diff options
context:
space:
mode:
authorGravatar notin <notin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-10-17 12:53:34 +0000
committerGravatar notin <notin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-10-17 12:53:34 +0000
commit28dc7a05cc1d3e03ed1435b3db4340db954a59e2 (patch)
tree63cdf18cd47260eb90550f62f7b22e2e2e208f6c /theories/Relations
parent744e7f6a319f4d459a3cc2309f575d43041d75aa (diff)
Mise en forme des theories
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9245 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Relations')
-rw-r--r--theories/Relations/Newman.v130
-rw-r--r--theories/Relations/Operators_Properties.v142
-rw-r--r--theories/Relations/Relation_Definitions.v87
-rw-r--r--theories/Relations/Relation_Operators.v74
-rw-r--r--theories/Relations/Relations.v23
-rw-r--r--theories/Relations/Rstar.v137
6 files changed, 301 insertions, 292 deletions
diff --git a/theories/Relations/Newman.v b/theories/Relations/Newman.v
index 9c53a28be..d97943280 100644
--- a/theories/Relations/Newman.v
+++ b/theories/Relations/Newman.v
@@ -23,24 +23,23 @@ Let Rstar_Rstar' := Rstar_Rstar' A R.
Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).
Theorem coherence_intro :
- forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
-Proof
- fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
- ex_intro2 (Rstar x) (Rstar y) z h1 h2.
+ forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
+Proof fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
+ ex_intro2 (Rstar x) (Rstar y) z h1 h2.
(** A very simple case of coherence : *)
Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
- Proof
- fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
+Proof
+ fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
(** coherence is symmetric *)
Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
- Proof
- fun (x y:A) (h:coherence x y) =>
- ex2_ind
- (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
- coherence_intro y x w h2 h1) h.
+Proof
+ fun (x y:A) (h:coherence x y) =>
+ ex2_ind
+ (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
+ coherence_intro y x w h2 h1) h.
Definition confluence (x:A) :=
forall y z:A, Rstar x y -> Rstar x z -> coherence y z.
@@ -54,68 +53,67 @@ Definition noetherian :=
Section Newman_section.
-(** The general hypotheses of the theorem *)
+ (** The general hypotheses of the theorem *)
-Hypothesis Hyp1 : noetherian.
-Hypothesis Hyp2 : forall x:A, local_confluence x.
+ Hypothesis Hyp1 : noetherian.
+ Hypothesis Hyp2 : forall x:A, local_confluence x.
-(** The induction hypothesis *)
+ (** The induction hypothesis *)
-Section Induct.
- Variable x : A.
- Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
+ Section Induct.
+ Variable x : A.
+ Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
-(** Confluence in [x] *)
+ (** Confluence in [x] *)
- Variables y z : A.
- Hypothesis h1 : Rstar x y.
- Hypothesis h2 : Rstar x z.
+ Variables y z : A.
+ Hypothesis h1 : Rstar x y.
+ Hypothesis h2 : Rstar x z.
-(** particular case [x->u] and [u->*y] *)
-Section Newman_.
- Variable u : A.
- Hypothesis t1 : R x u.
- Hypothesis t2 : Rstar u y.
+ (** particular case [x->u] and [u->*y] *)
+ Section Newman_.
+ Variable u : A.
+ Hypothesis t1 : R x u.
+ Hypothesis t2 : Rstar u y.
+
+ (** In the usual diagram, we assume also [x->v] and [v->*z] *)
+
+ Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
+ Proof
+ (* We draw the diagram ! *)
+ fun (v:A) (u1:R x v) (u2:Rstar v z) =>
+ ex2_ind
+ (* local confluence in x for u,v *)
+ (* gives w, u->*w and v->*w *)
+ (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
+ ex2_ind
+ (* confluence in u => coherence(y,w) *)
+ (* gives a, y->*a and z->*a *)
+ (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
+ ex2_ind
+ (* confluence in v => coherence(a,z) *)
+ (* gives b, a->*b and z->*b *)
+ (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
+ coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
+ (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
+ (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
-(** In the usual diagram, we assume also [x->v] and [v->*z] *)
-
-Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
-
-Proof
- (* We draw the diagram ! *)
- fun (v:A) (u1:R x v) (u2:Rstar v z) =>
- ex2_ind
- (* local confluence in x for u,v *)
- (* gives w, u->*w and v->*w *)
- (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
- ex2_ind
- (* confluence in u => coherence(y,w) *)
- (* gives a, y->*a and z->*a *)
- (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
- ex2_ind
- (* confluence in v => coherence(a,z) *)
- (* gives b, a->*b and z->*b *)
- (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
- coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
- (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
- (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
-
-Theorem caseRxy : coherence y z.
-Proof
- Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
- (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
- Diagram. (*i case x->v->*z i*)
-End Newman_.
-
-Theorem Ind_proof : coherence y z.
-Proof
- Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
- (Rstar_coherence x z h2) (*i case x=y i*)
- caseRxy. (*i case x->u->*z i*)
-End Induct.
-
-Theorem Newman : forall x:A, confluence x.
-Proof fun x:A => Hyp1 x confluence Ind_proof.
+ Theorem caseRxy : coherence y z.
+ Proof
+ Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
+ (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
+ Diagram. (*i case x->v->*z i*)
+ End Newman_.
+
+ Theorem Ind_proof : coherence y z.
+ Proof
+ Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
+ (Rstar_coherence x z h2) (*i case x=y i*)
+ caseRxy. (*i case x->u->*z i*)
+ End Induct.
+
+ Theorem Newman : forall x:A, confluence x.
+ Proof fun x:A => Hyp1 x confluence Ind_proof.
End Newman_section.
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 317a5ed07..3cae9d571 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -22,75 +22,77 @@ Section Properties.
Variable R : relation A.
Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
-
-Section Clos_Refl_Trans.
-
- Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
-apply Build_preorder.
-exact (rt_refl A R).
-
-exact (rt_trans A R).
-Qed.
-
-
-
-Lemma clos_rt_idempotent :
- incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
-red in |- *.
-induction 1; auto with sets.
-intros.
-apply rt_trans with y; auto with sets.
-Qed.
-
- Lemma clos_refl_trans_ind_left :
- forall (A:Set) (R:A -> A -> Prop) (M:A) (P:A -> Prop),
- P M ->
- (forall P0 N:A, clos_refl_trans A R M P0 -> P P0 -> R P0 N -> P N) ->
- forall a:A, clos_refl_trans A R M a -> P a.
-intros.
-generalize H H0.
-clear H H0.
-elim H1; intros; auto with sets.
-apply H2 with x; auto with sets.
-
-apply H3.
-apply H0; auto with sets.
-
-intros.
-apply H5 with P0; auto with sets.
-apply rt_trans with y; auto with sets.
-Qed.
-
-
-End Clos_Refl_Trans.
-
-
-Section Clos_Refl_Sym_Trans.
-
- Lemma clos_rt_clos_rst :
- inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
-red in |- *.
-induction 1; auto with sets.
-apply rst_trans with y; auto with sets.
-Qed.
-
- Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
-apply Build_equivalence.
-exact (rst_refl A R).
-
-exact (rst_trans A R).
-
-exact (rst_sym A R).
-Qed.
-
- Lemma clos_rst_idempotent :
- incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
- (clos_refl_sym_trans A R).
-red in |- *.
-induction 1; auto with sets.
-apply rst_trans with y; auto with sets.
-Qed.
-
-End Clos_Refl_Sym_Trans.
+
+ Section Clos_Refl_Trans.
+
+ Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
+ Proof.
+ apply Build_preorder.
+ exact (rt_refl A R).
+
+ exact (rt_trans A R).
+ Qed.
+
+ Lemma clos_rt_idempotent :
+ incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
+ Proof.
+ red in |- *.
+ induction 1; auto with sets.
+ intros.
+ apply rt_trans with y; auto with sets.
+ Qed.
+
+ Lemma clos_refl_trans_ind_left :
+ forall (A:Set) (R:A -> A -> Prop) (M:A) (P:A -> Prop),
+ P M ->
+ (forall P0 N:A, clos_refl_trans A R M P0 -> P P0 -> R P0 N -> P N) ->
+ forall a:A, clos_refl_trans A R M a -> P a.
+ Proof.
+ intros.
+ generalize H H0.
+ clear H H0.
+ elim H1; intros; auto with sets.
+ apply H2 with x; auto with sets.
+
+ apply H3.
+ apply H0; auto with sets.
+
+ intros.
+ apply H5 with P0; auto with sets.
+ apply rt_trans with y; auto with sets.
+ Qed.
+
+
+ End Clos_Refl_Trans.
+
+
+ Section Clos_Refl_Sym_Trans.
+
+ Lemma clos_rt_clos_rst :
+ inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
+ Proof.
+ red in |- *.
+ induction 1; auto with sets.
+ apply rst_trans with y; auto with sets.
+ Qed.
+
+ Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
+ Proof.
+ apply Build_equivalence.
+ exact (rst_refl A R).
+ exact (rst_trans A R).
+ exact (rst_sym A R).
+ Qed.
+
+ Lemma clos_rst_idempotent :
+ incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
+ (clos_refl_sym_trans A R).
+ Proof.
+ red in |- *.
+ induction 1; auto with sets.
+ apply rst_trans with y; auto with sets.
+ Qed.
+
+ End Clos_Refl_Sym_Trans.
End Properties. \ No newline at end of file
diff --git a/theories/Relations/Relation_Definitions.v b/theories/Relations/Relation_Definitions.v
index e0f13b46e..977135fab 100644
--- a/theories/Relations/Relation_Definitions.v
+++ b/theories/Relations/Relation_Definitions.v
@@ -10,63 +10,62 @@
Section Relation_Definition.
- Variable A : Type.
-
- Definition relation := A -> A -> Prop.
+ Variable A : Type.
+
+ Definition relation := A -> A -> Prop.
- Variable R : relation.
+ Variable R : relation.
-Section General_Properties_of_Relations.
-
- Definition reflexive : Prop := forall x:A, R x x.
- Definition transitive : Prop := forall x y z:A, R x y -> R y z -> R x z.
- Definition symmetric : Prop := forall x y:A, R x y -> R y x.
- Definition antisymmetric : Prop := forall x y:A, R x y -> R y x -> x = y.
-
- (* for compatibility with Equivalence in ../PROGRAMS/ALG/ *)
- Definition equiv := reflexive /\ transitive /\ symmetric.
-
-End General_Properties_of_Relations.
-
+ Section General_Properties_of_Relations.
+
+ Definition reflexive : Prop := forall x:A, R x x.
+ Definition transitive : Prop := forall x y z:A, R x y -> R y z -> R x z.
+ Definition symmetric : Prop := forall x y:A, R x y -> R y x.
+ Definition antisymmetric : Prop := forall x y:A, R x y -> R y x -> x = y.
+ (* for compatibility with Equivalence in ../PROGRAMS/ALG/ *)
+ Definition equiv := reflexive /\ transitive /\ symmetric.
-Section Sets_of_Relations.
+ End General_Properties_of_Relations.
- Record preorder : Prop :=
- {preord_refl : reflexive; preord_trans : transitive}.
- Record order : Prop :=
- {ord_refl : reflexive;
- ord_trans : transitive;
- ord_antisym : antisymmetric}.
- Record equivalence : Prop :=
- {equiv_refl : reflexive;
- equiv_trans : transitive;
- equiv_sym : symmetric}.
-
- Record PER : Prop := {per_sym : symmetric; per_trans : transitive}.
-
-End Sets_of_Relations.
+ Section Sets_of_Relations.
+
+ Record preorder : Prop :=
+ { preord_refl : reflexive; preord_trans : transitive}.
+
+ Record order : Prop :=
+ { ord_refl : reflexive;
+ ord_trans : transitive;
+ ord_antisym : antisymmetric}.
+
+ Record equivalence : Prop :=
+ { equiv_refl : reflexive;
+ equiv_trans : transitive;
+ equiv_sym : symmetric}.
+
+ Record PER : Prop := {per_sym : symmetric; per_trans : transitive}.
+ End Sets_of_Relations.
-Section Relations_of_Relations.
+ Section Relations_of_Relations.
+
+ Definition inclusion (R1 R2:relation) : Prop :=
+ forall x y:A, R1 x y -> R2 x y.
+
+ Definition same_relation (R1 R2:relation) : Prop :=
+ inclusion R1 R2 /\ inclusion R2 R1.
+
+ Definition commut (R1 R2:relation) : Prop :=
+ forall x y:A,
+ R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
- Definition inclusion (R1 R2:relation) : Prop :=
- forall x y:A, R1 x y -> R2 x y.
+ End Relations_of_Relations.
- Definition same_relation (R1 R2:relation) : Prop :=
- inclusion R1 R2 /\ inclusion R2 R1.
-
- Definition commut (R1 R2:relation) : Prop :=
- forall x y:A,
- R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
-End Relations_of_Relations.
-
-
End Relation_Definition.
Hint Unfold reflexive transitive antisymmetric symmetric: sets v62.
@@ -75,4 +74,4 @@ Hint Resolve Build_preorder Build_order Build_equivalence Build_PER
preord_refl preord_trans ord_refl ord_trans ord_antisym equiv_refl
equiv_trans equiv_sym per_sym per_trans: sets v62.
-Hint Unfold inclusion same_relation commut: sets v62. \ No newline at end of file
+Hint Unfold inclusion same_relation commut: sets v62.
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index b538620d1..e4918d40e 100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -24,7 +24,7 @@ Require Import List.
Section Transitive_Closure.
Variable A : Type.
Variable R : relation A.
-
+
Inductive clos_trans (x: A) : A -> Prop :=
| t_step : forall y:A, R x y -> clos_trans x y
| t_trans :
@@ -48,16 +48,16 @@ End Reflexive_Transitive_Closure.
Section Reflexive_Symetric_Transitive_Closure.
Variable A : Type.
Variable R : relation A.
-
+
Inductive clos_refl_sym_trans : relation A :=
| rst_step : forall x y:A, R x y -> clos_refl_sym_trans x y
| rst_refl : forall x:A, clos_refl_sym_trans x x
| rst_sym :
- forall x y:A, clos_refl_sym_trans x y -> clos_refl_sym_trans y x
+ forall x y:A, clos_refl_sym_trans x y -> clos_refl_sym_trans y x
| rst_trans :
- forall x y z:A,
- clos_refl_sym_trans x y ->
- clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
+ forall x y z:A,
+ clos_refl_sym_trans x y ->
+ clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
End Reflexive_Symetric_Transitive_Closure.
@@ -92,18 +92,18 @@ End Disjoint_Union.
Section Lexicographic_Product.
-(* Lexicographic order on dependent pairs *)
+ (* Lexicographic order on dependent pairs *)
-Variable A : Set.
-Variable B : A -> Set.
-Variable leA : A -> A -> Prop.
-Variable leB : forall x:A, B x -> B x -> Prop.
+ Variable A : Set.
+ Variable B : A -> Set.
+ Variable leA : A -> A -> Prop.
+ Variable leB : forall x:A, B x -> B x -> Prop.
-Inductive lexprod : sigS B -> sigS B -> Prop :=
- | left_lex :
+ Inductive lexprod : sigS B -> sigS B -> Prop :=
+ | left_lex :
forall (x x':A) (y:B x) (y':B x'),
leA x x' -> lexprod (existS B x y) (existS B x' y')
- | right_lex :
+ | right_lex :
forall (x:A) (y y':B x),
leB x y y' -> lexprod (existS B x y) (existS B x y').
End Lexicographic_Product.
@@ -117,9 +117,9 @@ Section Symmetric_Product.
Inductive symprod : A * B -> A * B -> Prop :=
| left_sym :
- forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
+ forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
| right_sym :
- forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').
+ forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').
End Symmetric_Product.
@@ -131,34 +131,34 @@ Section Swap.
Inductive swapprod : A * A -> A * A -> Prop :=
| sp_noswap : forall x x':A * A, symprod A A R R x x' -> swapprod x x'
| sp_swap :
- forall (x y:A) (p:A * A),
- symprod A A R R (x, y) p -> swapprod (y, x) p.
+ forall (x y:A) (p:A * A),
+ symprod A A R R (x, y) p -> swapprod (y, x) p.
End Swap.
Section Lexicographic_Exponentiation.
-
-Variable A : Set.
-Variable leA : A -> A -> Prop.
-Let Nil := nil (A:=A).
-Let List := list A.
-
-Inductive Ltl : List -> List -> Prop :=
- | Lt_nil : forall (a:A) (x:List), Ltl Nil (a :: x)
- | Lt_hd : forall a b:A, leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
- | Lt_tl : forall (a:A) (x y:List), Ltl x y -> Ltl (a :: x) (a :: y).
-
-
-Inductive Desc : List -> Prop :=
- | d_nil : Desc Nil
- | d_one : forall x:A, Desc (x :: Nil)
- | d_conc :
+
+ Variable A : Set.
+ Variable leA : A -> A -> Prop.
+ Let Nil := nil (A:=A).
+ Let List := list A.
+
+ Inductive Ltl : List -> List -> Prop :=
+ | Lt_nil : forall (a:A) (x:List), Ltl Nil (a :: x)
+ | Lt_hd : forall a b:A, leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
+ | Lt_tl : forall (a:A) (x y:List), Ltl x y -> Ltl (a :: x) (a :: y).
+
+
+ Inductive Desc : List -> Prop :=
+ | d_nil : Desc Nil
+ | d_one : forall x:A, Desc (x :: Nil)
+ | d_conc :
forall (x y:A) (l:List),
leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).
-Definition Pow : Set := sig Desc.
-
-Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
+ Definition Pow : Set := sig Desc.
+
+ Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
End Lexicographic_Exponentiation.
diff --git a/theories/Relations/Relations.v b/theories/Relations/Relations.v
index 6578f6c85..938d514df 100644
--- a/theories/Relations/Relations.v
+++ b/theories/Relations/Relations.v
@@ -13,16 +13,19 @@ Require Export Relation_Operators.
Require Export Operators_Properties.
Lemma inverse_image_of_equivalence :
- forall (A B:Set) (f:A -> B) (r:relation B),
- equivalence B r -> equivalence A (fun x y:A => r (f x) (f y)).
-intros; split; elim H; red in |- *; auto.
-intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption.
+ forall (A B:Set) (f:A -> B) (r:relation B),
+ equivalence B r -> equivalence A (fun x y:A => r (f x) (f y)).
+Proof.
+ intros; split; elim H; red in |- *; auto.
+ intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption.
Qed.
Lemma inverse_image_of_eq :
- forall (A B:Set) (f:A -> B), equivalence A (fun x y:A => f x = f y).
-split; red in |- *;
- [ (* reflexivity *) reflexivity
- | (* transitivity *) intros; transitivity (f y); assumption
- | (* symmetry *) intros; symmetry in |- *; assumption ].
-Qed. \ No newline at end of file
+ forall (A B:Set) (f:A -> B), equivalence A (fun x y:A => f x = f y).
+Proof.
+ split; red in |- *;
+ [ (* reflexivity *) reflexivity
+ | (* transitivity *) intros; transitivity (f y); assumption
+ | (* symmetry *) intros; symmetry in |- *; assumption ].
+Qed.
+
diff --git a/theories/Relations/Rstar.v b/theories/Relations/Rstar.v
index eda581e8d..8dfacf2cf 100644
--- a/theories/Relations/Rstar.v
+++ b/theories/Relations/Rstar.v
@@ -11,77 +11,84 @@
(** Properties of a binary relation [R] on type [A] *)
Section Rstar.
+
+ Variable A : Type.
+ Variable R : A -> A -> Prop.
-Variable A : Type.
-Variable R : A -> A -> Prop.
-
-(** Definition of the reflexive-transitive closure [R*] of [R] *)
-(** Smallest reflexive [P] containing [R o P] *)
-
-Definition Rstar (x y:A) :=
- forall P:A -> A -> Prop,
- (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
+ (** Definition of the reflexive-transitive closure [R*] of [R] *)
+ (** Smallest reflexive [P] containing [R o P] *)
-Theorem Rstar_reflexive : forall x:A, Rstar x x.
- Proof
- fun (x:A) (P:A -> A -> Prop) (h1:forall u:A, P u u)
- (h2:forall u v w:A, R u v -> P v w -> P u w) =>
- h1 x.
+ Definition Rstar (x y:A) :=
+ forall P:A -> A -> Prop,
+ (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
-Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
- Proof
- fun (x y z:A) (t1:R x y) (t2:Rstar y z) (P:A -> A -> Prop)
- (h1:forall u:A, P u u) (h2:forall u v w:A, R u v -> P v w -> P u w) =>
- h2 x y z t1 (t2 P h1 h2).
+ Theorem Rstar_reflexive : forall x:A, Rstar x x.
+ Proof.
+ unfold Rstar. intros x P P_refl RoP. apply P_refl.
+ Qed.
+
+ Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
+ Proof.
+ intros x y z R_xy Rstar_yz.
+ unfold Rstar.
+ intros P P_refl RoP. apply RoP with (v:=y).
+ assumption.
+ apply Rstar_yz; assumption.
+ Qed.
+
+ (** We conclude with transitivity of [Rstar] : *)
+
+ Theorem Rstar_transitive :
+ forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
+ Proof.
+ intros x y z Rstar_xy; unfold Rstar in Rstar_xy.
+ apply Rstar_xy; trivial.
+ intros u v w R_uv fz Rstar_wz.
+ apply Rstar_R with (y:=v); auto.
+ Qed.
+
+ (** Another characterization of [R*] *)
+ (** Smallest reflexive [P] containing [R o R*] *)
+
+ Definition Rstar' (x y:A) :=
+ forall P:A -> A -> Prop,
+ P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
+
+ Theorem Rstar'_reflexive : forall x:A, Rstar' x x.
+ Proof.
+ unfold Rstar'; intros; assumption.
+ Qed.
-(** We conclude with transitivity of [Rstar] : *)
-
-Theorem Rstar_transitive :
- forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
- Proof
- fun (x y z:A) (h:Rstar x y) =>
- h (fun u v:A => Rstar v z -> Rstar u z) (fun (u:A) (t:Rstar u z) => t)
- (fun (u v w:A) (t1:R u v) (t2:Rstar w z -> Rstar v z)
- (t3:Rstar w z) => Rstar_R u v z t1 (t2 t3)).
-
-(** Another characterization of [R*] *)
-(** Smallest reflexive [P] containing [R o R*] *)
-
-Definition Rstar' (x y:A) :=
- forall P:A -> A -> Prop,
- P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
-
-Theorem Rstar'_reflexive : forall x:A, Rstar' x x.
- Proof
- fun (x:A) (P:A -> A -> Prop) (h:P x x)
- (h':forall u:A, R x u -> Rstar u x -> P x x) => h.
+ Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
+ Proof.
+ unfold Rstar'. intros x y z Rxz Rstar_zy P Pxx RoP.
+ apply RoP with (u:=z); trivial.
+ Qed.
-Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
- Proof
- fun (x y z:A) (t1:R x z) (t2:Rstar z y) (P:A -> A -> Prop)
- (h1:P x x) (h2:forall u:A, R x u -> Rstar u y -> P x y) =>
- h2 z t1 t2.
+ (** Equivalence of the two definitions: *)
+
+ Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
+ Proof.
+ intros x z Rstar'_xz; unfold Rstar' in Rstar'_xz.
+ apply Rstar'_xz.
+ exact (Rstar_reflexive x).
+ intro y; generalize x y z; exact Rstar_R.
+ Qed.
-(** Equivalence of the two definitions: *)
-
-Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
- Proof
- fun (x y:A) (h:Rstar' x y) =>
- h Rstar (Rstar_reflexive x) (fun u:A => Rstar_R x u y).
+ Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
+ Proof.
+ intros.
+ apply H.
+ exact Rstar'_reflexive.
+ intros u v w R_uv Rs'_vw. apply Rstar'_R with (z:=v).
+ assumption.
+ apply Rstar'_Rstar; assumption.
+ Qed.
+
+ (** Property of Commutativity of two relations *)
-Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
- Proof
- fun (x y:A) (h:Rstar x y) =>
- h Rstar' (fun u:A => Rstar'_reflexive u)
- (fun (u v w:A) (h1:R u v) (h2:Rstar' v w) =>
- Rstar'_R u w v h1 (Rstar'_Rstar v w h2)).
-
-
-(** Property of Commutativity of two relations *)
-
-Definition commut (A:Set) (R1 R2:A -> A -> Prop) :=
- forall x y:A,
- R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
-
+ Definition commut (A:Set) (R1 R2:A -> A -> Prop) :=
+ forall x y:A,
+ R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
End Rstar.