diff options
author | Guillaume Melquiond <guillaume.melquiond@inria.fr> | 2014-09-17 17:45:39 +0200 |
---|---|---|
committer | Guillaume Melquiond <guillaume.melquiond@inria.fr> | 2014-09-17 17:54:39 +0200 |
commit | 95c915ce89cc168ec34ab36797c78de94fcc0a18 (patch) | |
tree | a07639d54aeebdf0dd8f75f3ec0e4ccfc8e03163 /theories/Reals | |
parent | 9060a941d8b7566220f6fb6a191ac2fd7eca7315 (diff) |
Add some missing Proof statements.
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/DiscrR.v | 3 | ||||
-rw-r--r-- | theories/Reals/Machin.v | 5 | ||||
-rw-r--r-- | theories/Reals/Rtrigo_def.v | 2 |
3 files changed, 10 insertions, 0 deletions
diff --git a/theories/Reals/DiscrR.v b/theories/Reals/DiscrR.v index 1ec399d19..3c738e984 100644 --- a/theories/Reals/DiscrR.v +++ b/theories/Reals/DiscrR.v @@ -11,16 +11,19 @@ Require Import Omega. Local Open Scope R_scope. Lemma Rlt_R0_R2 : 0 < 2. +Proof. change 2 with (INR 2); apply lt_INR_0; apply lt_O_Sn. Qed. Notation Rplus_lt_pos := Rplus_lt_0_compat (only parsing). Lemma IZR_eq : forall z1 z2:Z, z1 = z2 -> IZR z1 = IZR z2. +Proof. intros; rewrite H; reflexivity. Qed. Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 <> IZR z2. +Proof. intros; red; intro; elim H; apply eq_IZR; assumption. Qed. diff --git a/theories/Reals/Machin.v b/theories/Reals/Machin.v index 311f29098..cfb50231c 100644 --- a/theories/Reals/Machin.v +++ b/theories/Reals/Machin.v @@ -28,6 +28,7 @@ Lemma atan_sub_correct : forall u v, 1 + u * v <> 0 -> -PI/2 < atan u - atan v < PI/2 -> -PI/2 < atan (atan_sub u v) < PI/2 -> atan u = atan v + atan (atan_sub u v). +Proof. intros u v pn0 uvint aint. assert (cos (atan u) <> 0). destruct (atan_bound u); apply Rgt_not_eq, cos_gt_0; auto. @@ -45,6 +46,7 @@ Qed. Lemma tech : forall x y , -1 <= x <= 1 -> -1 < y < 1 -> -PI/2 < atan x - atan y < PI/2. +Proof. assert (ut := PI_RGT_0). intros x y [xm1 x1] [ym1 y1]. assert (-(PI/4) <= atan x). @@ -68,6 +70,7 @@ Qed. (* A simple formula, reasonably efficient. *) Lemma Machin_2_3 : PI/4 = atan(/2) + atan(/3). +Proof. assert (utility : 0 < PI/2) by (apply PI2_RGT_0). rewrite <- atan_1. rewrite (atan_sub_correct 1 (/2)). @@ -78,6 +81,7 @@ apply atan_bound. Qed. Lemma Machin_4_5_239 : PI/4 = 4 * atan (/5) - atan(/239). +Proof. rewrite <- atan_1. rewrite (atan_sub_correct 1 (/5)); [ | apply Rgt_not_eq; fourier | apply tech; try split; fourier | @@ -106,6 +110,7 @@ unfold atan_sub; field. Qed. Lemma Machin_2_3_7 : PI/4 = 2 * atan(/3) + (atan (/7)). +Proof. rewrite <- atan_1. rewrite (atan_sub_correct 1 (/3)); [ | apply Rgt_not_eq; fourier | apply tech; try split; fourier | diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v index f3e690376..76d52efaa 100644 --- a/theories/Reals/Rtrigo_def.v +++ b/theories/Reals/Rtrigo_def.v @@ -221,6 +221,7 @@ Proof. Qed. Lemma cosn_no_R0 : forall n:nat, cos_n n <> 0. +Proof. intro; unfold cos_n; unfold Rdiv; apply prod_neq_R0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat. @@ -233,6 +234,7 @@ Definition cos_in (x l:R) : Prop := (**********) Lemma exist_cos : forall x:R, { l:R | cos_in x l }. +Proof. intro; generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos). unfold Pser, cos_in; trivial. Qed. |