aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals
diff options
context:
space:
mode:
authorGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2014-06-01 10:26:26 +0200
committerGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2014-06-01 11:33:55 +0200
commit76adb57c72fccb4f3e416bd7f3927f4fff72178b (patch)
treef8d72073a2ea62d3e5c274c201ef06532ac57b61 /theories/Reals
parentbe01deca2b8ff22505adaa66f55f005673bf2d85 (diff)
Making those proofs which depend on names generated for the arguments
in Prop of constructors of inductive types independent of these names. Incidentally upgraded/simplified a couple of proofs, mainly in Reals. This prepares to the next commit about using names based on H for such hypotheses in Prop.
Diffstat (limited to 'theories/Reals')
-rw-r--r--theories/Reals/Alembert.v40
-rw-r--r--theories/Reals/ArithProp.v17
-rw-r--r--theories/Reals/Cos_rel.v75
-rw-r--r--theories/Reals/Exp_prop.v24
-rw-r--r--theories/Reals/MVT.v33
-rw-r--r--theories/Reals/NewtonInt.v290
-rw-r--r--theories/Reals/PartSum.v40
-rw-r--r--theories/Reals/RIneq.v10
-rw-r--r--theories/Reals/R_sqr.v56
-rw-r--r--theories/Reals/R_sqrt.v4
-rw-r--r--theories/Reals/Ranalysis1.v31
-rw-r--r--theories/Reals/Ranalysis2.v4
-rw-r--r--theories/Reals/Ranalysis4.v21
-rw-r--r--theories/Reals/Ranalysis5.v22
-rw-r--r--theories/Reals/Ratan.v8
-rw-r--r--theories/Reals/Rbasic_fun.v175
-rw-r--r--theories/Reals/Rderiv.v14
-rw-r--r--theories/Reals/Rfunctions.v15
-rw-r--r--theories/Reals/RiemannInt.v651
-rw-r--r--theories/Reals/RiemannInt_SF.v288
-rw-r--r--theories/Reals/Rlimit.v8
-rw-r--r--theories/Reals/Rpower.v24
-rw-r--r--theories/Reals/Rseries.v4
-rw-r--r--theories/Reals/Rsqrt_def.v89
-rw-r--r--theories/Reals/Rtopology.v292
-rw-r--r--theories/Reals/Rtrigo.v2
-rw-r--r--theories/Reals/Rtrigo1.v14
-rw-r--r--theories/Reals/Rtrigo_alt.v48
-rw-r--r--theories/Reals/Rtrigo_reg.v14
-rw-r--r--theories/Reals/SeqProp.v12
-rw-r--r--theories/Reals/SeqSeries.v4
-rw-r--r--theories/Reals/SplitAbsolu.v2
-rw-r--r--theories/Reals/Sqrt_reg.v39
33 files changed, 1016 insertions, 1354 deletions
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
index 38e9bf7f4..a92b3584b 100644
--- a/theories/Reals/Alembert.v
+++ b/theories/Reals/Alembert.v
@@ -400,15 +400,14 @@ Theorem Alembert_C3 :
Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
{ l:R | Pser An x l }.
Proof.
- intros; case (total_order_T x 0); intro.
- elim s; intro.
+ intros; destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
- red; intro; rewrite H1 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H1 in Hlt; elim (Rlt_irrefl _ Hlt).
apply AlembertC3_step2; assumption.
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
- red; intro; rewrite H1 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H1 in Hgt; elim (Rlt_irrefl _ Hgt).
Defined.
Lemma Alembert_C4 :
@@ -586,14 +585,13 @@ Lemma Alembert_C6 :
elim X; intros.
exists x0.
apply tech12; assumption.
- case (total_order_T x 0); intro.
- elim s; intro.
+ destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
eapply Alembert_C5 with (k * Rabs x).
split.
unfold Rdiv; apply Rmult_le_pos.
left; assumption.
left; apply Rabs_pos_lt.
- red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt).
apply Rmult_lt_reg_l with (/ k).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc.
@@ -604,7 +602,7 @@ Lemma Alembert_C6 :
intro; apply prod_neq_R0.
apply H0.
apply pow_nonzero.
- red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt).
unfold Un_cv; unfold Un_cv in H1.
intros.
cut (0 < eps / Rabs x).
@@ -621,7 +619,7 @@ Lemma Alembert_C6 :
rewrite Rabs_Rabsolu.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
@@ -629,7 +627,7 @@ Lemma Alembert_C6 :
unfold R_dist in H5.
unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
apply Rabs_no_R0.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add.
simpl.
@@ -641,14 +639,14 @@ Lemma Alembert_C6 :
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply pow_nonzero.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
apply H0.
apply pow_nonzero.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro H7; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
exists (An 0%nat).
unfold Un_cv.
intros.
@@ -661,14 +659,14 @@ Lemma Alembert_C6 :
simpl; ring.
rewrite tech5.
rewrite <- Hrecn.
- rewrite b; simpl; ring.
+ rewrite Heq; simpl; ring.
unfold ge; apply le_O_n.
eapply Alembert_C5 with (k * Rabs x).
split.
unfold Rdiv; apply Rmult_le_pos.
left; assumption.
left; apply Rabs_pos_lt.
- red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt).
apply Rmult_lt_reg_l with (/ k).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc.
@@ -679,7 +677,7 @@ Lemma Alembert_C6 :
intro; apply prod_neq_R0.
apply H0.
apply pow_nonzero.
- red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt).
unfold Un_cv; unfold Un_cv in H1.
intros.
cut (0 < eps / Rabs x).
@@ -696,7 +694,7 @@ Lemma Alembert_C6 :
rewrite Rabs_Rabsolu.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
@@ -704,7 +702,7 @@ Lemma Alembert_C6 :
unfold R_dist in H5.
unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
apply Rabs_no_R0.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add.
simpl.
@@ -716,12 +714,12 @@ Lemma Alembert_C6 :
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply pow_nonzero.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
apply H0.
apply pow_nonzero.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro H7; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
Qed.
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v
index a9beba23c..781b32ee1 100644
--- a/theories/Reals/ArithProp.v
+++ b/theories/Reals/ArithProp.v
@@ -105,14 +105,14 @@ Proof.
exists (x - IZR k0 * y).
split.
ring.
- unfold k0; case (Rcase_abs y); intro.
+ unfold k0; case (Rcase_abs y) as [Hlt|Hge].
assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl;
unfold Rminus.
replace (- ((1 + - IZR (up (x / - y))) * y)) with
((IZR (up (x / - y)) - 1) * y); [ idtac | ring ].
split.
apply Rmult_le_reg_l with (/ - y).
- apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact r.
+ apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact Hlt.
rewrite Rmult_0_r; rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
@@ -125,8 +125,8 @@ Proof.
(- (x * / y) + - (IZR (up (x * / - y)) - 1))) with 1;
[ idtac | ring ].
elim H0; intros _ H1; unfold Rdiv in H1; exact H1.
- rewrite (Rabs_left _ r); apply Rmult_lt_reg_l with (/ - y).
- apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact r.
+ rewrite (Rabs_left _ Hlt); apply Rmult_lt_reg_l with (/ - y).
+ apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact Hlt.
rewrite <- Rinv_l_sym.
rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
@@ -157,7 +157,7 @@ Proof.
(IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with
1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2;
exact H2.
- rewrite (Rabs_right _ r); apply Rmult_lt_reg_l with (/ y).
+ rewrite (Rabs_right _ Hge); apply Rmult_lt_reg_l with (/ y).
apply Rinv_0_lt_compat; assumption.
rewrite <- (Rinv_l_sym _ H); rewrite (Rmult_comm (/ y));
rewrite Rmult_plus_distr_r; rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
@@ -168,11 +168,10 @@ Proof.
replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with
(x * / y); [ idtac | ring ]; elim H0; unfold Rdiv;
intros H2 _; exact H2.
- case (total_order_T 0 y); intro.
- elim s; intro.
+ destruct (total_order_T 0 y) as [[Hlt|Heq]|Hgt].
assumption.
- elim H; symmetry ; exact b.
- assert (H1 := Rge_le _ _ r); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r0)).
+ elim H; symmetry ; exact Heq.
+ apply Rge_le in Hge; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hge Hgt)).
Qed.
Lemma tech8 : forall n i:nat, (n <= S n + i)%nat.
diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v
index 335d5b16a..6fd3d9e66 100644
--- a/theories/Reals/Cos_rel.v
+++ b/theories/Reals/Cos_rel.v
@@ -258,49 +258,30 @@ Qed.
Lemma A1_cvg : forall x:R, Un_cv (A1 x) (cos x).
intro.
-assert (H := exist_cos (x * x)).
-elim H; intros.
-assert (p_i := p).
-unfold cos_in in p.
-unfold cos_n, infinite_sum in p.
-unfold R_dist in p.
-cut (cos x = x0).
-intro.
-rewrite H0.
-unfold Un_cv; unfold R_dist; intros.
-elim (p eps H1); intros.
+unfold cos; destruct (exist_cos (Rsqr x)) as (x0,p).
+unfold cos_in, cos_n, infinite_sum, R_dist in p.
+unfold Un_cv, R_dist; intros.
+destruct (p eps H) as (x1,H0).
exists x1; intros.
unfold A1.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) n) with
(sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * (x * x) ^ i) n).
-apply H2; assumption.
+apply H0; assumption.
apply sum_eq.
intros.
replace ((x * x) ^ i) with (x ^ (2 * i)).
reflexivity.
apply pow_sqr.
-unfold cos.
-case (exist_cos (Rsqr x)).
-unfold Rsqr; intros.
-unfold cos_in in p_i.
-unfold cos_in in c.
-apply uniqueness_sum with (fun i:nat => cos_n i * (x * x) ^ i); assumption.
Qed.
Lemma C1_cvg : forall x y:R, Un_cv (C1 x y) (cos (x + y)).
intros.
-assert (H := exist_cos ((x + y) * (x + y))).
-elim H; intros.
-assert (p_i := p).
-unfold cos_in in p.
-unfold cos_n, infinite_sum in p.
-unfold R_dist in p.
-cut (cos (x + y) = x0).
-intro.
-rewrite H0.
-unfold Un_cv; unfold R_dist; intros.
-elim (p eps H1); intros.
+unfold cos.
+destruct (exist_cos (Rsqr (x + y))) as (x0,p).
+unfold cos_in, cos_n, infinite_sum, R_dist in p.
+unfold Un_cv, R_dist; intros.
+destruct (p eps H) as (x1,H0).
exists x1; intros.
unfold C1.
replace
@@ -308,19 +289,12 @@ replace
with
(sum_f_R0
(fun i:nat => (-1) ^ i / INR (fact (2 * i)) * ((x + y) * (x + y)) ^ i) n).
-apply H2; assumption.
+apply H0; assumption.
apply sum_eq.
intros.
replace (((x + y) * (x + y)) ^ i) with ((x + y) ^ (2 * i)).
reflexivity.
apply pow_sqr.
-unfold cos.
-case (exist_cos (Rsqr (x + y))).
-unfold Rsqr; intros.
-unfold cos_in in p_i.
-unfold cos_in in c.
-apply uniqueness_sum with (fun i:nat => cos_n i * ((x + y) * (x + y)) ^ i);
- assumption.
Qed.
Lemma B1_cvg : forall x:R, Un_cv (B1 x) (sin x).
@@ -339,21 +313,14 @@ simpl; ring.
rewrite tech5; rewrite <- Hrecn.
simpl; ring.
unfold ge; apply le_O_n.
-assert (H0 := exist_sin (x * x)).
-elim H0; intros.
-assert (p_i := p).
-unfold sin_in in p.
-unfold sin_n, infinite_sum in p.
-unfold R_dist in p.
-cut (sin x = x * x0).
-intro.
-rewrite H1.
-unfold Un_cv; unfold R_dist; intros.
+unfold sin. destruct (exist_sin (Rsqr x)) as (x0,p).
+unfold sin_in, sin_n, infinite_sum, R_dist in p.
+unfold Un_cv, R_dist; intros.
cut (0 < eps / Rabs x);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ] ].
-elim (p (eps / Rabs x) H3); intros.
+destruct (p (eps / Rabs x) H1) as (x1,H2).
exists x1; intros.
unfold B1.
replace
@@ -371,9 +338,7 @@ replace
rewrite Rabs_mult.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
-rewrite <- Rmult_assoc.
-rewrite <- Rinv_l_sym.
-rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H4; apply H4;
+rewrite <- Rmult_assoc, <- Rinv_l_sym, Rmult_1_l, <- (Rmult_comm eps). apply H2;
assumption.
apply Rabs_no_R0; assumption.
rewrite scal_sum.
@@ -383,12 +348,4 @@ rewrite pow_add.
rewrite pow_sqr.
simpl.
ring.
-unfold sin.
-case (exist_sin (Rsqr x)).
-unfold Rsqr; intros.
-unfold sin_in in p_i.
-unfold sin_in in s.
-assert
- (H1 := uniqueness_sum (fun i:nat => sin_n i * (x * x) ^ i) x0 x1 p_i s).
-rewrite H1; reflexivity.
Qed.
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v
index dbf48e61a..160f3d480 100644
--- a/theories/Reals/Exp_prop.v
+++ b/theories/Reals/Exp_prop.v
@@ -723,15 +723,14 @@ Qed.
(**********)
Lemma exp_pos : forall x:R, 0 < exp x.
Proof.
- intro; case (total_order_T 0 x); intro.
- elim s; intro.
- apply (exp_pos_pos _ a).
- rewrite <- b; rewrite exp_0; apply Rlt_0_1.
+ intro; destruct (total_order_T 0 x) as [[Hlt|<-]|Hgt].
+ apply (exp_pos_pos _ Hlt).
+ rewrite exp_0; apply Rlt_0_1.
replace (exp x) with (1 / exp (- x)).
unfold Rdiv; apply Rmult_lt_0_compat.
apply Rlt_0_1.
apply Rinv_0_lt_compat; apply exp_pos_pos.
- apply (Ropp_0_gt_lt_contravar _ r).
+ apply (Ropp_0_gt_lt_contravar _ Hgt).
cut (exp (- x) <> 0).
intro; unfold Rdiv; apply Rmult_eq_reg_l with (exp (- x)).
rewrite Rmult_1_l; rewrite <- Rinv_r_sym.
@@ -772,10 +771,10 @@ Proof.
apply (not_eq_sym H6).
rewrite Rminus_0_r; apply H7.
unfold SFL.
- case (cv 0); intros.
+ case (cv 0) as (x,Hu).
eapply UL_sequence.
- apply u.
- unfold Un_cv, SP.
+ apply Hu.
+ unfold Un_cv, SP in |- *.
intros; exists 1%nat; intros.
unfold R_dist; rewrite decomp_sum.
rewrite (Rplus_comm (fn 0%nat 0)).
@@ -792,14 +791,13 @@ Proof.
unfold Rdiv; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H9 ].
unfold SFL, exp.
- case (cv h); case (exist_exp h); simpl; intros.
+ case (cv h) as (x0,Hu); case (exist_exp h) as (x,Hexp); simpl.
eapply UL_sequence.
- apply u.
+ apply Hu.
unfold Un_cv; intros.
- unfold exp_in in e.
- unfold infinite_sum in e.
+ unfold exp_in, infinite_sum in Hexp.
cut (0 < eps0 * Rabs h).
- intro; elim (e _ H9); intros N0 H10.
+ intro; elim (Hexp _ H9); intros N0 H10.
exists N0; intros.
unfold R_dist.
apply Rmult_lt_reg_l with (Rabs h).
diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v
index 5cada6c5f..4b8d9af48 100644
--- a/theories/Reals/MVT.v
+++ b/theories/Reals/MVT.v
@@ -233,21 +233,18 @@ Proof.
intros.
unfold increasing.
intros.
- case (total_order_T x y); intro.
- elim s; intro.
+ destruct (total_order_T x y) as [[H1| ->]|H1].
apply Rplus_le_reg_l with (- f x).
rewrite Rplus_opp_l; rewrite Rplus_comm.
- assert (H1 := MVT_cor1 f _ _ pr a).
- elim H1; intros.
- elim H2; intros.
+ pose proof (MVT_cor1 f _ _ pr H1) as (c & H3 & H4).
unfold Rminus in H3.
rewrite H3.
apply Rmult_le_pos.
apply H.
apply Rplus_le_reg_l with x.
rewrite Rplus_0_r; replace (x + (y + - x)) with y; [ assumption | ring ].
- rewrite b; right; reflexivity.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 r)).
+ right; reflexivity.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 H1)).
Qed.
(**********)
@@ -269,7 +266,7 @@ Proof.
cut ((f (x + delta / 2) - f x) / (delta / 2) <= 0).
intro; cut (0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)).
intro; unfold Rabs;
- case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)).
+ case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)) as [Hlt|Hge].
intros;
generalize
(Rplus_lt_compat_r (- l) (- ((f (x + delta / 2) - f x) / (delta / 2) - l))
@@ -294,7 +291,7 @@ Proof.
ring.
intros.
generalize
- (Ropp_ge_le_contravar ((f (x + delta / 2) - f x) / (delta / 2) - l) 0 r).
+ (Ropp_ge_le_contravar ((f (x + delta / 2) - f x) / (delta / 2) - l) _ Hge).
rewrite Ropp_0.
intro.
elim
@@ -587,12 +584,8 @@ Theorem IAF :
f b - f a <= k * (b - a).
Proof.
intros.
- case (total_order_T a b); intro.
- elim s; intro.
- assert (H1 := MVT_cor1 f _ _ pr a0).
- elim H1; intros.
- elim H2; intros.
- rewrite H3.
+ destruct (total_order_T a b) as [[H1| -> ]|H1].
+ pose proof (MVT_cor1 f _ _ pr H1) as (c & -> & H4).
do 2 rewrite <- (Rmult_comm (b - a)).
apply Rmult_le_compat_l.
apply Rplus_le_reg_l with a; rewrite Rplus_0_r.
@@ -600,10 +593,9 @@ Proof.
apply H0.
elim H4; intros.
split; left; assumption.
- rewrite b0.
unfold Rminus; do 2 rewrite Rplus_opp_r.
rewrite Rmult_0_r; right; reflexivity.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H H1)).
Qed.
Lemma IAF_var :
@@ -648,8 +640,7 @@ Lemma null_derivative_loc :
(forall (x:R) (P:a < x < b), derive_pt f x (pr x P) = 0) ->
constant_D_eq f (fun x:R => a <= x <= b) (f a).
Proof.
- intros; unfold constant_D_eq; intros; case (total_order_T a b); intro.
- elim s; intro.
+ intros; unfold constant_D_eq; intros; destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
assert (H2 : forall y:R, a < y < x -> derivable_pt id y).
intros; apply derivable_pt_id.
assert (H3 : forall y:R, a <= y <= x -> continuity_pt id y).
@@ -678,10 +669,10 @@ Proof.
assumption.
rewrite H1; reflexivity.
assert (H2 : x = a).
- rewrite <- b0 in H1; elim H1; intros; apply Rle_antisym; assumption.
+ rewrite <- Heq in H1; elim H1; intros; apply Rle_antisym; assumption.
rewrite H2; reflexivity.
elim H1; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H2 H3) r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H2 H3) Hgt)).
Qed.
(* Unicity of the antiderivative *)
diff --git a/theories/Reals/NewtonInt.v b/theories/Reals/NewtonInt.v
index f67659b5b..928422ed8 100644
--- a/theories/Reals/NewtonInt.v
+++ b/theories/Reals/NewtonInt.v
@@ -87,42 +87,7 @@ Lemma NewtonInt_P4 :
forall (f:R -> R) (a b:R) (pr:Newton_integrable f a b),
NewtonInt f a b pr = - NewtonInt f b a (NewtonInt_P3 f a b pr).
Proof.
- intros; unfold Newton_integrable in pr; elim pr; intros; elim p; intro.
- unfold NewtonInt;
- case
- (NewtonInt_P3 f a b
- (exist
- (fun g:R -> R => antiderivative f g a b \/ antiderivative f g b a) x
- p)).
- intros; elim o; intro.
- unfold antiderivative in H0; elim H0; intros; elim H2; intro.
- unfold antiderivative in H; elim H; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H3)).
- rewrite H3; ring.
- assert (H1 := antiderivative_Ucte f x x0 a b H H0); elim H1; intros;
- unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- assert (H3 : a <= a <= b).
- split; [ right; reflexivity | assumption ].
- assert (H4 : a <= b <= b).
- split; [ assumption | right; reflexivity ].
- assert (H5 := H2 _ H3); assert (H6 := H2 _ H4); rewrite H5; rewrite H6; ring.
- unfold NewtonInt;
- case
- (NewtonInt_P3 f a b
- (exist
- (fun g:R -> R => antiderivative f g a b \/ antiderivative f g b a) x
- p)); intros; elim o; intro.
- assert (H1 := antiderivative_Ucte f x x0 b a H H0); elim H1; intros;
- unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- assert (H3 : b <= a <= a).
- split; [ assumption | right; reflexivity ].
- assert (H4 : b <= b <= a).
- split; [ right; reflexivity | assumption ].
- assert (H5 := H2 _ H3); assert (H6 := H2 _ H4); rewrite H5; rewrite H6; ring.
- unfold antiderivative in H0; elim H0; intros; elim H2; intro.
- unfold antiderivative in H; elim H; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H3)).
- rewrite H3; ring.
+ intros f a b (x,H). unfold NewtonInt, NewtonInt_P3; simpl; ring.
Qed.
(* The set of Newton integrable functions is a vectorial space *)
@@ -227,10 +192,8 @@ Lemma NewtonInt_P6 :
l * NewtonInt f a b pr1 + NewtonInt g a b pr2.
Proof.
intros f g l a b pr1 pr2; unfold NewtonInt;
- case (NewtonInt_P5 f g l a b pr1 pr2); intros; case pr1;
- intros; case pr2; intros; case (total_order_T a b);
- intro.
- elim s; intro.
+ destruct (NewtonInt_P5 f g l a b pr1 pr2) as (x,o); destruct pr1 as (x0,o0);
+ destruct pr2 as (x1,o1); destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
elim o; intro.
elim o0; intro.
elim o1; intro.
@@ -242,21 +205,21 @@ Proof.
split; [ left; assumption | right; reflexivity ].
assert (H7 := H4 _ H5); assert (H8 := H4 _ H6); rewrite H7; rewrite H8; ring.
unfold antiderivative in H1; elim H1; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H3 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H3 Hlt)).
unfold antiderivative in H0; elim H0; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hlt)).
unfold antiderivative in H; elim H; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 a0)).
- rewrite b0; ring.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 Hlt)).
+ rewrite Heq; ring.
elim o; intro.
unfold antiderivative in H; elim H; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 Hgt)).
elim o0; intro.
unfold antiderivative in H0; elim H0; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hgt)).
elim o1; intro.
unfold antiderivative in H1; elim H1; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H3 r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H3 Hgt)).
assert (H2 := antiderivative_P1 f g x0 x1 l b a H0 H1);
assert (H3 := antiderivative_Ucte _ _ _ _ _ H H2);
elim H3; intros; assert (H5 : b <= a <= a).
@@ -277,14 +240,12 @@ Lemma antiderivative_P2 :
| right _ => F1 x + (F0 b - F1 b)
end) a c.
Proof.
- unfold antiderivative; intros; elim H; clear H; intros; elim H0;
- clear H0; intros; split.
+ intros; destruct H as (H,H1), H0 as (H0,H2); split.
2: apply Rle_trans with b; assumption.
- intros; elim H3; clear H3; intros; case (total_order_T x b); intro.
- elim s; intro.
+ intros x (H3,H4); destruct (total_order_T x b) as [[Hlt|Heq]|Hgt].
assert (H5 : a <= x <= b).
split; [ assumption | left; assumption ].
- assert (H6 := H _ H5); elim H6; clear H6; intros;
+ destruct (H _ H5) as (x0,H6).
assert
(H7 :
derivable_pt_lim
@@ -293,27 +254,26 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x (f x)).
- unfold derivable_pt_lim; assert (H7 : derive_pt F0 x x0 = f x).
- symmetry ; assumption.
- assert (H8 := derive_pt_eq_1 F0 x (f x) x0 H7); unfold derivable_pt_lim in H8;
- intros; elim (H8 _ H9); intros; set (D := Rmin x1 (b - x)).
+ unfold derivable_pt_lim. intros eps H9.
+ assert (H7 : derive_pt F0 x x0 = f x) by (symmetry; assumption).
+ destruct (derive_pt_eq_1 F0 x (f x) x0 H7 _ H9) as (x1,H10); set (D := Rmin x1 (b - x)).
assert (H11 : 0 < D).
- unfold D; unfold Rmin; case (Rle_dec x1 (b - x)); intro.
+ unfold D, Rmin; case (Rle_dec x1 (b - x)); intro.
apply (cond_pos x1).
apply Rlt_Rminus; assumption.
- exists (mkposreal _ H11); intros; case (Rle_dec x b); intro.
- case (Rle_dec (x + h) b); intro.
+ exists (mkposreal _ H11); intros h H12 H13. case (Rle_dec x b) as [|[]].
+ case (Rle_dec (x + h) b) as [|[]].
apply H10.
assumption.
apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_l ].
- elim n; left; apply Rlt_le_trans with (x + D).
+ left; apply Rlt_le_trans with (x + D).
apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h).
apply RRle_abs.
apply H13.
apply Rplus_le_reg_l with (- x); rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_l; rewrite Rplus_comm; unfold D;
apply Rmin_r.
- elim n; left; assumption.
+ left; assumption.
assert
(H8 :
derivable_pt
@@ -348,7 +308,7 @@ Proof.
unfold D; unfold Rmin; case (Rle_dec x2 x3); intro.
apply (cond_pos x2).
apply (cond_pos x3).
- exists (mkposreal _ H16); intros; case (Rle_dec x b); intro.
+ exists (mkposreal _ H16); intros; case (Rle_dec x b) as [|[]].
case (Rle_dec (x + h) b); intro.
apply H15.
assumption.
@@ -357,8 +317,8 @@ Proof.
apply H14.
assumption.
apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_l ].
- rewrite b0; ring.
- elim n; right; assumption.
+ rewrite Heq; ring.
+ right; assumption.
assert
(H14 :
derivable_pt
@@ -388,11 +348,11 @@ Proof.
unfold D; unfold Rmin; case (Rle_dec x1 (x - b)); intro.
apply (cond_pos x1).
apply Rlt_Rminus; assumption.
- exists (mkposreal _ H11); intros; case (Rle_dec x b); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 r)).
- case (Rle_dec (x + h) b); intro.
+ exists (mkposreal _ H11); intros; destruct (Rle_dec x b) as [Hle|Hnle].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle Hgt)).
+ destruct (Rle_dec (x + h) b) as [Hle'|Hnle'].
cut (b < x + h).
- intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H14)).
+ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H14)).
apply Rplus_lt_reg_l with (- h - b); replace (- h - b + b) with (- h);
[ idtac | ring ]; replace (- h - b + (x + h)) with (x - b);
[ idtac | ring ]; apply Rle_lt_trans with (Rabs h).
@@ -425,8 +385,7 @@ Lemma antiderivative_P3 :
antiderivative f F1 c a \/ antiderivative f F0 a c.
Proof.
intros; unfold antiderivative in H, H0; elim H; clear H; elim H0; clear H0;
- intros; case (total_order_T a c); intro.
- elim s; intro.
+ intros; destruct (total_order_T a c) as [[Hle|Heq]|Hgt].
right; unfold antiderivative; split.
intros; apply H1; elim H3; intros; split;
[ assumption | apply Rle_trans with c; assumption ].
@@ -448,8 +407,7 @@ Lemma antiderivative_P4 :
antiderivative f F1 b c \/ antiderivative f F0 c b.
Proof.
intros; unfold antiderivative in H, H0; elim H; clear H; elim H0; clear H0;
- intros; case (total_order_T c b); intro.
- elim s; intro.
+ intros; destruct (total_order_T c b) as [[Hlt|Heq]|Hgt].
right; unfold antiderivative; split.
intros; apply H1; elim H3; intros; split;
[ apply Rle_trans with c; assumption | assumption ].
@@ -499,10 +457,8 @@ Proof.
intros.
elim X; intros F0 H0.
elim X0; intros F1 H1.
- case (total_order_T a b); intro.
- elim s; intro.
- case (total_order_T b c); intro.
- elim s0; intro.
+ destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
+ destruct (total_order_T b c) as [[Hlt'|Heq']|Hgt'].
(* a<b & b<c *)
unfold Newton_integrable;
exists
@@ -515,78 +471,75 @@ Proof.
elim H1; intro.
left; apply antiderivative_P2; assumption.
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a1)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hlt')).
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hlt)).
(* a<b & b=c *)
- rewrite b0 in X; apply X.
+ rewrite Heq' in X; apply X.
(* a<b & b>c *)
- case (total_order_T a c); intro.
- elim s0; intro.
+ destruct (total_order_T a c) as [[Hlt''|Heq'']|Hgt''].
unfold Newton_integrable; exists F0.
left.
elim H1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt')).
elim H0; intro.
assert (H3 := antiderivative_P3 f F0 F1 a b c H2 H).
elim H3; intro.
unfold antiderivative in H4; elim H4; clear H4; intros _ H4.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 a1)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 Hlt'')).
assumption.
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)).
- rewrite b0; apply NewtonInt_P1.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hlt)).
+ rewrite Heq''; apply NewtonInt_P1.
unfold Newton_integrable; exists F1.
right.
elim H1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt')).
elim H0; intro.
assert (H3 := antiderivative_P3 f F0 F1 a b c H2 H).
elim H3; intro.
assumption.
unfold antiderivative in H4; elim H4; clear H4; intros _ H4.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 r0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 Hgt'')).
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hlt)).
(* a=b *)
- rewrite b0; apply X0.
- case (total_order_T b c); intro.
- elim s; intro.
+ rewrite Heq; apply X0.
+ destruct (total_order_T b c) as [[Hlt'|Heq']|Hgt'].
(* a>b & b<c *)
- case (total_order_T a c); intro.
- elim s0; intro.
+ destruct (total_order_T a c) as [[Hlt''|Heq'']|Hgt''].
unfold Newton_integrable; exists F1.
left.
elim H1; intro.
(*****************)
elim H0; intro.
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hgt)).
assert (H3 := antiderivative_P4 f F0 F1 b a c H2 H).
elim H3; intro.
assumption.
unfold antiderivative in H4; elim H4; clear H4; intros _ H4.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 a1)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 Hlt'')).
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
- rewrite b0; apply NewtonInt_P1.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hlt')).
+ rewrite Heq''; apply NewtonInt_P1.
unfold Newton_integrable; exists F0.
right.
elim H0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)).
elim H1; intro.
assert (H3 := antiderivative_P4 f F0 F1 b a c H H2).
elim H3; intro.
unfold antiderivative in H4; elim H4; clear H4; intros _ H4.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 r0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 Hgt'')).
assumption.
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 Hlt')).
(* a>b & b=c *)
- rewrite b0 in X; apply X.
+ rewrite Heq' in X; apply X.
(* a>b & b>c *)
assert (X1 := NewtonInt_P3 f a b X).
assert (X2 := NewtonInt_P3 f b c X0).
@@ -602,17 +555,15 @@ Lemma NewtonInt_P9 :
NewtonInt f a b pr1 + NewtonInt f b c pr2.
Proof.
intros; unfold NewtonInt.
- case (NewtonInt_P8 f a b c pr1 pr2); intros.
- case pr1; intros.
- case pr2; intros.
- case (total_order_T a b); intro.
- elim s; intro.
- case (total_order_T b c); intro.
- elim s0; intro.
+ case (NewtonInt_P8 f a b c pr1 pr2) as (x,Hor).
+ case pr1 as (x0,Hor0).
+ case pr2 as (x1,Hor1).
+ destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
+ destruct (total_order_T b c) as [[Hlt'|Heq']|Hgt'].
(* a<b & b<c *)
- elim o0; intro.
- elim o1; intro.
- elim o; intro.
+ case Hor0; intro.
+ case Hor1; intro.
+ case Hor; intro.
assert (H2 := antiderivative_P2 f x0 x1 a b c H H0).
assert
(H3 :=
@@ -628,23 +579,23 @@ Proof.
assert (H6 : a <= c <= c).
split; [ left; apply Rlt_trans with b; assumption | right; reflexivity ].
rewrite (H4 _ H5); rewrite (H4 _ H6).
- case (Rle_dec a b); intro.
- case (Rle_dec c b); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 a1)).
+ destruct (Rle_dec a b) as [Hlea|Hnlea].
+ destruct (Rle_dec c b) as [Hlec|Hnlec].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hlec Hlt')).
ring.
- elim n; left; assumption.
+ elim Hnlea; left; assumption.
unfold antiderivative in H1; elim H1; clear H1; intros _ H1.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 (Rlt_trans _ _ _ a0 a1))).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 (Rlt_trans _ _ _ Hlt Hlt'))).
unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 a1)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hlt')).
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hlt)).
(* a<b & b=c *)
- rewrite <- b0.
+ rewrite <- Heq'.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r.
- rewrite <- b0 in o.
- elim o0; intro.
- elim o; intro.
+ rewrite <- Heq' in Hor.
+ elim Hor0; intro.
+ elim Hor; intro.
assert (H1 := antiderivative_Ucte f x x0 a b H0 H).
elim H1; intros.
rewrite (H2 b).
@@ -653,25 +604,25 @@ Proof.
split; [ right; reflexivity | left; assumption ].
split; [ left; assumption | right; reflexivity ].
unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hlt)).
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hlt)).
(* a<b & b>c *)
- elim o1; intro.
+ elim Hor1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
- elim o0; intro.
- elim o; intro.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt')).
+ elim Hor0; intro.
+ elim Hor; intro.
assert (H2 := antiderivative_P2 f x x1 a c b H1 H).
assert (H3 := antiderivative_Ucte _ _ _ a b H0 H2).
elim H3; intros.
rewrite (H4 a).
rewrite (H4 b).
- case (Rle_dec b c); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 r)).
- case (Rle_dec a c); intro.
+ destruct (Rle_dec b c) as [Hle|Hnle].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle Hgt')).
+ destruct (Rle_dec a c) as [Hle'|Hnle'].
ring.
- elim n0; unfold antiderivative in H1; elim H1; intros; assumption.
+ elim Hnle'; unfold antiderivative in H1; elim H1; intros; assumption.
split; [ left; assumption | right; reflexivity ].
split; [ right; reflexivity | left; assumption ].
assert (H2 := antiderivative_P2 _ _ _ _ _ _ H1 H0).
@@ -679,19 +630,19 @@ Proof.
elim H3; intros.
rewrite (H4 c).
rewrite (H4 b).
- case (Rle_dec b a); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 a0)).
- case (Rle_dec c a); intro.
+ destruct (Rle_dec b a) as [Hle|Hnle].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle Hlt)).
+ destruct (Rle_dec c a) as [Hle'|[]].
ring.
- elim n0; unfold antiderivative in H1; elim H1; intros; assumption.
+ unfold antiderivative in H1; elim H1; intros; assumption.
split; [ left; assumption | right; reflexivity ].
split; [ right; reflexivity | left; assumption ].
unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hlt)).
(* a=b *)
- rewrite b0 in o; rewrite b0.
- elim o; intro.
- elim o1; intro.
+ rewrite Heq in Hor |- *.
+ elim Hor; intro.
+ elim Hor1; intro.
assert (H1 := antiderivative_Ucte _ _ _ b c H H0).
elim H1; intros.
assert (H3 : b <= c).
@@ -705,7 +656,7 @@ Proof.
unfold antiderivative in H, H0; elim H; elim H0; intros; apply Rle_antisym;
assumption.
rewrite H1; ring.
- elim o1; intro.
+ elim Hor1; intro.
assert (H1 : b = c).
unfold antiderivative in H, H0; elim H; elim H0; intros; apply Rle_antisym;
assumption.
@@ -720,25 +671,24 @@ Proof.
split; [ assumption | right; reflexivity ].
split; [ right; reflexivity | assumption ].
(* a>b & b<c *)
- case (total_order_T b c); intro.
- elim s; intro.
- elim o0; intro.
+ destruct (total_order_T b c) as [[Hlt'|Heq']|Hgt'].
+ elim Hor0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
- elim o1; intro.
- elim o; intro.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)).
+ elim Hor1; intro.
+ elim Hor; intro.
assert (H2 := antiderivative_P2 _ _ _ _ _ _ H H1).
assert (H3 := antiderivative_Ucte _ _ _ b c H0 H2).
elim H3; intros.
rewrite (H4 b).
rewrite (H4 c).
- case (Rle_dec b a); intro.
- case (Rle_dec c a); intro.
+ case (Rle_dec b a) as [|[]].
+ case (Rle_dec c a) as [|].
assert (H5 : a = c).
unfold antiderivative in H1; elim H1; intros; apply Rle_antisym; assumption.
rewrite H5; ring.
ring.
- elim n; left; assumption.
+ left; assumption.
split; [ left; assumption | right; reflexivity ].
split; [ right; reflexivity | left; assumption ].
assert (H2 := antiderivative_P2 _ _ _ _ _ _ H0 H1).
@@ -746,27 +696,27 @@ Proof.
elim H3; intros.
rewrite (H4 a).
rewrite (H4 b).
- case (Rle_dec b c); intro.
- case (Rle_dec a c); intro.
+ case (Rle_dec b c) as [|[]].
+ case (Rle_dec a c) as [|].
assert (H5 : a = c).
unfold antiderivative in H1; elim H1; intros; apply Rle_antisym; assumption.
rewrite H5; ring.
ring.
- elim n; left; assumption.
+ left; assumption.
split; [ right; reflexivity | left; assumption ].
split; [ left; assumption | right; reflexivity ].
unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 a0)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hlt')).
(* a>b & b=c *)
- rewrite <- b0.
+ rewrite <- Heq'.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r.
- rewrite <- b0 in o.
- elim o0; intro.
+ rewrite <- Heq' in Hor.
+ elim Hor0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
- elim o; intro.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)).
+ elim Hor; intro.
unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hgt)).
assert (H1 := antiderivative_Ucte f x x0 b a H0 H).
elim H1; intros.
rewrite (H2 b).
@@ -775,15 +725,15 @@ Proof.
split; [ left; assumption | right; reflexivity ].
split; [ right; reflexivity | left; assumption ].
(* a>b & b>c *)
- elim o0; intro.
+ elim Hor0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
- elim o1; intro.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)).
+ elim Hor1; intro.
unfold antiderivative in H0; elim H0; clear H0; intros _ H0.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 r0)).
- elim o; intro.
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hgt')).
+ elim Hor; intro.
unfold antiderivative in H1; elim H1; clear H1; intros _ H1.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 (Rlt_trans _ _ _ r0 r))).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 (Rlt_trans _ _ _ Hgt' Hgt))).
assert (H2 := antiderivative_P2 _ _ _ _ _ _ H0 H).
assert (H3 := antiderivative_Ucte _ _ _ c a H1 H2).
elim H3; intros.
@@ -791,11 +741,11 @@ Proof.
unfold antiderivative in H1; elim H1; intros; assumption.
rewrite (H4 c).
rewrite (H4 a).
- case (Rle_dec a b); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r1 r)).
- case (Rle_dec c b); intro.
+ destruct (Rle_dec a b) as [Hle|Hnle].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle Hgt)).
+ destruct (Rle_dec c b) as [|[]].
ring.
- elim n0; left; assumption.
+ left; assumption.
split; [ assumption | right; reflexivity ].
split; [ right; reflexivity | assumption ].
Qed.
diff --git a/theories/Reals/PartSum.v b/theories/Reals/PartSum.v
index 59e52fe3a..10c3327f2 100644
--- a/theories/Reals/PartSum.v
+++ b/theories/Reals/PartSum.v
@@ -508,12 +508,11 @@ Lemma sum_incr :
Un_cv (fun n:nat => sum_f_R0 An n) l ->
(forall n:nat, 0 <= An n) -> sum_f_R0 An N <= l.
Proof.
- intros; case (total_order_T (sum_f_R0 An N) l); intro.
- elim s; intro.
- left; apply a.
- right; apply b.
+ intros; destruct (total_order_T (sum_f_R0 An N) l) as [[Hlt|Heq]|Hgt].
+ left; apply Hlt.
+ right; apply Heq.
cut (Un_growing (fun n:nat => sum_f_R0 An n)).
- intro; set (l1 := sum_f_R0 An N) in r.
+ intro; set (l1 := sum_f_R0 An N) in Hgt.
unfold Un_cv in H; cut (0 < l1 - l).
intro; elim (H _ H2); intros.
set (N0 := max x N); cut (N0 >= x)%nat.
@@ -528,7 +527,7 @@ Proof.
apply Rle_ge; apply Rplus_le_reg_l with l.
rewrite Rplus_0_r; replace (l + (sum_f_R0 An N0 - l)) with (sum_f_R0 An N0);
[ idtac | ring ]; apply Rle_trans with l1.
- left; apply r.
+ left; apply Hgt.
apply H6.
unfold l1; apply Rge_le;
apply (growing_prop (fun k:nat => sum_f_R0 An k)).
@@ -536,7 +535,7 @@ Proof.
unfold ge, N0; apply le_max_r.
unfold ge, N0; apply le_max_l.
apply Rplus_lt_reg_l with l; rewrite Rplus_0_r;
- replace (l + (l1 - l)) with l1; [ apply r | ring ].
+ replace (l + (l1 - l)) with l1; [ apply Hgt | ring ].
unfold Un_growing; intro; simpl;
pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; apply H0.
@@ -549,10 +548,9 @@ Lemma sum_cv_maj :
Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
(forall n:nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2.
Proof.
- intros; case (total_order_T (Rabs l1) l2); intro.
- elim s; intro.
- left; apply a.
- right; apply b.
+ intros; destruct (total_order_T (Rabs l1) l2) as [[Hlt|Heq]|Hgt].
+ left; apply Hlt.
+ right; apply Heq.
cut (forall n0:nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0).
intro; cut (0 < (Rabs l1 - l2) / 2).
intro; unfold Un_cv in H, H0.
@@ -568,16 +566,16 @@ Proof.
intro; assert (H11 := H2 N).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H10)).
apply Rlt_trans with ((Rabs l1 + l2) / 2); assumption.
- case (Rcase_abs (Rabs l1 - Rabs (SP fn N x))); intro.
+ destruct (Rcase_abs (Rabs l1 - Rabs (SP fn N x))) as [Hlt|Hge].
apply Rlt_trans with (Rabs l1).
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply r.
+ rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply Hgt.
discrR.
- apply (Rminus_lt _ _ r0).
- rewrite (Rabs_right _ r0) in H7.
+ apply (Rminus_lt _ _ Hlt).
+ rewrite (Rabs_right _ Hge) in H7.
apply Rplus_lt_reg_l with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)).
replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with
(Rabs l1 - Rabs (SP fn N x)).
@@ -586,18 +584,18 @@ Proof.
unfold Rdiv; rewrite Rmult_plus_distr_r;
rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l;
repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1;
- rewrite double_var; unfold Rdiv; ring.
- case (Rcase_abs (sum_f_R0 An N - l2)); intro.
+ rewrite double_var; unfold Rdiv in |- *; ring.
+ destruct (Rcase_abs (sum_f_R0 An N - l2)) as [Hlt|Hge].
apply Rlt_trans with l2.
- apply (Rminus_lt _ _ r0).
+ apply (Rminus_lt _ _ Hlt).
apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (double l2); unfold Rdiv; rewrite (Rmult_comm 2);
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l;
- apply r.
+ apply Hgt.
discrR.
- rewrite (Rabs_right _ r0) in H6; apply Rplus_lt_reg_l with (- l2).
+ rewrite (Rabs_right _ Hge) in H6; apply Rplus_lt_reg_l with (- l2).
replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2).
rewrite Rplus_comm; apply H6.
unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
@@ -612,7 +610,7 @@ Proof.
unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_l with l2.
rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1);
- [ apply r | ring ].
+ [ apply Hgt | ring ].
apply Rinv_0_lt_compat; prove_sup0.
intros; induction n0 as [| n0 Hrecn0].
unfold SP; simpl; apply H1.
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v
index acc9fd5d6..cb75500d0 100644
--- a/theories/Reals/RIneq.v
+++ b/theories/Reals/RIneq.v
@@ -682,6 +682,11 @@ Hint Resolve Ropp_plus_distr: real.
(** ** Opposite and multiplication *)
(*********************************************************)
+Lemma Ropp_mult_distr_l : forall r1 r2, - (r1 * r2) = - r1 * r2.
+Proof.
+ intros; ring.
+Qed.
+
Lemma Ropp_mult_distr_l_reverse : forall r1 r2, - r1 * r2 = - (r1 * r2).
Proof.
intros; ring.
@@ -695,6 +700,11 @@ Proof.
Qed.
Hint Resolve Rmult_opp_opp: real.
+Lemma Ropp_mult_distr_r : forall r1 r2, - (r1 * r2) = r1 * - r2.
+Proof.
+ intros; ring.
+Qed.
+
Lemma Ropp_mult_distr_r_reverse : forall r1 r2, r1 * - r2 = - (r1 * r2).
Proof.
intros; ring.
diff --git a/theories/Reals/R_sqr.v b/theories/Reals/R_sqr.v
index d6e18d9d8..24fe26613 100644
--- a/theories/Reals/R_sqr.v
+++ b/theories/Reals/R_sqr.v
@@ -97,7 +97,7 @@ Qed.
Lemma Rsqr_incr_0 :
forall x y:R, Rsqr x <= Rsqr y -> 0 <= x -> 0 <= y -> x <= y.
Proof.
- intros; case (Rle_dec x y); intro;
+ intros; destruct (Rle_dec x y) as [Hle|Hnle];
[ assumption
| cut (y < x);
[ intro; unfold Rsqr in H;
@@ -109,7 +109,7 @@ Qed.
Lemma Rsqr_incr_0_var : forall x y:R, Rsqr x <= Rsqr y -> 0 <= y -> x <= y.
Proof.
- intros; case (Rle_dec x y); intro;
+ intros; destruct (Rle_dec x y) as [Hle|Hnle];
[ assumption
| cut (y < x);
[ intro; unfold Rsqr in H;
@@ -146,8 +146,8 @@ Qed.
Lemma Rsqr_neg_pos_le_0 :
forall x y:R, Rsqr x <= Rsqr y -> 0 <= y -> - y <= x.
Proof.
- intros; case (Rcase_abs x); intro.
- generalize (Ropp_lt_gt_contravar x 0 r); rewrite Ropp_0; intro;
+ intros; destruct (Rcase_abs x) as [Hlt|Hle].
+ generalize (Ropp_lt_gt_contravar x 0 Hlt); rewrite Ropp_0; intro;
generalize (Rlt_le 0 (- x) H1); intro; rewrite (Rsqr_neg x) in H;
generalize (Rsqr_incr_0 (- x) y H H2 H0); intro;
rewrite <- (Ropp_involutive x); apply Ropp_ge_le_contravar;
@@ -160,25 +160,23 @@ Qed.
Lemma Rsqr_neg_pos_le_1 :
forall x y:R, - y <= x -> x <= y -> 0 <= y -> Rsqr x <= Rsqr y.
Proof.
- intros; case (Rcase_abs x); intro.
- generalize (Ropp_lt_gt_contravar x 0 r); rewrite Ropp_0; intro;
- generalize (Rlt_le 0 (- x) H2); intro;
- generalize (Ropp_le_ge_contravar (- y) x H); rewrite Ropp_involutive;
- intro; generalize (Rge_le y (- x) H4); intro; rewrite (Rsqr_neg x);
- apply Rsqr_incr_1; assumption.
- generalize (Rge_le x 0 r); intro; apply Rsqr_incr_1; assumption.
+ intros x y H H0 H1; destruct (Rcase_abs x) as [Hlt|Hle].
+ apply Ropp_lt_gt_contravar, Rlt_le in Hlt; rewrite Ropp_0 in Hlt;
+ apply Ropp_le_ge_contravar, Rge_le in H; rewrite Ropp_involutive in H;
+ rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
+ apply Rge_le in Hle; apply Rsqr_incr_1; assumption.
Qed.
Lemma neg_pos_Rsqr_le : forall x y:R, - y <= x -> x <= y -> Rsqr x <= Rsqr y.
Proof.
- intros; case (Rcase_abs x); intro.
- generalize (Ropp_lt_gt_contravar x 0 r); rewrite Ropp_0; intro;
- generalize (Ropp_le_ge_contravar (- y) x H); rewrite Ropp_involutive;
- intro; generalize (Rge_le y (- x) H2); intro; generalize (Rlt_le 0 (- x) H1);
- intro; generalize (Rle_trans 0 (- x) y H4 H3); intro;
- rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
- generalize (Rge_le x 0 r); intro; generalize (Rle_trans 0 x y H1 H0); intro;
- apply Rsqr_incr_1; assumption.
+ intros x y H H0; destruct (Rcase_abs x) as [Hlt|Hle].
+ apply Ropp_lt_gt_contravar, Rlt_le in Hlt; rewrite Ropp_0 in Hlt;
+ apply Ropp_le_ge_contravar, Rge_le in H; rewrite Ropp_involutive in H.
+ assert (0 <= y) by (apply Rle_trans with (-x); assumption).
+ rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
+ apply Rge_le in Hle;
+ assert (0 <= y) by (apply Rle_trans with x; assumption).
+ apply Rsqr_incr_1; assumption.
Qed.
Lemma Rsqr_abs : forall x:R, Rsqr x = Rsqr (Rabs x).
@@ -220,22 +218,22 @@ Qed.
Lemma Rsqr_eq_abs_0 : forall x y:R, Rsqr x = Rsqr y -> Rabs x = Rabs y.
Proof.
- intros; unfold Rabs; case (Rcase_abs x); case (Rcase_abs y); intros.
- rewrite (Rsqr_neg x) in H; rewrite (Rsqr_neg y) in H;
- generalize (Ropp_lt_gt_contravar y 0 r);
- generalize (Ropp_lt_gt_contravar x 0 r0); rewrite Ropp_0;
+ intros; unfold Rabs; case (Rcase_abs x) as [Hltx|Hgex];
+ case (Rcase_abs y) as [Hlty|Hgey].
+ rewrite (Rsqr_neg x), (Rsqr_neg y) in H;
+ generalize (Ropp_lt_gt_contravar y 0 Hlty);
+ generalize (Ropp_lt_gt_contravar x 0 Hltx); rewrite Ropp_0;
intros; generalize (Rlt_le 0 (- x) H0); generalize (Rlt_le 0 (- y) H1);
intros; apply Rsqr_inj; assumption.
- rewrite (Rsqr_neg x) in H; generalize (Rge_le y 0 r); intro;
- generalize (Ropp_lt_gt_contravar x 0 r0); rewrite Ropp_0;
+ rewrite (Rsqr_neg x) in H; generalize (Rge_le y 0 Hgey); intro;
+ generalize (Ropp_lt_gt_contravar x 0 Hltx); rewrite Ropp_0;
intro; generalize (Rlt_le 0 (- x) H1); intro; apply Rsqr_inj;
assumption.
- rewrite (Rsqr_neg y) in H; generalize (Rge_le x 0 r0); intro;
- generalize (Ropp_lt_gt_contravar y 0 r); rewrite Ropp_0;
+ rewrite (Rsqr_neg y) in H; generalize (Rge_le x 0 Hgex); intro;
+ generalize (Ropp_lt_gt_contravar y 0 Hlty); rewrite Ropp_0;
intro; generalize (Rlt_le 0 (- y) H1); intro; apply Rsqr_inj;
assumption.
- generalize (Rge_le x 0 r0); generalize (Rge_le y 0 r); intros; apply Rsqr_inj;
- assumption.
+ apply Rsqr_inj; auto using Rge_le.
Qed.
Lemma Rsqr_eq_asb_1 : forall x y:R, Rabs x = Rabs y -> Rsqr x = Rsqr y.
diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v
index 2d9419bdf..19e111f23 100644
--- a/theories/Reals/R_sqrt.v
+++ b/theories/Reals/R_sqrt.v
@@ -37,8 +37,8 @@ Lemma sqrt_sqrt : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
intros.
unfold sqrt.
- case (Rcase_abs x); intro.
- elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ r H)).
+ case (Rcase_abs x) as [Hlt|Hge].
+ elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ Hlt H)).
rewrite Rsqrt_Rsqrt; reflexivity.
Qed.
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 5cdb39dd6..0409c99e4 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -1123,7 +1123,7 @@ Proof.
case
(Rcase_abs
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
- Rmin (delta / 2) ((b + - c) / 2) + - l)); intro.
+ Rmin (delta / 2) ((b + - c) / 2) + - l)) as [Hlt|Hge].
replace
(-
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
@@ -1165,7 +1165,7 @@ Proof.
(H20 :=
Rge_le
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
- Rmin (delta / 2) ((b + - c) / 2) + - l) 0 r).
+ Rmin (delta / 2) ((b + - c) / 2) + - l) 0 Hge).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H20 H18)).
assumption.
rewrite <- Ropp_0;
@@ -1242,17 +1242,16 @@ Proof.
(mkposreal ((b - c) / 2) H8)).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rabs; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))).
- intro.
+ unfold Rabs; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))) as [Hlt|Hge].
cut (0 < delta / 2).
intro.
generalize
(Rmin_stable_in_posreal (mkposreal (delta / 2) H10)
(mkposreal ((b - c) / 2) H8)); simpl; intro;
- elim (Rlt_irrefl 0 (Rlt_trans 0 (Rmin (delta / 2) ((b - c) / 2)) 0 H11 r)).
+ elim (Rlt_irrefl 0 (Rlt_trans 0 (Rmin (delta / 2) ((b - c) / 2)) 0 H11 Hlt)).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- intro; apply Rle_lt_trans with (delta / 2).
+ apply Rle_lt_trans with (delta / 2).
apply Rmin_l.
unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
@@ -1311,13 +1310,12 @@ Proof.
case
(Rcase_abs
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
- Rmax (- (delta / 2)) ((a + - c) / 2) + - l)).
- intro;
- elim
+ Rmax (- (delta / 2)) ((a + - c) / 2) + - l)) as [Hlt|Hge].
+ elim
(Rlt_irrefl 0
(Rlt_trans 0
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
- Rmax (- (delta / 2)) ((a + - c) / 2) + - l) 0 H19 r)).
+ Rmax (- (delta / 2)) ((a + - c) / 2) + - l) 0 H19 Hlt)).
intros;
generalize
(Rplus_lt_compat_r l
@@ -1380,8 +1378,8 @@ Proof.
apply Rplus_lt_compat_l; assumption.
field; discrR.
assumption.
- unfold Rabs; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))).
- intro; generalize (RmaxLess1 (- (delta / 2)) ((a - c) / 2)); intro;
+ unfold Rabs; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))) as [Hlt|Hge].
+ generalize (RmaxLess1 (- (delta / 2)) ((a - c) / 2)); intro;
generalize
(Ropp_le_ge_contravar (- (delta / 2)) (Rmax (- (delta / 2)) ((a - c) / 2))
H12); rewrite Ropp_involutive; intro;
@@ -1402,7 +1400,7 @@ Proof.
generalize
(Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H13)
(mknegreal ((a - c) / 2) H12)); simpl;
- intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r);
+ intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 Hge);
intro;
elim
(Rlt_irrefl 0
@@ -1494,11 +1492,10 @@ Proof.
cut (0 <= (f (x + delta / 2) - f x) / (delta / 2)).
intro; cut (0 <= (f (x + delta / 2) - f x) / (delta / 2) - l).
intro; unfold Rabs;
- case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)).
- intro;
- elim
+ case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)) as [Hlt|Hge].
+ elim
(Rlt_irrefl 0
- (Rle_lt_trans 0 ((f (x + delta / 2) - f x) / (delta / 2) - l) 0 H12 r)).
+ (Rle_lt_trans 0 ((f (x + delta / 2) - f x) / (delta / 2) - l) 0 H12 Hlt)).
intros;
generalize
(Rplus_lt_compat_r l ((f (x + delta / 2) - f x) / (delta / 2) - l)
diff --git a/theories/Reals/Ranalysis2.v b/theories/Reals/Ranalysis2.v
index c66c7b412..052e80006 100644
--- a/theories/Reals/Ranalysis2.v
+++ b/theories/Reals/Ranalysis2.v
@@ -433,10 +433,10 @@ Proof.
unfold IZR; unfold INR, Pos.to_nat; simpl; intro;
elim (Rlt_irrefl 1 (Rlt_trans _ _ _ H13 H12)).
apply IZR_lt; omega.
- unfold Rabs; case (Rcase_abs (/ 2)); intro.
+ unfold Rabs; case (Rcase_abs (/ 2)) as [Hlt|Hge].
assert (Hyp : 0 < 2).
prove_sup0.
- assert (H11 := Rmult_lt_compat_l 2 _ _ Hyp r); rewrite Rmult_0_r in H11;
+ assert (H11 := Rmult_lt_compat_l 2 _ _ Hyp Hlt); rewrite Rmult_0_r in H11;
rewrite <- Rinv_r_sym in H11; [ idtac | discrR ].
elim (Rlt_irrefl 0 (Rlt_trans _ _ _ Rlt_0_1 H11)).
reflexivity.
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v
index 45c79af48..663f62f7a 100644
--- a/theories/Reals/Ranalysis4.v
+++ b/theories/Reals/Ranalysis4.v
@@ -117,14 +117,14 @@ Proof.
rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0.
apply H1.
apply Rle_ge.
- case (Rcase_abs h); intro.
- rewrite (Rabs_left h r) in H2.
+ destruct (Rcase_abs h) as [Hlt|Hgt].
+ rewrite (Rabs_left h Hlt) in H2.
left; rewrite Rplus_comm; apply Rplus_lt_reg_l with (- h); rewrite Rplus_0_r;
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
apply H2.
apply Rplus_le_le_0_compat.
left; apply H.
- apply Rge_le; apply r.
+ apply Rge_le; apply Hgt.
left; apply H.
Qed.
@@ -145,12 +145,12 @@ Proof.
rewrite <- Rinv_r_sym.
rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0.
apply H2.
- case (Rcase_abs h); intro.
+ destruct (Rcase_abs h) as [Hlt|Hgt].
apply Ropp_lt_cancel.
rewrite Ropp_0; rewrite Ropp_plus_distr; apply Rplus_lt_0_compat.
apply H1.
- apply Ropp_0_gt_lt_contravar; apply r.
- rewrite (Rabs_right h r) in H3.
+ apply Ropp_0_gt_lt_contravar; apply Hlt.
+ rewrite (Rabs_right h Hgt) in H3.
apply Rplus_lt_reg_l with (- x); rewrite Rplus_0_r; rewrite <- Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_l; apply H3.
apply H.
@@ -161,13 +161,12 @@ Qed.
Lemma Rderivable_pt_abs : forall x:R, x <> 0 -> derivable_pt Rabs x.
Proof.
intros.
- case (total_order_T x 0); intro.
- elim s; intro.
+ destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
unfold derivable_pt; exists (-1).
- apply (Rabs_derive_2 x a).
- elim H; exact b.
+ apply (Rabs_derive_2 x Hlt).
+ elim H; exact Heq.
unfold derivable_pt; exists 1.
- apply (Rabs_derive_1 x r).
+ apply (Rabs_derive_1 x Hgt).
Qed.
(** Rabsolu is continuous for all x *)
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v
index 3a5f932dd..6f8dcdc71 100644
--- a/theories/Reals/Ranalysis5.v
+++ b/theories/Reals/Ranalysis5.v
@@ -338,14 +338,14 @@ intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
left; assumption.
intro.
unfold cond_positivity in |- *.
- case (Rle_dec 0 z); intro.
+ destruct (Rle_dec 0 z) as [|Hnotle].
split.
intro; assumption.
intro; reflexivity.
split.
intro feqt;discriminate feqt.
intro.
- elim n0; assumption.
+ elim Hnotle; assumption.
unfold Vn in |- *.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
@@ -359,10 +359,10 @@ intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
assumption.
intro.
unfold cond_positivity in |- *.
- case (Rle_dec 0 z); intro.
+ destruct (Rle_dec 0 z) as [Hle|].
split.
intro feqt; discriminate feqt.
- intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H7)).
+ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H7)).
split.
intro; auto with real.
intro; reflexivity.
@@ -371,10 +371,9 @@ intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
assert (Temp : x <= x0 <= y).
apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
assert (H7 := continuity_seq f Wn x0 (H x0 Temp) H5).
- case (total_order_T 0 (f x0)); intro.
- elim s; intro.
+ destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt].
left; assumption.
- rewrite <- b; right; reflexivity.
+ right; reflexivity.
unfold Un_cv in H7; unfold R_dist in H7.
cut (0 < - f x0).
intro.
@@ -397,11 +396,10 @@ intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
assert (Temp : x <= x0 <= y).
apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
assert (H7 := continuity_seq f Vn x0 (H x0 Temp) H5).
- case (total_order_T 0 (f x0)); intro.
- elim s; intro.
+ destruct (total_order_T 0 (f x0)) as [[Hlt|Heq]|].
unfold Un_cv in H7; unfold R_dist in H7.
- elim (H7 (f x0) a); intros.
- cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ elim (H7 (f x0) Hlt); intros.
+ cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
@@ -419,7 +417,7 @@ intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
[ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
- right; rewrite <- b; reflexivity.
+ right; rewrite <- Heq; reflexivity.
left; assumption.
unfold Vn in |- *; assumption.
Qed.
diff --git a/theories/Reals/Ratan.v b/theories/Reals/Ratan.v
index dcf2f9709..6146b979f 100644
--- a/theories/Reals/Ratan.v
+++ b/theories/Reals/Ratan.v
@@ -450,9 +450,9 @@ fourier.
Qed.
Definition frame_tan y : {x | 0 < x < PI/2 /\ Rabs y < tan x}.
-destruct (total_order_T (Rabs y) 1).
- assert (yle1 : Rabs y <= 1) by (destruct s; fourier).
- clear s; exists 1; split;[split; [exact Rlt_0_1 | exact PI2_1] | ].
+destruct (total_order_T (Rabs y) 1) as [Hs|Hgt].
+ assert (yle1 : Rabs y <= 1) by (destruct Hs; fourier).
+ clear Hs; exists 1; split;[split; [exact Rlt_0_1 | exact PI2_1] | ].
apply Rle_lt_trans with (1 := yle1); exact tan_1_gt_1.
assert (0 < / (Rabs y + 1)).
apply Rinv_0_lt_compat; fourier.
@@ -530,7 +530,7 @@ split.
assumption.
replace (/(Rabs y + 1)) with (2 * u).
fourier.
- unfold u; field; apply Rgt_not_eq; clear -r; fourier.
+ unfold u; field; apply Rgt_not_eq; clear -Hgt; fourier.
solve[discrR].
apply Rgt_not_eq; assumption.
unfold tan.
diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v
index 560f389b8..daf895fd2 100644
--- a/theories/Reals/Rbasic_fun.v
+++ b/theories/Reals/Rbasic_fun.v
@@ -45,12 +45,12 @@ Qed.
(*********)
Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r.
Proof.
- intros r1 r2 r; unfold Rmin; case (Rle_dec r1 r2); intros.
+ intros r1 r2 r; unfold Rmin; case (Rle_dec r1 r2) as [Hle|Hnle]; intros.
split.
assumption.
- unfold Rgt; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0).
+ unfold Rgt; exact (Rlt_le_trans r r1 r2 H Hle).
split.
- generalize (Rnot_le_lt r1 r2 n); intro; exact (Rgt_trans r1 r2 r H0 H).
+ generalize (Rnot_le_lt r1 r2 Hnle); intro; exact (Rgt_trans r1 r2 r H0 H).
assumption.
Qed.
@@ -168,10 +168,10 @@ Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2.
Proof.
intros; split.
unfold Rmax; case (Rle_dec r1 r2); intros; auto.
- intro; unfold Rmax; case (Rle_dec r1 r2); elim H; clear H; intros;
+ intro; unfold Rmax; case (Rle_dec r1 r2) as [|Hnle]; elim H; clear H; intros;
auto.
apply (Rle_trans r r1 r2); auto.
- generalize (Rnot_le_lt r1 r2 n); clear n; intro; unfold Rgt in H0;
+ generalize (Rnot_le_lt r1 r2 Hnle); clear Hnle; intro; unfold Rgt in H0;
apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)).
Qed.
@@ -320,9 +320,9 @@ Qed.
(*********)
Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r.
Proof.
- intros; unfold Rabs; case (Rcase_abs r); intro.
+ intros; unfold Rabs; case (Rcase_abs r) as [Hlt|Hge].
absurd (r >= 0).
- exact (Rlt_not_ge r 0 r0).
+ exact (Rlt_not_ge r 0 Hlt).
assumption.
trivial.
Qed.
@@ -337,9 +337,9 @@ Qed.
(*********)
Lemma Rabs_pos : forall x:R, 0 <= Rabs x.
Proof.
- intros; unfold Rabs; case (Rcase_abs x); intro.
- generalize (Ropp_lt_gt_contravar x 0 r); intro; unfold Rgt in H;
- rewrite Ropp_0 in H; unfold Rle; left; assumption.
+ intros; unfold Rabs; case (Rcase_abs x) as [Hlt|Hge].
+ generalize (Ropp_lt_gt_contravar x 0 Hlt); intro; unfold Rgt in H;
+ rewrite Ropp_0 in H; left; assumption.
apply Rge_le; assumption.
Qed.
@@ -353,8 +353,8 @@ Definition RRle_abs := Rle_abs.
(*********)
Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x.
Proof.
- intros; unfold Rabs; case (Rcase_abs x); intro;
- [ generalize (Rgt_not_le 0 x r); intro; exfalso; auto | trivial ].
+ intros; unfold Rabs; case (Rcase_abs x) as [Hlt|Hge];
+ [ generalize (Rgt_not_le 0 x Hlt); intro; exfalso; auto | trivial ].
Qed.
(*********)
@@ -366,100 +366,70 @@ Qed.
(*********)
Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x.
Proof.
- intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro;
- auto.
- exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs;
- case (Rcase_abs x); intros; auto.
- clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0);
- rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x);
- trivial.
+ intros; destruct (Rabs_pos x) as [|Heq]; auto.
+ apply Rabs_no_R0 in H; symmetry in Heq; contradiction.
Qed.
(*********)
Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x).
Proof.
- intros; unfold Rabs; case (Rcase_abs (x - y));
- case (Rcase_abs (y - x)); intros.
- generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros;
- generalize (Rlt_asym x y H); intro; exfalso;
- auto.
+ intros; unfold Rabs; case (Rcase_abs (x - y)) as [Hlt|Hge];
+ case (Rcase_abs (y - x)) as [Hlt'|Hge'].
+ apply Rminus_lt, Rlt_asym in Hlt; apply Rminus_lt in Hlt'; contradiction.
rewrite (Ropp_minus_distr x y); trivial.
rewrite (Ropp_minus_distr y x); trivial.
- unfold Rge in r, r0; elim r; elim r0; intros; clear r r0.
- generalize (Ropp_lt_gt_0_contravar (x - y) H); rewrite (Ropp_minus_distr x y);
- intro; unfold Rgt in H0; generalize (Rlt_asym 0 (y - x) H0);
- intro; exfalso; auto.
- rewrite (Rminus_diag_uniq x y H); trivial.
- rewrite (Rminus_diag_uniq y x H0); trivial.
- rewrite (Rminus_diag_uniq y x H0); trivial.
+ destruct Hge; destruct Hge'.
+ apply Ropp_lt_gt_0_contravar in H; rewrite (Ropp_minus_distr x y) in H;
+ apply Rlt_asym in H0; contradiction.
+ apply Rminus_diag_uniq in H0 as ->; trivial.
+ apply Rminus_diag_uniq in H as ->; trivial.
+ apply Rminus_diag_uniq in H0 as ->; trivial.
Qed.
(*********)
Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y.
Proof.
- intros; unfold Rabs; case (Rcase_abs (x * y)); case (Rcase_abs x);
- case (Rcase_abs y); intros; auto.
- generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro;
- rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1);
- intro; unfold Rgt in H; exfalso; rewrite (Rmult_comm y x) in H;
- auto.
+ intros; unfold Rabs; case (Rcase_abs (x * y)) as [Hlt|Hge];
+ case (Rcase_abs x) as [Hltx|Hgex];
+ case (Rcase_abs y) as [Hlty|Hgey]; auto.
+ apply Rmult_lt_gt_compat_neg_l with (r:=x), Rlt_asym in Hlty; trivial.
+ rewrite Rmult_0_r in Hlty; contradiction.
rewrite (Ropp_mult_distr_l_reverse x y); trivial.
rewrite (Rmult_comm x (- y)); rewrite (Ropp_mult_distr_l_reverse y x);
rewrite (Rmult_comm x y); trivial.
- unfold Rge in r, r0; elim r; elim r0; clear r r0; intros; unfold Rgt in H, H0.
- generalize (Rmult_lt_compat_l x 0 y H H0); intro; rewrite (Rmult_0_r x) in H1;
- generalize (Rlt_asym (x * y) 0 r1); intro; exfalso;
- auto.
- rewrite H in r1; rewrite (Rmult_0_l y) in r1; generalize (Rlt_irrefl 0);
- intro; exfalso; auto.
- rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0);
- intro; exfalso; auto.
- rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0);
- intro; exfalso; auto.
+ destruct Hgex as [| ->], Hgey as [| ->].
+ apply Rmult_lt_compat_l with (r:=x), Rlt_asym in H0; trivial.
+ rewrite Rmult_0_r in H0; contradiction.
+ rewrite Rmult_0_r in Hlt; contradiction (Rlt_irrefl 0).
+ rewrite Rmult_0_l in Hlt; contradiction (Rlt_irrefl 0).
+ rewrite Rmult_0_l in Hlt; contradiction (Rlt_irrefl 0).
rewrite (Rmult_opp_opp x y); trivial.
- unfold Rge in r, r1; elim r; elim r1; clear r r1; intros; unfold Rgt in H0, H.
- generalize (Rmult_lt_compat_l y x 0 H0 r0); intro;
- rewrite (Rmult_0_r y) in H1; rewrite (Rmult_comm y x) in H1;
- generalize (Rlt_asym (x * y) 0 H1); intro; exfalso;
- auto.
- generalize (Rlt_dichotomy_converse x 0 (or_introl (x > 0) r0));
- generalize (Rlt_dichotomy_converse y 0 (or_intror (y < 0) H0));
- intros; generalize (Rmult_integral x y H); intro;
- elim H3; intro; exfalso; auto.
- rewrite H0 in H; rewrite (Rmult_0_r x) in H; unfold Rgt in H;
- generalize (Rlt_irrefl 0); intro; exfalso;
- auto.
- rewrite H0; rewrite (Rmult_0_r x); rewrite (Rmult_0_r (- x)); trivial.
- unfold Rge in r0, r1; elim r0; elim r1; clear r0 r1; intros;
- unfold Rgt in H0, H.
- generalize (Rmult_lt_compat_l x y 0 H0 r); intro; rewrite (Rmult_0_r x) in H1;
- generalize (Rlt_asym (x * y) 0 H1); intro; exfalso;
- auto.
- generalize (Rlt_dichotomy_converse y 0 (or_introl (y > 0) r));
- generalize (Rlt_dichotomy_converse 0 x (or_introl (0 > x) H0));
- intros; generalize (Rmult_integral x y H); intro;
- elim H3; intro; exfalso; auto.
- rewrite H0 in H; rewrite (Rmult_0_l y) in H; unfold Rgt in H;
- generalize (Rlt_irrefl 0); intro; exfalso;
- auto.
- rewrite H0; rewrite (Rmult_0_l y); rewrite (Rmult_0_l (- y)); trivial.
+ destruct Hge. destruct Hgey.
+ apply Rmult_lt_compat_r with (r:=y), Rlt_asym in Hltx; trivial.
+ rewrite Rmult_0_l in Hltx; contradiction.
+ rewrite H0, Rmult_0_r in H; contradiction (Rlt_irrefl 0).
+ rewrite <- Ropp_mult_distr_l, H, Ropp_0; trivial.
+ destruct Hge. destruct Hgex.
+ apply Rmult_lt_compat_l with (r:=x), Rlt_asym in Hlty; trivial.
+ rewrite Rmult_0_r in Hlty; contradiction.
+ rewrite H0, 2!Rmult_0_l; trivial.
+ rewrite <- Ropp_mult_distr_r, H, Ropp_0; trivial.
Qed.
(*********)
Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r.
Proof.
- intro; unfold Rabs; case (Rcase_abs r); case (Rcase_abs (/ r)); auto;
+ intro; unfold Rabs; case (Rcase_abs r) as [Hlt|Hge];
+ case (Rcase_abs (/ r)) as [Hlt'|Hge']; auto;
intros.
apply Ropp_inv_permute; auto.
- generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros.
- unfold Rgt in H1; generalize (Rlt_asym 0 (/ r) H1); intro; exfalso;
- auto.
- generalize (Rlt_dichotomy_converse (/ r) 0 (or_introl (/ r > 0) H0)); intro;
- exfalso; auto.
- unfold Rge in r1; elim r1; clear r1; intro.
- unfold Rgt in H0; generalize (Rlt_asym 0 (/ r) (Rinv_0_lt_compat r H0));
- intro; exfalso; auto.
- exfalso; auto.
+ rewrite <- Ropp_inv_permute; trivial.
+ destruct Hge' as [| ->].
+ apply Rinv_lt_0_compat, Rlt_asym in Hlt; contradiction.
+ rewrite Ropp_0; trivial.
+ destruct Hge as [| ->].
+ apply Rinv_0_lt_compat, Rlt_asym in H0; contradiction.
+ contradiction (refl_equal 0).
Qed.
Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x.
@@ -483,13 +453,14 @@ Qed.
(*********)
Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b.
Proof.
- intros a b; unfold Rabs; case (Rcase_abs (a + b)); case (Rcase_abs a);
- case (Rcase_abs b); intros.
+ intros a b; unfold Rabs; case (Rcase_abs (a + b)) as [Hlt|Hge];
+ case (Rcase_abs a) as [Hlta|Hgea];
+ case (Rcase_abs b) as [Hltb|Hgeb].
apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b);
reflexivity.
(**)
rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b);
- unfold Rle; unfold Rge in r; elim r; intro.
+ unfold Rle; elim Hgeb; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro;
elim (Rplus_ne (- b)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H).
@@ -497,24 +468,24 @@ Proof.
(**)
rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b));
rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a);
- unfold Rle; unfold Rge in r0; elim r0; intro.
+ unfold Rle; elim Hgea; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro;
elim (Rplus_ne (- a)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H).
right; rewrite H; apply Ropp_0.
(**)
- exfalso; generalize (Rplus_ge_compat_l a b 0 r); intro;
+ exfalso; generalize (Rplus_ge_compat_l a b 0 Hgeb); intro;
elim (Rplus_ne a); intros v w; rewrite v in H; clear v w;
- generalize (Rge_trans (a + b) a 0 H r0); intro; clear H;
+ generalize (Rge_trans (a + b) a 0 H Hgea); intro; clear H;
unfold Rge in H0; elim H0; intro; clear H0.
- unfold Rgt in H; generalize (Rlt_asym (a + b) 0 r1); intro; auto.
+ unfold Rgt in H; generalize (Rlt_asym (a + b) 0 Hlt); intro; auto.
absurd (a + b = 0); auto.
apply (Rlt_dichotomy_converse (a + b) 0); left; assumption.
(**)
- exfalso; generalize (Rplus_lt_compat_l a b 0 r); intro;
+ exfalso; generalize (Rplus_lt_compat_l a b 0 Hltb); intro;
elim (Rplus_ne a); intros v w; rewrite v in H; clear v w;
- generalize (Rlt_trans (a + b) a 0 H r0); intro; clear H;
- unfold Rge in r1; elim r1; clear r1; intro.
+ generalize (Rlt_trans (a + b) a 0 H Hlta); intro; clear H;
+ destruct Hge.
unfold Rgt in H; generalize (Rlt_trans (a + b) 0 (a + b) H0 H); intro;
apply (Rlt_irrefl (a + b)); assumption.
rewrite H in H0; apply (Rlt_irrefl 0); assumption.
@@ -522,16 +493,16 @@ Proof.
rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b);
apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a));
unfold Rminus; rewrite (Ropp_involutive a);
- generalize (Rplus_lt_compat_l a a 0 r0); clear r r1;
+ generalize (Rplus_lt_compat_l a a 0 Hlta); clear Hge Hgeb;
intro; elim (Rplus_ne a); intros v w; rewrite v in H;
- clear v w; generalize (Rlt_trans (a + a) a 0 H r0);
+ clear v w; generalize (Rlt_trans (a + a) a 0 H Hlta);
intro; apply (Rlt_le (a + a) 0 H0).
(**)
apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b));
unfold Rminus; rewrite (Ropp_involutive b);
- generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1;
+ generalize (Rplus_lt_compat_l b b 0 Hltb); clear Hge Hgea;
intro; elim (Rplus_ne b); intros v w; rewrite v in H;
- clear v w; generalize (Rlt_trans (b + b) b 0 H r);
+ clear v w; generalize (Rlt_trans (b + b) b 0 H Hltb);
intro; apply (Rlt_le (b + b) 0 H0).
(**)
unfold Rle; right; reflexivity.
@@ -585,15 +556,15 @@ Qed.
(*********)
Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x.
Proof.
- unfold Rabs; intro x; case (Rcase_abs x); intros.
- generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt; intro;
+ unfold Rabs; intro x; case (Rcase_abs x) as [Hlt|Hge]; intros.
+ generalize (Ropp_gt_lt_0_contravar x Hlt); unfold Rgt; intro;
generalize (Rlt_trans 0 (- x) a H0 H); intro; split.
- apply (Rlt_trans x 0 a r H1).
+ apply (Rlt_trans x 0 a Hlt H1).
generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x);
unfold Rgt; trivial.
- fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro;
+ fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H Hge); intro;
generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a);
- generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt;
+ generalize (Rge_gt_trans x 0 (- a) Hge H1); unfold Rgt;
intro; split; assumption.
Qed.
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v
index e714f5f8c..69ef143e7 100644
--- a/theories/Reals/Rderiv.v
+++ b/theories/Reals/Rderiv.v
@@ -162,9 +162,9 @@ Proof.
(Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2)
(Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro;
rewrite eps2 in H10; assumption.
- unfold Rabs; case (Rcase_abs 2); auto.
- intro; cut (0 < 2).
- intro ; elim (Rlt_asym 0 2 H7 r).
+ unfold Rabs; destruct (Rcase_abs 2) as [Hlt|Hge]; auto.
+ cut (0 < 2).
+ intro H7; elim (Rlt_asym 0 2 H7 Hlt).
fourier.
apply Rabs_no_R0.
discrR.
@@ -193,11 +193,11 @@ Proof.
unfold limit_in; intros; simpl; split with eps;
split; auto.
intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros;
- rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (not_eq_sym H3)));
- unfold R_dist; rewrite (Rminus_diag_eq 1 1 (eq_refl 1));
- unfold Rabs; case (Rcase_abs 0); intro.
+ rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (sym_not_eq H3)));
+ unfold R_dist; rewrite (Rminus_diag_eq 1 1 (refl_equal 1));
+ unfold Rabs; case (Rcase_abs 0) as [Hlt|Hge].
absurd (0 < 0); auto.
- red; intro; apply (Rlt_irrefl 0 r).
+ red in |- *; intro; apply (Rlt_irrefl 0 Hlt).
unfold Rgt in H; assumption.
Qed.
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v
index 5eb34324e..604160834 100644
--- a/theories/Reals/Rfunctions.v
+++ b/theories/Reals/Rfunctions.v
@@ -489,16 +489,16 @@ Lemma pow_Rabs : forall (x:R) (n:nat), x ^ n <= Rabs x ^ n.
Proof.
intros; induction n as [| n Hrecn].
right; reflexivity.
- simpl; case (Rcase_abs x); intro.
+ simpl; destruct (Rcase_abs x) as [Hlt|Hle].
apply Rle_trans with (Rabs (x * x ^ n)).
apply RRle_abs.
rewrite Rabs_mult.
apply Rmult_le_compat_l.
apply Rabs_pos.
- right; symmetry ; apply RPow_abs.
- pattern (Rabs x) at 1; rewrite (Rabs_right x r);
+ right; symmetry; apply RPow_abs.
+ pattern (Rabs x) at 1; rewrite (Rabs_right x Hle);
apply Rmult_le_compat_l.
- apply Rge_le; exact r.
+ apply Rge_le; exact Hle.
apply Hrecn.
Qed.
@@ -741,10 +741,11 @@ Qed.
Lemma R_dist_sym : forall x y:R, R_dist x y = R_dist y x.
Proof.
unfold R_dist; intros; split_Rabs; try ring.
- generalize (Ropp_gt_lt_0_contravar (y - x) r); intro;
- rewrite (Ropp_minus_distr y x) in H; generalize (Rlt_asym (x - y) 0 r0);
+Show.
+ generalize (Ropp_gt_lt_0_contravar (y - x) Hlt0); intro;
+ rewrite (Ropp_minus_distr y x) in H; generalize (Rlt_asym (x - y) 0 Hlt);
intro; unfold Rgt in H; exfalso; auto.
- generalize (minus_Rge y x r); intro; generalize (minus_Rge x y r0); intro;
+ generalize (minus_Rge y x Hge0); intro; generalize (minus_Rge x y Hge); intro;
generalize (Rge_antisym x y H0 H); intro; rewrite H1;
ring.
Qed.
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index cdd3b96c0..1445e7dbe 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -108,12 +108,10 @@ Proof.
replace (vn n x + -1 * vn m x) with (vn n x - f x + (f x - vn m x));
[ apply Rabs_triang | ring ].
assert (H12 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with H0; reflexivity.
assert (H13 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
- rewrite <- H12 in H11; pattern b at 2 in H11; rewrite <- H13 in H11;
+ unfold Rmax; decide (Rle_dec a b) with H0; reflexivity.
+ rewrite <- H12 in H11; rewrite <- H13 in H11 at 2;
rewrite Rmult_1_l; apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9.
elim H11; intros; split; left; assumption.
@@ -140,7 +138,7 @@ Lemma RiemannInt_P3 :
Rabs (RiemannInt_SF (wn n)) < un n) ->
{ l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }.
Proof.
- intros; case (Rle_dec a b); intro.
+ intros; destruct (Rle_dec a b) as [Hle|Hnle].
apply RiemannInt_P2 with f un wn; assumption.
assert (H1 : b <= a); auto with real.
set (vn' := fun n:nat => mkStepFun (StepFun_P6 (pre (vn n))));
@@ -151,26 +149,24 @@ Proof.
(forall t:R,
Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\
Rabs (RiemannInt_SF (wn' n)) < un n).
- intro; elim (H0 n0); intros; split.
- intros; apply (H2 t); elim H4; clear H4; intros; split;
+ intro; elim (H0 n); intros; split.
+ intros t (H4,H5); apply (H2 t); split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
unfold Rmin
| apply Rle_trans with (Rmax b a); try assumption; right;
unfold Rmax ];
- (case (Rle_dec a b); case (Rle_dec b a); intros;
- try reflexivity || apply Rle_antisym;
- [ assumption | assumption | auto with real | auto with real ]).
- generalize H3; unfold RiemannInt_SF; case (Rle_dec a b);
- case (Rle_dec b a); unfold wn'; intros;
+ decide (Rle_dec a b) with Hnle; decide (Rle_dec b a) with H1; reflexivity.
+ generalize H3; unfold RiemannInt_SF; destruct (Rle_dec a b) as [Hleab|Hnleab];
+ destruct (Rle_dec b a) as [Hle'|Hnle']; unfold wn'; intros;
(replace
- (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n0)))))
- (subdivision (mkStepFun (StepFun_P6 (pre (wn n0)))))) with
- (Int_SF (subdivision_val (wn n0)) (subdivision (wn n0)));
+ (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n)))))
+ (subdivision (mkStepFun (StepFun_P6 (pre (wn n)))))) with
+ (Int_SF (subdivision_val (wn n)) (subdivision (wn n)));
[ idtac
- | apply StepFun_P17 with (fe (wn n0)) a b;
+ | apply StepFun_P17 with (fe (wn n)) a b;
[ apply StepFun_P1
| apply StepFun_P2;
- apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (wn n0))))) ] ]).
+ apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (wn n))))) ] ]).
apply H4.
rewrite Rabs_Ropp; apply H4.
rewrite Rabs_Ropp in H4; apply H4.
@@ -179,21 +175,22 @@ Proof.
exists (- x); unfold Un_cv; unfold Un_cv in p;
intros; elim (p _ H4); intros; exists x0; intros;
generalize (H5 _ H6); unfold R_dist, RiemannInt_SF;
- case (Rle_dec b a); case (Rle_dec a b); intros.
- elim n; assumption.
+ destruct (Rle_dec b a) as [Hle'|Hnle']; destruct (Rle_dec a b) as [Hle''|Hnle''];
+ intros.
+ elim Hnle; assumption.
unfold vn' in H7;
- replace (Int_SF (subdivision_val (vn n0)) (subdivision (vn n0))) with
- (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0)))))
- (subdivision (mkStepFun (StepFun_P6 (pre (vn n0))))));
+ replace (Int_SF (subdivision_val (vn n)) (subdivision (vn n))) with
+ (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n)))))
+ (subdivision (mkStepFun (StepFun_P6 (pre (vn n))))));
[ unfold Rminus; rewrite Ropp_involutive; rewrite <- Rabs_Ropp;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply H7
- | symmetry ; apply StepFun_P17 with (fe (vn n0)) a b;
+ | symmetry ; apply StepFun_P17 with (fe (vn n)) a b;
[ apply StepFun_P1
| apply StepFun_P2;
- apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n0))))) ] ].
- elim n1; assumption.
- elim n2; assumption.
+ apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n))))) ] ].
+ elim Hnle'; assumption.
+ elim Hnle'; assumption.
Qed.
Lemma RiemannInt_exists :
@@ -242,7 +239,7 @@ Proof.
(RiemannInt_SF (phi_sequence vn pr2 n) +
-1 * RiemannInt_SF (phi_sequence un pr1 n)); [ idtac | ring ];
rewrite <- StepFun_P30.
- case (Rle_dec a b); intro.
+ destruct (Rle_dec a b) as [Hle|Hnle].
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
@@ -261,13 +258,11 @@ Proof.
(phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
[ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hle; reflexivity.
assert (H11 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hle; reflexivity.
rewrite (Rplus_comm (psi_un x)); apply Rplus_le_compat.
- rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
+ rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; destruct H5 as (H8,H9); apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
elim H6; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
@@ -317,11 +312,9 @@ Proof.
(phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
[ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = b).
- unfold Rmin; case (Rle_dec a b); intro;
- [ elim n0; assumption | reflexivity ].
+ unfold Rmin; decide (Rle_dec a b) with Hnle; reflexivity.
assert (H11 : Rmax a b = a).
- unfold Rmax; case (Rle_dec a b); intro;
- [ elim n0; assumption | reflexivity ].
+ unfold Rmax; decide (Rle_dec a b) with Hnle; reflexivity.
apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
@@ -410,10 +403,10 @@ Lemma RiemannInt_P5 :
RiemannInt pr1 = RiemannInt pr2.
Proof.
intros; unfold RiemannInt;
- case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x,HUn);
+ case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x0,HUn0);
eapply UL_sequence;
- [ apply u0
+ [ apply HUn
| apply RiemannInt_P4 with pr2 RinvN; apply RinvN_cv || assumption ].
Qed.
@@ -433,11 +426,10 @@ Proof.
intro; assert (H2 := Nzorn H0 H1); elim H2; intros; exists x; elim p; intros;
split.
apply H3.
- case (total_order_T (a + INR (S x) * del) b); intro.
- elim s; intro.
- assert (H5 := H4 (S x) a0); elim (le_Sn_n _ H5).
+ destruct (total_order_T (a + INR (S x) * del) b) as [[Hlt|Heq]|Hgt].
+ assert (H5 := H4 (S x) Hlt); elim (le_Sn_n _ H5).
right; symmetry ; assumption.
- left; apply r.
+ left; apply Hgt.
assert (H1 : 0 <= (b - a) / del).
unfold Rdiv; apply Rmult_le_pos;
[ apply Rge_le; apply Rge_minus; apply Rle_ge; left; apply H
@@ -542,17 +534,16 @@ Lemma Heine_cor2 :
a <= x <= b ->
a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps }.
Proof.
- intro f; intros; case (total_order_T a b); intro.
- elim s; intro.
- assert (H0 := Heine_cor1 a0 H eps); elim H0; intros; exists x;
+ intro f; intros; destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
+ assert (H0 := Heine_cor1 Hlt H eps); elim H0; intros; exists x;
elim p; intros; apply H2; assumption.
exists (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y);
- [ elim H0; elim H1; intros; rewrite b0 in H3; rewrite b0 in H5;
+ [ elim H0; elim H1; intros; rewrite Heq in H3, H5;
apply Rle_antisym; apply Rle_trans with b; assumption
| rewrite H3; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (cond_pos eps) ].
exists (mkposreal _ Rlt_0_1); intros; elim H0; intros;
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) Hgt)).
Qed.
Lemma SubEqui_P1 :
@@ -565,7 +556,7 @@ Lemma SubEqui_P2 :
forall (a b:R) (del:posreal) (h:a < b),
pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))) = b.
Proof.
- intros; unfold SubEqui; case (maxN del h); intros; clear a0;
+ intros; unfold SubEqui; destruct (maxN del h)as (x,_).
cut
(forall (x:nat) (a:R) (del:posreal),
pos_Rl (SubEquiN (S x) a b del)
@@ -621,8 +612,8 @@ Proof.
simpl in H; inversion H.
rewrite (SubEqui_P6 del h (i:=(max_N del h))).
replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))).
- rewrite SubEqui_P2; unfold max_N; case (maxN del h); intros; left;
- elim a0; intros; assumption.
+ rewrite SubEqui_P2; unfold max_N; case (maxN del h) as (?&?&?); left;
+ assumption.
rewrite SubEqui_P5; reflexivity.
apply lt_n_Sn.
repeat rewrite SubEqui_P6.
@@ -676,11 +667,11 @@ Proof.
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rlt_Rminus; assumption ] ].
assert (H2 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; left; assumption ].
+ apply Rlt_le in H.
+ unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H3 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; left; assumption ].
+ apply Rlt_le in H.
+ unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
elim (Heine_cor2 H0 (mkposreal _ H1)); intros del H4;
elim (SubEqui_P9 del f H); intros phi [H5 H6]; split with phi;
split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a)))));
@@ -736,8 +727,8 @@ Proof.
rewrite H13 in H12; rewrite SubEqui_P2 in H12; apply H12.
rewrite SubEqui_P6.
2: apply lt_n_Sn.
- unfold max_N; case (maxN del H); intros; elim a0; clear a0;
- intros _ H13; replace (a + INR x * del + del) with (a + INR (S x) * del);
+ unfold max_N; destruct (maxN del H) as (?&?&H13);
+ replace (a + INR x * del + del) with (a + INR (S x) * del);
[ assumption | rewrite S_INR; ring ].
apply Rplus_lt_reg_l with (pos_Rl (SubEqui del H) I);
replace (pos_Rl (SubEqui del H) I + (t - pos_Rl (SubEqui del H) I)) with t;
@@ -757,7 +748,7 @@ Proof.
intros; assumption.
assert (H4 : Nbound I).
unfold Nbound; exists (S (max_N del H)); intros; unfold max_N;
- case (maxN del H); intros; elim a0; clear a0; intros _ H5;
+ destruct (maxN del H) as (?&_&H5);
apply INR_le; apply Rmult_le_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_le_reg_l with a; do 2 rewrite (Rmult_comm del);
@@ -765,12 +756,12 @@ Proof.
apply Rle_trans with b; try assumption; elim H8; intros;
assumption.
elim (Nzorn H1 H4); intros N [H5 H6]; assert (H7 : (N < S (max_N del H))%nat).
- unfold max_N; case (maxN del H); intros; apply INR_lt;
+ unfold max_N; case (maxN del H) as (?&?&?); apply INR_lt;
apply Rmult_lt_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_lt_reg_l with a; do 2 rewrite (Rmult_comm del);
apply Rle_lt_trans with t0; unfold I in H5; try assumption;
- elim a0; intros; apply Rlt_le_trans with b; try assumption;
+ apply Rlt_le_trans with b; try assumption;
elim H8; intros.
elim H11; intro.
assumption.
@@ -789,8 +780,8 @@ Proof.
elim H0; assumption.
rewrite SubEqui_P5; reflexivity.
rewrite SubEqui_P6.
- case (Rle_dec (a + INR (S N) * del) t0); intro.
- assert (H11 := H6 (S N) r); elim (le_Sn_n _ H11).
+ destruct (Rle_dec (a + INR (S N) * del) t0) as [Hle|Hnle].
+ assert (H11 := H6 (S N) Hle); elim (le_Sn_n _ H11).
auto with real.
apply le_lt_n_Sm; assumption.
Qed.
@@ -803,8 +794,8 @@ Proof.
intros; simpl; unfold fct_cte; replace t with a.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; right;
reflexivity.
- generalize H; unfold Rmin, Rmax; case (Rle_dec a a); intros; elim H0;
- intros; apply Rle_antisym; assumption.
+ generalize H; unfold Rmin, Rmax; decide (Rle_dec a a) with (Rle_refl a).
+ intros (?,?); apply Rle_antisym; assumption.
rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps).
Qed.
@@ -813,10 +804,9 @@ Lemma continuity_implies_RiemannInt :
a <= b ->
(forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b.
Proof.
- intros; case (total_order_T a b); intro;
- [ elim s; intro;
- [ apply RiemannInt_P6; assumption | rewrite b0; apply RiemannInt_P7 ]
- | elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)) ].
+ intros; destruct (total_order_T a b) as [[Hlt| -> ]|Hgt];
+ [ apply RiemannInt_P6; assumption | apply RiemannInt_P7
+ | elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)) ].
Qed.
Lemma RiemannInt_P8 :
@@ -824,9 +814,9 @@ Lemma RiemannInt_P8 :
(pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
Proof.
intro f; intros; eapply UL_sequence.
- unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv);
- intros; apply u.
- unfold RiemannInt; case (RiemannInt_exists pr2 RinvN RinvN_cv);
+ unfold RiemannInt; destruct (RiemannInt_exists pr1 RinvN RinvN_cv) as (?,HUn);
+ apply HUn.
+ unfold RiemannInt; destruct (RiemannInt_exists pr2 RinvN RinvN_cv) as (?,HUn);
intros;
cut
(exists psi1 : nat -> StepFun a b,
@@ -855,7 +845,7 @@ Proof.
[ assumption
| unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
- clear H1; unfold Un_cv in u; elim (u _ H3); clear u; intros N1 H1;
+ clear H1; destruct (HUn _ H3) as (N1,H1);
exists (max N0 N1); intros; unfold R_dist;
apply Rle_lt_trans with
(Rabs
@@ -879,7 +869,7 @@ Proof.
-1 *
RiemannInt_SF (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))));
[ idtac | ring ]; rewrite <- StepFun_P30.
- case (Rle_dec a b); intro.
+ destruct (Rle_dec a b) as [Hle|Hnle].
apply Rle_lt_trans with
(RiemannInt_SF
(mkStepFun
@@ -901,11 +891,9 @@ Proof.
(phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
[ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hle; reflexivity.
assert (H8 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hle; reflexivity.
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
rewrite H7; rewrite H8.
@@ -954,11 +942,9 @@ Proof.
(phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
[ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = b).
- unfold Rmin; case (Rle_dec a b); intro;
- [ elim n0; assumption | reflexivity ].
+ unfold Rmin; decide (Rle_dec a b) with Hnle; reflexivity.
assert (H8 : Rmax a b = a).
- unfold Rmax; case (Rle_dec a b); intro;
- [ elim n0; assumption | reflexivity ].
+ unfold Rmax; decide (Rle_dec a b) with Hnle; reflexivity.
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
rewrite H7; rewrite H8.
@@ -1021,10 +1007,9 @@ Lemma RiemannInt_P10 :
Riemann_integrable g a b ->
Riemann_integrable (fun x:R => f x + l * g x) a b.
Proof.
- unfold Riemann_integrable; intros f g; intros; case (Req_EM_T l 0);
- intro.
+ unfold Riemann_integrable; intros f g; intros; destruct (Req_EM_T l 0) as [Heq|Hneq].
elim (X eps); intros; split with x; elim p; intros; split with x0; elim p0;
- intros; split; try assumption; rewrite e; intros;
+ intros; split; try assumption; rewrite Heq; intros;
rewrite Rmult_0_l; rewrite Rplus_0_r; apply H; assumption.
assert (H : 0 < eps / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
@@ -1111,18 +1096,14 @@ Proof.
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hyp; reflexivity.
assert (H11 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hyp; reflexivity.
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hyp; reflexivity.
assert (H11 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hyp; reflexivity.
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
@@ -1254,10 +1235,10 @@ Lemma RiemannInt_P12 :
Proof.
intro f; intros; case (Req_dec l 0); intro.
pattern l at 2; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r;
- unfold RiemannInt; case (RiemannInt_exists pr3 RinvN RinvN_cv);
- case (RiemannInt_exists pr1 RinvN RinvN_cv); intros;
+ unfold RiemannInt; destruct (RiemannInt_exists pr3 RinvN RinvN_cv) as (?,HUn_cv);
+ destruct (RiemannInt_exists pr1 RinvN RinvN_cv) as (?,HUn_cv0); intros.
eapply UL_sequence;
- [ apply u0
+ [ apply HUn_cv
| set (psi1 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n));
set (psi2 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n));
apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2;
@@ -1276,22 +1257,22 @@ Proof.
[ apply H2; assumption | rewrite H0; ring ] ]
| assumption ] ].
eapply UL_sequence.
- unfold RiemannInt; case (RiemannInt_exists pr3 RinvN RinvN_cv);
- intros; apply u.
+ unfold RiemannInt; destruct (RiemannInt_exists pr3 RinvN RinvN_cv) as (?,HUn_cv);
+ intros; apply HUn_cv.
unfold Un_cv; intros; unfold RiemannInt;
- case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv;
+ case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x0,HUn_cv0);
+ case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x,HUn_cv); unfold Un_cv;
intros; assert (H2 : 0 < eps / 5).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (u0 _ H2); clear u0; intros N0 H3; assert (H4 := RinvN_cv);
+ elim (HUn_cv0 _ H2); clear HUn_cv0; intros N0 H3; assert (H4 := RinvN_cv);
unfold Un_cv in H4; elim (H4 _ H2); clear H4 H2; intros N1 H4;
assert (H5 : 0 < eps / (5 * Rabs l)).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
- elim (u _ H5); clear u; intros N2 H6; assert (H7 := RinvN_cv);
+ elim (HUn_cv _ H5); clear HUn_cv; intros N2 H6; assert (H7 := RinvN_cv);
unfold Un_cv in H7; elim (H7 _ H5); clear H7 H5; intros N3 H5;
unfold R_dist in H3, H4, H5, H6; set (N := max (max N0 N1) (max N2 N3)).
assert (H7 : forall n:nat, (n >= N1)%nat -> RinvN n < eps / 5).
@@ -1379,11 +1360,9 @@ Proof.
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n)));
[ idtac | ring ]; do 2 rewrite <- StepFun_P30; assert (H10 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H11 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
rewrite H10 in H7; rewrite H10 in H8; rewrite H10 in H9; rewrite H11 in H7;
rewrite H11 in H8; rewrite H11 in H9;
apply Rle_lt_trans with
@@ -1493,7 +1472,7 @@ Lemma RiemannInt_P13 :
(pr3:Riemann_integrable (fun x:R => f x + l * g x) a b),
RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2.
Proof.
- intros; case (Rle_dec a b); intro;
+ intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply RiemannInt_P12; assumption
| assert (H : b <= a);
[ auto with real
@@ -1524,9 +1503,9 @@ Lemma RiemannInt_P15 :
forall (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
RiemannInt pr = c * (b - a).
Proof.
- intros; unfold RiemannInt; case (RiemannInt_exists pr RinvN RinvN_cv);
+ intros; unfold RiemannInt; destruct (RiemannInt_exists pr RinvN RinvN_cv) as (?,HUn_cv);
intros; eapply UL_sequence.
- apply u.
+ apply HUn_cv.
set (phi1 := fun N:nat => phi_sequence RinvN pr N);
change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a)));
set (f := fct_cte c);
@@ -1572,11 +1551,11 @@ Lemma Rle_cv_lim :
forall (Un Vn:nat -> R) (l1 l2:R),
(forall n:nat, Un n <= Vn n) -> Un_cv Un l1 -> Un_cv Vn l2 -> l1 <= l2.
Proof.
- intros; case (Rle_dec l1 l2); intro.
+ intros; destruct (Rle_dec l1 l2) as [Hle|Hnle].
assumption.
assert (H2 : l2 < l1).
auto with real.
- clear n; assert (H3 : 0 < (l1 - l2) / 2).
+ assert (H3 : 0 < (l1 - l2) / 2).
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply Rlt_Rminus; assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist; intros;
@@ -1613,9 +1592,9 @@ Lemma RiemannInt_P17 :
a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2.
Proof.
intro f; intros; unfold RiemannInt;
- case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
- set (phi1 := phi_sequence RinvN pr1) in u0;
+ case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x0,HUn_cv0);
+ case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x,HUn_cv);
+ set (phi1 := phi_sequence RinvN pr1) in HUn_cv0;
set (phi2 := fun N:nat => mkStepFun (StepFun_P32 (phi1 N)));
apply Rle_cv_lim with
(fun N:nat => Rabs (RiemannInt_SF (phi1 N)))
@@ -1670,10 +1649,10 @@ Lemma RiemannInt_P18 :
(forall x:R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2.
Proof.
intro f; intros; unfold RiemannInt;
- case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x0,HUn_cv0);
+ case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x,HUn_cv);
eapply UL_sequence.
- apply u0.
+ apply HUn_cv0.
set (phi1 := fun N:nat => phi_sequence RinvN pr1 N);
change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x);
assert
@@ -1716,48 +1695,48 @@ Proof.
apply RinvN_cv.
intro; elim (H2 n); intros; split; try assumption.
intros; unfold phi2_m; simpl; unfold phi2_aux;
- case (Req_EM_T t a); case (Req_EM_T t b); intros.
- rewrite e0; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ destruct (Req_EM_T t a) as [Heqa|Hneqa]; destruct (Req_EM_T t b) as [Heqb|Hneqb].
+ rewrite Heqa; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
- pattern a at 3; rewrite <- e0; apply H3; assumption.
- rewrite e; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ pattern a at 3; rewrite <- Heqa; apply H3; assumption.
+ rewrite Heqa; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
- pattern a at 3; rewrite <- e; apply H3; assumption.
- rewrite e; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ pattern a at 3; rewrite <- Heqa; apply H3; assumption.
+ rewrite Heqb; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
- pattern b at 3; rewrite <- e; apply H3; assumption.
+ pattern b at 3; rewrite <- Heqb; apply H3; assumption.
replace (f t) with (g t).
apply H3; assumption.
symmetry ; apply H0; elim H5; clear H5; intros.
assert (H7 : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n2; assumption ].
+ unfold Rmin; destruct (Rle_dec a b) as [Heqab|Hneqab];
+ [ reflexivity | elim Hneqab; assumption ].
assert (H8 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n2; assumption ].
+ unfold Rmax; destruct (Rle_dec a b) as [Heqab|Hneqab];
+ [ reflexivity | elim Hneqab; assumption ].
rewrite H7 in H5; rewrite H8 in H6; split.
- elim H5; intro; [ assumption | elim n1; symmetry ; assumption ].
- elim H6; intro; [ assumption | elim n0; assumption ].
+ elim H5; intro; [ assumption | elim Hneqa; symmetry ; assumption ].
+ elim H6; intro; [ assumption | elim Hneqb; assumption ].
cut (forall N:nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)).
- intro; unfold Un_cv; intros; elim (u _ H4); intros; exists x1; intros;
+ intro; unfold Un_cv; intros; elim (HUn_cv _ H4); intros; exists x1; intros;
rewrite (H3 n); apply H5; assumption.
intro; apply Rle_antisym.
apply StepFun_P37; try assumption.
intros; unfold phi2_m; simpl; unfold phi2_aux;
- case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros.
- elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4).
- elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4).
- elim H3; intros; rewrite e in H5; elim (Rlt_irrefl _ H5).
+ destruct (Req_EM_T x1 a) as [Heqa|Hneqa]; destruct (Req_EM_T x1 b) as [Heqb|Hneqb].
+ elim H3; intros; rewrite Heqa in H4; elim (Rlt_irrefl _ H4).
+ elim H3; intros; rewrite Heqa in H4; elim (Rlt_irrefl _ H4).
+ elim H3; intros; rewrite Heqb in H5; elim (Rlt_irrefl _ H5).
right; reflexivity.
apply StepFun_P37; try assumption.
intros; unfold phi2_m; simpl; unfold phi2_aux;
- case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros.
- elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4).
- elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4).
- elim H3; intros; rewrite e in H5; elim (Rlt_irrefl _ H5).
+ destruct (Req_EM_T x1 a) as [ -> |Hneqa].
+ elim H3; intros; elim (Rlt_irrefl _ H4).
+ destruct (Req_EM_T x1 b) as [ -> |Hneqb].
+ elim H3; intros; elim (Rlt_irrefl _ H5).
right; reflexivity.
intro; assert (H2 := pre (phi2 N)); unfold IsStepFun in H2;
unfold is_subdivision in H2; elim H2; clear H2; intros l [lf H2];
@@ -1773,21 +1752,19 @@ Proof.
apply le_O_n.
apply lt_trans with (pred (Rlength l)); [ assumption | apply lt_pred_n_n ].
apply neq_O_lt; intro; rewrite <- H12 in H6; discriminate.
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H11 : pos_Rl l (S i) <= b).
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l); intros; apply H11.
assumption.
apply lt_le_S; assumption.
apply lt_pred_n_n; apply neq_O_lt; intro; rewrite <- H13 in H6; discriminate.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- elim H7; clear H7; intros; unfold phi2_aux; case (Req_EM_T x1 a);
- case (Req_EM_T x1 b); intros.
- rewrite e in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
- rewrite e in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H7)).
- rewrite e in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
+ unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
+ elim H7; clear H7; intros; unfold phi2_aux; destruct (Req_EM_T x1 a) as [Heq|Hneq];
+ destruct (Req_EM_T x1 b) as [Heq'|Hneq'].
+ rewrite Heq' in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
+ rewrite Heq in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H7)).
+ rewrite Heq' in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
reflexivity.
Qed.
@@ -1850,17 +1827,17 @@ Proof.
intros; replace (primitive h pr a) with 0.
replace (RiemannInt pr0) with (primitive h pr b).
ring.
- unfold primitive; case (Rle_dec a b); case (Rle_dec b b); intros;
+ unfold primitive; destruct (Rle_dec a b) as [Hle|[]]; destruct (Rle_dec b b) as [Hle'|Hnle'];
[ apply RiemannInt_P5
- | elim n; right; reflexivity
- | elim n; assumption
- | elim n0; assumption ].
- symmetry ; unfold primitive; case (Rle_dec a a);
- case (Rle_dec a b); intros;
+ | destruct Hnle'; right; reflexivity
+ | assumption
+ | assumption].
+ symmetry ; unfold primitive; destruct (Rle_dec a a) as [Hle|[]];
+ destruct (Rle_dec a b) as [Hle'|Hnle'];
[ apply RiemannInt_P9
- | elim n; assumption
- | elim n; right; reflexivity
- | elim n0; right; reflexivity ].
+ | elim Hnle'; assumption
+ | right; reflexivity
+ | right; reflexivity ].
Qed.
Lemma RiemannInt_P21 :
@@ -1904,34 +1881,29 @@ Proof.
intro; cut (IsStepFun psi3 a c).
intro; split with (mkStepFun X); split with (mkStepFun X2); simpl;
split.
- intros; unfold phi3, psi3; case (Rle_dec t b); case (Rle_dec a t);
- intros.
+ intros; unfold phi3, psi3; case (Rle_dec t b) as [|Hnle]; case (Rle_dec a t) as [|Hnle'].
elim H1; intros; apply H3.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
split; assumption.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- elim n; replace a with (Rmin a c).
+ unfold Rmax; decide (Rle_dec a b) with Hyp1; reflexivity.
+ unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
+ elim Hnle'; replace a with (Rmin a c).
elim H0; intros; assumption.
- unfold Rmin; case (Rle_dec a c); intro;
- [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
+ unfold Rmin; case (Rle_dec a c) as [|[]];
+ [ reflexivity | apply Rle_trans with b; assumption ].
elim H2; intros; apply H3.
replace (Rmax b c) with (Rmax a c).
elim H0; intros; split; try assumption.
replace (Rmin b c) with b.
auto with real.
- unfold Rmin; case (Rle_dec b c); intro;
- [ reflexivity | elim n0; assumption ].
- unfold Rmax; case (Rle_dec a c); case (Rle_dec b c); intros;
- try (elim n0; assumption || elim n0; apply Rle_trans with b; assumption).
- reflexivity.
- elim n; replace a with (Rmin a c).
+ unfold Rmin; decide (Rle_dec b c) with Hyp2; reflexivity.
+ unfold Rmax; decide (Rle_dec b c) with Hyp2; case (Rle_dec a c) as [|[]];
+ [ reflexivity | apply Rle_trans with b; assumption ].
+ elim Hnle'; replace a with (Rmin a c).
elim H0; intros; assumption.
- unfold Rmin; case (Rle_dec a c); intro;
- [ reflexivity | elim n1; apply Rle_trans with b; assumption ].
+ unfold Rmin; case (Rle_dec a c) as [|[]];
+ [ reflexivity | apply Rle_trans with b; assumption ].
rewrite <- (StepFun_P43 X0 X1 X2).
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (mkStepFun X0)) + Rabs (RiemannInt_SF (mkStepFun X1))).
@@ -1945,33 +1917,33 @@ Proof.
apply Rle_antisym.
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
- case (Rle_dec a x); case (Rle_dec x b); intros;
- [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0))
+ destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
+ [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H0))
| right; reflexivity
- | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
- | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
- case (Rle_dec a x); case (Rle_dec x b); intros;
- [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0))
+ destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
+ [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H0))
| right; reflexivity
- | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
- | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply Rle_antisym.
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
- case (Rle_dec a x); case (Rle_dec x b); intros;
+ destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ right; reflexivity
- | elim n; left; assumption
- | elim n; left; assumption
- | elim n0; left; assumption ].
+ | elim Hnle'; left; assumption
+ | elim Hnle; left; assumption
+ | elim Hnle; left; assumption ].
apply StepFun_P37; try assumption.
simpl; intros; unfold psi3; elim H0; clear H0; intros;
- case (Rle_dec a x); case (Rle_dec x b); intros;
+ destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
[ right; reflexivity
- | elim n; left; assumption
- | elim n; left; assumption
- | elim n0; left; assumption ].
+ | elim Hnle'; left; assumption
+ | elim Hnle; left; assumption
+ | elim Hnle; left; assumption ].
apply StepFun_P46 with b; assumption.
assert (H3 := pre psi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
@@ -1988,14 +1960,14 @@ Proof.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmin; case (Rle_dec b c); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec b c) with Hyp2;
+ reflexivity.
elim H7; intros; assumption.
- case (Rle_dec a x); case (Rle_dec x b); intros;
- [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10))
+ destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle'];
+ [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H10))
| reflexivity
- | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
- | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
assert (H3 := pre psi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
@@ -2010,8 +1982,7 @@ Proof.
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hyp1; reflexivity.
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
replace a with (Rmin a b).
@@ -2020,11 +1991,9 @@ Proof.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
left; elim H7; intros; assumption.
- case (Rle_dec a x); case (Rle_dec x b); intros; reflexivity || elim n;
- assumption.
+ decide (Rle_dec a x) with H11; decide (Rle_dec x b) with H10; reflexivity.
apply StepFun_P46 with b.
assert (H3 := pre phi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
@@ -2040,8 +2009,7 @@ Proof.
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hyp1; reflexivity.
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
replace a with (Rmin a b).
@@ -2050,10 +2018,9 @@ Proof.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
left; elim H7; intros; assumption.
- unfold phi3; case (Rle_dec a x); case (Rle_dec x b); intros;
+ unfold phi3; decide (Rle_dec a x) with H11; decide (Rle_dec x b) with H10;
reflexivity || elim n; assumption.
assert (H3 := pre phi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
@@ -2070,14 +2037,13 @@ Proof.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmin; case (Rle_dec b c); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec b c) with Hyp2; reflexivity.
elim H7; intros; assumption.
- unfold phi3; case (Rle_dec a x); case (Rle_dec x b); intros;
- [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10))
+ unfold phi3; destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle']; intros;
+ [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H10))
| reflexivity
- | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
- | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ]
+ | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ].
Qed.
Lemma RiemannInt_P22 :
@@ -2096,21 +2062,10 @@ Proof.
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
simpl; intros; apply H.
- replace (Rmin a b) with (Rmin a c).
- elim H5; intros; split; try assumption.
+ replace (Rmin a b) with (Rmin a c) by (rewrite 2!Rmin_left; eauto using Rle_trans).
+ destruct H5; split; try assumption.
apply Rle_trans with (Rmax a c); try assumption.
- replace (Rmax a b) with b.
- replace (Rmax a c) with c.
- assumption.
- unfold Rmax; case (Rle_dec a c); intro;
- [ reflexivity | elim n; assumption ].
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin; case (Rle_dec a c); case (Rle_dec a b); intros;
- [ reflexivity
- | elim n; apply Rle_trans with c; assumption
- | elim n; assumption
- | elim n0; assumption ].
+ apply Rle_max_compat_l; assumption.
rewrite Rabs_right.
assert (H5 : IsStepFun psi c b).
apply StepFun_P46 with a.
@@ -2128,15 +2083,11 @@ Proof.
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
- replace (Rmin a b) with a.
- replace (Rmax a b) with b.
- elim H6; intros; split; left.
+ rewrite Rmin_left; eauto using Rle_trans.
+ rewrite Rmax_right; eauto using Rle_trans.
+ destruct H6; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
apply RRle_abs.
@@ -2158,15 +2109,11 @@ Proof.
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
- replace (Rmin a b) with a.
- replace (Rmax a b) with b.
- elim H5; intros; split; left.
+ rewrite Rmin_left; eauto using Rle_trans.
+ rewrite Rmax_right; eauto using Rle_trans.
+ destruct H5; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
Qed.
@@ -2189,18 +2136,10 @@ Proof.
replace (Rmax a b) with (Rmax c b).
elim H5; intros; split; try assumption.
apply Rle_trans with (Rmin c b); try assumption.
- replace (Rmin a b) with a.
- replace (Rmin c b) with c.
- assumption.
- unfold Rmin; case (Rle_dec c b); intro;
- [ reflexivity | elim n; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmax; case (Rle_dec c b); case (Rle_dec a b); intros;
- [ reflexivity
- | elim n; apply Rle_trans with c; assumption
- | elim n; assumption
- | elim n0; assumption ].
+ rewrite Rmin_left; eauto using Rle_trans.
+ rewrite Rmin_left; eauto using Rle_trans.
+ rewrite Rmax_right; eauto using Rle_trans.
+ rewrite Rmax_right; eauto using Rle_trans.
rewrite Rabs_right.
assert (H5 : IsStepFun psi a c).
apply StepFun_P46 with b.
@@ -2218,15 +2157,11 @@ Proof.
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
- replace (Rmin a b) with a.
- replace (Rmax a b) with b.
- elim H6; intros; split; left.
+ rewrite Rmin_left; eauto using Rle_trans.
+ rewrite Rmax_right; eauto using Rle_trans.
+ destruct H6; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
apply RRle_abs.
@@ -2248,15 +2183,11 @@ Proof.
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
- replace (Rmin a b) with a.
- replace (Rmax a b) with b.
- elim H5; intros; split; left.
+ rewrite Rmin_left; eauto using Rle_trans.
+ rewrite Rmax_right; eauto using Rle_trans.
+ destruct H5; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
Qed.
@@ -2289,16 +2220,15 @@ Lemma RiemannInt_P25 :
a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Proof.
intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt;
- case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv);
- case (RiemannInt_exists pr3 RinvN RinvN_cv); intros;
+ case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x1,HUn_cv1);
+ case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x0,HUn_cv0);
+ case (RiemannInt_exists pr3 RinvN RinvN_cv) as (x,HUn_cv);
symmetry ; eapply UL_sequence.
- apply u.
+ apply HUn_cv.
unfold Un_cv; intros; assert (H0 : 0 < eps / 3).
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (u1 _ H0); clear u1; intros N1 H1; elim (u0 _ H0); clear u0;
- intros N2 H2;
+ destruct (HUn_cv1 _ H0) as (N1,H1); clear HUn_cv1; destruct (HUn_cv0 _ H0) as (N2,H2); clear HUn_cv0;
cut
(Un_cv
(fun n:nat =>
@@ -2355,7 +2285,7 @@ Proof.
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
- clear x u x0 x1 eps H H0 N1 H1 N2 H2;
+ clear x HUn_cv x0 x1 eps H H0 N1 H1 N2 H2;
assert
(H1 :
exists psi1 : nat -> StepFun a b,
@@ -2475,25 +2405,17 @@ Proof.
apply Rplus_le_compat.
apply H1.
elim H14; intros; split.
- replace (Rmin a c) with a.
+ rewrite Rmin_left; eauto using Rle_trans.
apply Rle_trans with b; try assumption.
left; assumption.
- unfold Rmin; case (Rle_dec a c); intro;
- [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
- replace (Rmax a c) with c.
+ rewrite Rmax_right; eauto using Rle_trans.
left; assumption.
- unfold Rmax; case (Rle_dec a c); intro;
- [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
apply H3.
elim H14; intros; split.
- replace (Rmin b c) with b.
+ rewrite Rmin_left; eauto using Rle_trans.
left; assumption.
- unfold Rmin; case (Rle_dec b c); intro;
- [ reflexivity | elim n0; assumption ].
- replace (Rmax b c) with c.
+ rewrite Rmax_right; eauto using Rle_trans.
left; assumption.
- unfold Rmax; case (Rle_dec b c); intro;
- [ reflexivity | elim n0; assumption ].
do 2
rewrite <-
(Rplus_comm
@@ -2507,26 +2429,18 @@ Proof.
apply Rplus_le_compat.
apply H1.
elim H14; intros; split.
- replace (Rmin a c) with a.
+ rewrite Rmin_left; eauto using Rle_trans.
left; assumption.
- unfold Rmin; case (Rle_dec a c); intro;
- [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
- replace (Rmax a c) with c.
+ rewrite Rmax_right; eauto using Rle_trans.
apply Rle_trans with b.
left; assumption.
assumption.
- unfold Rmax; case (Rle_dec a c); intro;
- [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
apply H8.
elim H14; intros; split.
- replace (Rmin a b) with a.
+ rewrite Rmin_left; trivial.
left; assumption.
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
- replace (Rmax a b) with b.
+ rewrite Rmax_right; trivial.
left; assumption.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n0; assumption ].
do 2 rewrite StepFun_P30.
do 2 rewrite Rmult_1_l;
replace
@@ -2569,27 +2483,27 @@ Lemma RiemannInt_P26 :
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Proof.
- intros; case (Rle_dec a b); case (Rle_dec b c); intros.
+ intros; destruct (Rle_dec a b) as [Hle|Hnle]; destruct (Rle_dec b c) as [Hle'|Hnle'].
apply RiemannInt_P25; assumption.
- case (Rle_dec a c); intro.
+ destruct (Rle_dec a c) as [Hle''|Hnle''].
assert (H : c <= b).
auto with real.
- rewrite <- (RiemannInt_P25 pr3 (RiemannInt_P1 pr2) pr1 r0 H);
+ rewrite <- (RiemannInt_P25 pr3 (RiemannInt_P1 pr2) pr1 Hle'' H);
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); ring.
assert (H : c <= a).
auto with real.
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2));
- rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr3) pr1 (RiemannInt_P1 pr2) H r);
+ rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr3) pr1 (RiemannInt_P1 pr2) H Hle);
rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); ring.
assert (H : b <= a).
auto with real.
- case (Rle_dec a c); intro.
- rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr1) pr3 pr2 H r0);
+ destruct (Rle_dec a c) as [Hle''|Hnle''].
+ rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr1) pr3 pr2 H Hle'');
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); ring.
assert (H0 : c <= a).
auto with real.
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1));
- rewrite <- (RiemannInt_P25 pr2 (RiemannInt_P1 pr3) (RiemannInt_P1 pr1) r H0);
+ rewrite <- (RiemannInt_P25 pr2 (RiemannInt_P1 pr3) (RiemannInt_P1 pr1) Hle' H0);
rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); ring.
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1));
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2));
@@ -2614,13 +2528,13 @@ Proof.
assert (H4 : 0 < del).
unfold del; unfold Rmin; case (Rle_dec (b - x) (x - a));
intro.
- case (Rle_dec x0 (b - x)); intro;
+ destruct (Rle_dec x0 (b - x)) as [Hle|Hnle];
[ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
- case (Rle_dec x0 (x - a)); intro;
+ destruct (Rle_dec x0 (x - a)) as [Hle'|Hnle'];
[ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
split with (mkposreal _ H4); intros;
assert (H7 : Riemann_integrable f x (x + h0)).
- case (Rle_dec x (x + h0)); intro.
+ destruct (Rle_dec x (x + h0)) as [Hle''|Hnle''].
apply continuity_implies_RiemannInt; try assumption.
intros; apply C0; elim H7; intros; split.
apply Rle_trans with x; [ left; assumption | assumption ].
@@ -2657,7 +2571,7 @@ Proof.
with ((RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0).
replace (RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) with
(RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))).
- unfold Rdiv; rewrite Rabs_mult; case (Rle_dec x (x + h0)); intro.
+ unfold Rdiv; rewrite Rabs_mult; destruct (Rle_dec x (x + h0)) as [Hle|Hnle].
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
@@ -2676,10 +2590,10 @@ Proof.
apply Rabs_pos.
apply RiemannInt_P19; try assumption.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
- unfold fct_cte; case (Req_dec x x1); intro.
+ unfold fct_cte; destruct (Req_dec x x1) as [H9|H9].
rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
assumption.
- elim H3; intros; left; apply H11.
+ elim H3; intros; left; apply H11.
repeat split.
assumption.
rewrite Rabs_right.
@@ -2705,7 +2619,7 @@ Proof.
apply Rinv_r_sym.
assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat.
- elim r; intro.
+ elim Hle; intro.
apply Rplus_lt_reg_l with x; rewrite Rplus_0_r; assumption.
elim H5; symmetry ; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r;
assumption.
@@ -2790,9 +2704,11 @@ Proof.
cut (a <= x + h0).
cut (x + h0 <= b).
intros; unfold primitive.
- case (Rle_dec a (x + h0)); case (Rle_dec (x + h0) b); case (Rle_dec a x);
- case (Rle_dec x b); intros; try (elim n; assumption || left; assumption).
- rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r0 r) H7 (FTC_P1 h C0 r2 r1)); ring.
+ assert (H10: a <= x) by (left; assumption).
+ assert (H11: x <= b) by (left; assumption).
+ decide (Rle_dec a (x + h0)) with H9; decide (Rle_dec (x + h0) b) with H8;
+ decide (Rle_dec a x) with H10; decide (Rle_dec x b) with H11.
+ rewrite <- (RiemannInt_P26 (FTC_P1 h C0 H10 H11) H7 (FTC_P1 h C0 H9 H8)); ring.
apply Rplus_le_reg_l with (- x); replace (- x + (x + h0)) with h0;
[ idtac | ring ].
rewrite Rplus_comm; apply Rle_trans with (Rabs h0).
@@ -2852,11 +2768,11 @@ Proof.
unfold R_dist; intros; set (del := Rmin x0 (Rmin x1 (b - a)));
assert (H10 : 0 < del).
unfold del; unfold Rmin; case (Rle_dec x1 (b - a)); intros.
- case (Rle_dec x0 x1); intro;
+ destruct (Rle_dec x0 x1) as [Hle|Hnle];
[ apply (cond_pos x0) | elim H9; intros; assumption ].
- case (Rle_dec x0 (b - a)); intro;
+ destruct (Rle_dec x0 (b - a)) as [Hle'|Hnle'];
[ apply (cond_pos x0) | apply Rlt_Rminus; assumption ].
- split with (mkposreal _ H10); intros; case (Rcase_abs h0); intro.
+ split with (mkposreal _ H10); intros; destruct (Rcase_abs h0) as [Hle|Hnle].
assert (H14 : b + h0 < b).
pattern b at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
@@ -2955,11 +2871,11 @@ Proof.
| assumption ].
cut (a <= b + h0).
cut (b + h0 <= b).
- intros; unfold primitive; case (Rle_dec a (b + h0));
- case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b);
- intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
- rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r3 r2) H13 (FTC_P1 h C0 r1 r0)); ring.
- elim n; assumption.
+ intros; unfold primitive; destruct (Rle_dec a (b + h0)) as [Hle'|Hnle'];
+ destruct (Rle_dec (b + h0) b) as [Hle''|[]]; destruct (Rle_dec a b) as [Hleab|[]]; destruct (Rle_dec b b) as [Hlebb|[]];
+ assumption || (right; reflexivity) || (try (left; assumption)).
+ rewrite <- (RiemannInt_P26 (FTC_P1 h C0 Hle' Hle'') H13 (FTC_P1 h C0 Hleab Hlebb)); ring.
+ elim Hnle'; assumption.
left; assumption.
apply Rplus_le_reg_l with (- a - h0).
replace (- a - h0 + a) with (- h0); [ idtac | ring ].
@@ -2977,22 +2893,22 @@ Proof.
[ assumption | unfold del; apply Rmin_l ].
assert (H14 : b < b + h0).
pattern b at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
- assert (H14 := Rge_le _ _ r); elim H14; intro.
+ assert (H14 := Rge_le _ _ Hnle); elim H14; intro.
assumption.
elim H11; symmetry ; assumption.
- unfold primitive; case (Rle_dec a (b + h0));
- case (Rle_dec (b + h0) b); intros;
- [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H14))
+ unfold primitive; destruct (Rle_dec a (b + h0)) as [Hle|[]];
+ destruct (Rle_dec (b + h0) b) as [Hle'|Hnle'];
+ [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H14))
| unfold f_b; reflexivity
- | elim n; left; apply Rlt_trans with b; assumption
- | elim n0; left; apply Rlt_trans with b; assumption ].
+ | left; apply Rlt_trans with b; assumption
+ | left; apply Rlt_trans with b; assumption ].
unfold f_b; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive;
- case (Rle_dec a b); case (Rle_dec b b); intros;
+ destruct (Rle_dec a b) as [Hle'|Hnle']; destruct (Rle_dec b b) as [Hle''|[]];
[ apply RiemannInt_P5
- | elim n; right; reflexivity
- | elim n; left; assumption
- | elim n; right; reflexivity ].
+ | right; reflexivity
+ | elim Hnle'; left; assumption
+ | right; reflexivity ].
(*****)
set (f_a := fun x:R => f a * (x - a)); rewrite <- H2;
assert (H3 : derivable_pt_lim f_a a (f a)).
@@ -3026,16 +2942,18 @@ Proof.
apply (cond_pos x0).
apply Rlt_Rminus; assumption.
split with (mkposreal _ H9).
- intros; case (Rcase_abs h0); intro.
+ intros; destruct (Rcase_abs h0) as [Hle|Hnle].
assert (H12 : a + h0 < a).
pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
unfold primitive.
- case (Rle_dec a (a + h0)); case (Rle_dec (a + h0) b); case (Rle_dec a a);
- case (Rle_dec a b); intros;
- try (elim n; left; assumption) || (elim n; right; reflexivity).
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H12)).
- elim n; left; apply Rlt_trans with a; assumption.
+ destruct (Rle_dec a (a + h0)) as [Hle'|Hnle'];
+ destruct (Rle_dec (a + h0) b) as [Hle''|Hnle''];
+ destruct (Rle_dec a a) as [Hleaa|[]];
+ destruct (Rle_dec a b) as [Hleab|[]];
+ try (left; assumption) || (right; reflexivity).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H12)).
+ elim Hnle''; left; apply Rlt_trans with a; assumption.
rewrite RiemannInt_P9; replace 0 with (f_a a).
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
@@ -3043,10 +2961,10 @@ Proof.
[ assumption | unfold del; apply Rmin_l ].
unfold f_a; ring.
unfold f_a; ring.
- elim n; left; apply Rlt_trans with a; assumption.
+ elim Hnle''; left; apply Rlt_trans with a; assumption.
assert (H12 : a < a + h0).
pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
- assert (H12 := Rge_le _ _ r); elim H12; intro.
+ assert (H12 := Rge_le _ _ Hnle); elim H12; intro.
assumption.
elim H10; symmetry ; assumption.
assert (H13 : Riemann_integrable f a (a + h0)).
@@ -3119,7 +3037,7 @@ Proof.
rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym;
[ reflexivity | assumption ].
- apply Rle_ge; left; apply Rinv_0_lt_compat; assert (H14 := Rge_le _ _ r);
+ apply Rle_ge; left; apply Rinv_0_lt_compat; assert (H14 := Rge_le _ _ Hnle);
elim H14; intro.
assumption.
elim H10; symmetry ; assumption.
@@ -3134,13 +3052,13 @@ Proof.
rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ ring | assumption ].
cut (a <= a + h0).
cut (a + h0 <= b).
- intros; unfold primitive; case (Rle_dec a (a + h0));
- case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
- intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
+ intros; unfold primitive.
+ decide (Rle_dec (a+h0) b) with H14.
+ decide (Rle_dec a a) with (Rle_refl a).
+ decide (Rle_dec a (a+h0)) with H15.
+ decide (Rle_dec a b) with h.
rewrite RiemannInt_P9; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply RiemannInt_P5.
- elim n; assumption.
- elim n; assumption.
2: left; assumption.
apply Rplus_le_reg_l with (- a); replace (- a + (a + h0)) with h0;
[ idtac | ring ].
@@ -3187,18 +3105,18 @@ Proof.
unfold derivable_pt_lim; intros; elim (H2 _ H4); intros;
elim (H3 _ H4); intros; set (del := Rmin x0 x1).
assert (H7 : 0 < del).
- unfold del; unfold Rmin; case (Rle_dec x0 x1); intro.
+ unfold del; unfold Rmin; destruct (Rle_dec x0 x1) as [Hle|Hnle].
apply (cond_pos x0).
apply (cond_pos x1).
- split with (mkposreal _ H7); intros; case (Rcase_abs h0); intro.
+ split with (mkposreal _ H7); intros; destruct (Rcase_abs h0) as [Hle|Hnle].
assert (H10 : a + h0 < a).
pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
- rewrite H1; unfold primitive; case (Rle_dec a (a + h0));
- case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
- intros; try (elim n; right; assumption || reflexivity).
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H10)).
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
+ rewrite H1; unfold primitive.
+ apply (decide_left (Rle_dec a b) h); intro h'.
+ assert (H11:~ a<=a+h0) by auto using Rlt_not_le.
+ decide (Rle_dec a (a+h0)) with H11.
+ decide (Rle_dec a a) with (Rle_refl a).
rewrite RiemannInt_P9; replace 0 with (f_a a).
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
@@ -3206,27 +3124,26 @@ Proof.
unfold del; apply Rmin_l.
unfold f_a; ring.
unfold f_a; ring.
- elim n; rewrite <- H0; left; assumption.
assert (H10 : a < a + h0).
pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
- assert (H10 := Rge_le _ _ r); elim H10; intro.
+ assert (H10 := Rge_le _ _ Hnle); elim H10; intro.
assumption.
elim H8; symmetry ; assumption.
- rewrite H0 in H1; rewrite H1; unfold primitive;
- case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b);
- case (Rle_dec a b); case (Rle_dec b b); intros;
- try (elim n; right; assumption || reflexivity).
- rewrite H0 in H10; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
- repeat rewrite RiemannInt_P9.
- replace (RiemannInt (FTC_P1 h C0 r1 r0)) with (f_b b).
+ rewrite H0 in H1; rewrite H1; unfold primitive.
+ decide (Rle_dec a b) with h.
+ decide (Rle_dec b b) with (Rle_refl b).
+ assert (H12 : a<=b+h0) by (eauto using Rlt_le_trans with real).
+ decide (Rle_dec a (b+h0)) with H12.
+ rewrite H0 in H10.
+ assert (H13 : ~b+h0<=b) by (auto using Rlt_not_le).
+ decide (Rle_dec (b+h0) b) with H13.
+ replace (RiemannInt (FTC_P1 h C0 hbis H11)) with (f_b b).
fold (f_b (b + h0)).
apply H6; try assumption.
apply Rlt_le_trans with del; try assumption.
unfold del; apply Rmin_r.
unfold f_b; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rmult_0_r; rewrite Rplus_0_l; apply RiemannInt_P5.
- elim n; rewrite <- H0; left; assumption.
- elim n0; rewrite <- H0; left; assumption.
Qed.
Lemma RiemannInt_P29 :
@@ -3264,7 +3181,7 @@ Qed.
Lemma RiemannInt_P32 :
forall (f:C1_fun) (a b:R), Riemann_integrable (derive f (diff0 f)) a b.
Proof.
- intro f; intros; case (Rle_dec a b); intro;
+ intro f; intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply continuity_implies_RiemannInt; try assumption; intros;
apply (cont1 f)
| assert (H : b <= a);
@@ -3294,7 +3211,7 @@ Lemma FTC_Riemann :
forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
RiemannInt pr = f b - f a.
Proof.
- intro f; intros; case (Rle_dec a b); intro;
+ intro f; intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply RiemannInt_P33; assumption
| assert (H : b <= a);
[ auto with real
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
index 9de60bb5d..9466ed8e6 100644
--- a/theories/Reals/RiemannInt_SF.v
+++ b/theories/Reals/RiemannInt_SF.v
@@ -173,8 +173,8 @@ Lemma StepFun_P1 :
forall (a b:R) (f:StepFun a b),
adapted_couple f a b (subdivision f) (subdivision_val f).
Proof.
- intros a b f; unfold subdivision_val; case (projT2 (pre f)); intros;
- apply a0.
+ intros a b f; unfold subdivision_val; case (projT2 (pre f)) as (x,H);
+ apply H.
Qed.
Lemma StepFun_P2 :
@@ -201,19 +201,17 @@ Proof.
intros; unfold adapted_couple; repeat split.
unfold ordered_Rlist; intros; simpl in H0; inversion H0;
[ simpl; assumption | elim (le_Sn_O _ H2) ].
- simpl; unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- simpl; unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ simpl; unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
+ simpl; unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
unfold constant_D_eq, open_interval; intros; simpl in H0;
inversion H0; [ reflexivity | elim (le_Sn_O _ H3) ].
Qed.
Lemma StepFun_P4 : forall a b c:R, IsStepFun (fct_cte c) a b.
Proof.
- intros; unfold IsStepFun; case (Rle_dec a b); intro.
+ intros; unfold IsStepFun; destruct (Rle_dec a b) as [Hle|Hnle].
apply existT with (cons a (cons b nil)); unfold is_subdivision;
- apply existT with (cons c nil); apply (StepFun_P3 c r).
+ apply existT with (cons c nil); apply (StepFun_P3 c Hle).
apply existT with (cons b (cons a nil)); unfold is_subdivision;
apply existT with (cons c nil); apply StepFun_P2;
apply StepFun_P3; auto with real.
@@ -244,17 +242,15 @@ Lemma StepFun_P7 :
Proof.
unfold adapted_couple; intros; decompose [and] H0; clear H0;
assert (H5 : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with H; reflexivity.
assert (H7 : r2 <= b).
rewrite H5 in H2; rewrite <- H2; apply RList_P7;
[ assumption | simpl; right; left; reflexivity ].
repeat split.
apply RList_P4 with r1; assumption.
- rewrite H5 in H2; unfold Rmin; case (Rle_dec r2 b); intro;
- [ reflexivity | elim n; assumption ].
- unfold Rmax; case (Rle_dec r2 b); intro;
- [ rewrite H5 in H2; rewrite <- H2; reflexivity | elim n; assumption ].
+ rewrite H5 in H2; unfold Rmin; decide (Rle_dec r2 b) with H7; reflexivity.
+ unfold Rmax; decide (Rle_dec r2 b) with H7.
+ rewrite H5 in H2; rewrite <- H2; reflexivity.
simpl in H4; simpl; apply INR_eq; apply Rplus_eq_reg_l with 1;
do 2 rewrite (Rplus_comm 1); do 2 rewrite <- S_INR;
rewrite H4; reflexivity.
@@ -340,33 +336,28 @@ Proof.
apply H6.
rewrite <- Hyp_eq; rewrite H3 in H1; unfold adapted_couple in H1;
decompose [and] H1; clear H1; simpl in H9; rewrite H9;
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with H0; reflexivity.
elim H6; clear H6; intros l' [lf' H6]; case (Req_dec t2 b); intro.
exists (cons a (cons b nil)); exists (cons r1 nil);
unfold adapted_couple_opt; unfold adapted_couple;
repeat split.
unfold ordered_Rlist; intros; simpl in H8; inversion H8;
[ simpl; assumption | elim (le_Sn_O _ H10) ].
- simpl; unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- simpl; unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ simpl; unfold Rmin; decide (Rle_dec a b) with H0; reflexivity.
+ simpl; unfold Rmax; decide (Rle_dec a b) with H0; reflexivity.
intros; simpl in H8; inversion H8.
unfold constant_D_eq, open_interval; intros; simpl;
simpl in H9; rewrite H3 in H1; unfold adapted_couple in H1;
decompose [and] H1; apply (H16 0%nat).
simpl; apply lt_O_Sn.
unfold open_interval; simpl; rewrite H7; simpl in H13;
- rewrite H13; unfold Rmin; case (Rle_dec a b);
- intro; [ assumption | elim n; assumption ].
+ rewrite H13; unfold Rmin; decide (Rle_dec a b) with H0; assumption.
elim (le_Sn_O _ H10).
intros; simpl in H8; elim (lt_n_O _ H8).
intros; simpl in H8; inversion H8;
[ simpl; assumption | elim (le_Sn_O _ H10) ].
assert (Hyp_min : Rmin t2 b = t2).
- unfold Rmin; case (Rle_dec t2 b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec t2 b) with H5; reflexivity.
unfold adapted_couple in H6; elim H6; clear H6; intros;
elim (RList_P20 _ (StepFun_P9 H6 H7)); intros s1 [s2 [s3 H9]];
induction lf' as [| r2 lf' Hreclf'].
@@ -391,18 +382,16 @@ Proof.
apply (H16 (S i)); simpl; assumption.
simpl; simpl in H14; rewrite H14; reflexivity.
simpl; simpl in H18; rewrite H18; unfold Rmax;
- case (Rle_dec a b); case (Rle_dec t2 b); intros; reflexivity || elim n;
- assumption.
+ decide (Rle_dec a b) with H0; decide (Rle_dec t2 b) with H5; reflexivity.
simpl; simpl in H20; apply H20.
intros; simpl in H1; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl; simpl in H6; case (total_order_T x t2); intro.
- elim s; intro.
+ simpl; simpl in H6; destruct (total_order_T x t2) as [[Hlt|Heq]|Hgt].
apply (H17 0%nat);
[ simpl; apply lt_O_Sn
| unfold open_interval; simpl; elim H6; intros; split;
assumption ].
- rewrite b0; assumption.
+ rewrite Heq; assumption.
rewrite H10; apply (H22 0%nat);
[ simpl; apply lt_O_Sn
| unfold open_interval; simpl; replace s1 with t2;
@@ -440,8 +429,7 @@ Proof.
assumption.
simpl; simpl in H19; apply H19.
rewrite H9; simpl; simpl in H13; rewrite H13; unfold Rmax;
- case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n;
- assumption.
+ decide (Rle_dec t2 b) with H5; decide (Rle_dec a b) with H0; reflexivity.
rewrite H9; simpl; simpl in H15; rewrite H15; reflexivity.
intros; simpl in H1; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
@@ -483,8 +471,7 @@ Proof.
assumption.
simpl; simpl in H18; apply H18.
rewrite H9; simpl; simpl in H12; rewrite H12; unfold Rmax;
- case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n;
- assumption.
+ decide (Rle_dec t2 b) with H5; decide (Rle_dec a b) with H0; reflexivity.
rewrite H9; simpl; simpl in H14; rewrite H14; reflexivity.
intros; simpl in H1; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
@@ -511,8 +498,7 @@ Proof.
clear H1; clear H H7 H9; cut (Rmax a b = b);
[ intro; rewrite H in H5; rewrite <- H5; apply RList_P7;
[ assumption | simpl; right; left; reflexivity ]
- | unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ] ].
+ | unfold Rmax; decide (Rle_dec a b) with H0; reflexivity ].
Qed.
Lemma StepFun_P11 :
@@ -528,7 +514,7 @@ Proof.
simpl in H10; simpl in H5; rewrite H10; rewrite H5; reflexivity.
assert (H14 := H3 0%nat (lt_O_Sn _)); simpl in H14; elim H14; intro.
assert (H15 := H7 0%nat (lt_O_Sn _)); simpl in H15; elim H15; intro.
- rewrite <- H12 in H1; case (Rle_dec r1 s2); intro; try assumption.
+ rewrite <- H12 in H1; destruct (Rle_dec r1 s2) as [Hle|Hnle]; try assumption.
assert (H16 : s2 < r1); auto with real.
induction s3 as [| r0 s3 Hrecs3].
simpl in H9; rewrite H9 in H16; cut (r1 <= Rmax a b).
@@ -662,12 +648,11 @@ Lemma StepFun_P13 :
adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2) -> r1 <= s2.
Proof.
- intros; case (total_order_T a b); intro.
- elim s; intro.
- eapply StepFun_P11; [ apply a0 | apply H0 | apply H1 ].
+ intros; destruct (total_order_T a b) as [[Hlt|Heq]|Hgt].
+ eapply StepFun_P11; [ apply Hlt | apply H0 | apply H1 ].
elim H; assumption.
eapply StepFun_P11;
- [ apply r0 | apply StepFun_P2; apply H0 | apply StepFun_P12; apply H1 ].
+ [ apply Hgt | apply StepFun_P2; apply H0 | apply StepFun_P12; apply H1 ].
Qed.
Lemma StepFun_P14 :
@@ -689,11 +674,9 @@ Proof.
case (Req_dec a b); intro.
rewrite (StepFun_P8 H2 H4); rewrite (StepFun_P8 H H4); reflexivity.
assert (Hyp_min : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with H1; reflexivity.
assert (Hyp_max : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with H1; reflexivity.
elim (RList_P20 _ (StepFun_P9 H H4)); intros s1 [s2 [s3 H5]]; rewrite H5 in H;
rewrite H5; induction lf1 as [| r3 lf1 Hreclf1].
unfold adapted_couple in H2; decompose [and] H2;
@@ -883,8 +866,8 @@ Lemma StepFun_P15 :
adapted_couple f a b l1 lf1 ->
adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
Proof.
- intros; case (Rle_dec a b); intro;
- [ apply (StepFun_P14 r H H0)
+ intros; destruct (Rle_dec a b) as [Hle|Hnle];
+ [ apply (StepFun_P14 Hle H H0)
| assert (H1 : b <= a);
[ auto with real
| eapply StepFun_P14;
@@ -897,8 +880,8 @@ Lemma StepFun_P16 :
exists l' : Rlist,
(exists lf' : Rlist, adapted_couple_opt f a b l' lf').
Proof.
- intros; case (Rle_dec a b); intro;
- [ apply (StepFun_P10 r H)
+ intros; destruct (Rle_dec a b) as [Hle|Hnle];
+ [ apply (StepFun_P10 Hle H)
| assert (H1 : b <= a);
[ auto with real
| assert (H2 := StepFun_P10 H1 (StepFun_P2 H)); elim H2;
@@ -1003,11 +986,9 @@ Lemma StepFun_P22 :
Proof.
unfold is_subdivision; intros a b f g lf lg Hyp X X0; elim X; elim X0;
clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hyp; reflexivity.
assert (Hyp_max : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hyp; reflexivity.
apply existT with (FF (cons_ORlist lf lg) f); unfold adapted_couple in p, p0;
decompose [and] p; decompose [and] p0; clear p p0;
rewrite Hyp_min in H6; rewrite Hyp_min in H1; rewrite Hyp_max in H0;
@@ -1255,11 +1236,9 @@ Lemma StepFun_P24 :
Proof.
unfold is_subdivision; intros a b f g lf lg Hyp X X0; elim X; elim X0;
clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with Hyp; reflexivity.
assert (Hyp_max : Rmax a b = b).
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with Hyp; reflexivity.
apply existT with (FF (cons_ORlist lf lg) g); unfold adapted_couple in p, p0;
decompose [and] p; decompose [and] p0; clear p p0;
rewrite Hyp_min in H1; rewrite Hyp_min in H6; rewrite Hyp_max in H0;
@@ -1652,7 +1631,7 @@ Lemma StepFun_P34 :
a <= b ->
Rabs (RiemannInt_SF f) <= RiemannInt_SF (mkStepFun (StepFun_P32 f)).
Proof.
- intros; unfold RiemannInt_SF; case (Rle_dec a b); intro.
+ intros; unfold RiemannInt_SF; decide (Rle_dec a b) with H.
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P32 f)))
(subdivision (mkStepFun (StepFun_P32 f)))) with
@@ -1663,7 +1642,6 @@ Proof.
apply StepFun_P17 with (fun x:R => Rabs (f x)) a b;
[ apply StepFun_P31; apply StepFun_P1
| apply (StepFun_P1 (mkStepFun (StepFun_P32 f))) ].
- elim n; assumption.
Qed.
Lemma StepFun_P35 :
@@ -1741,24 +1719,21 @@ Lemma StepFun_P36 :
(forall x:R, a < x < b -> f x <= g x) ->
RiemannInt_SF f <= RiemannInt_SF g.
Proof.
- intros; unfold RiemannInt_SF; case (Rle_dec a b); intro.
+ intros; unfold RiemannInt_SF; decide (Rle_dec a b) with H.
replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l).
replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l).
unfold is_subdivision in X; elim X; clear X; intros;
unfold adapted_couple in p; decompose [and] p; clear p;
assert (H5 : Rmin a b = a);
- [ unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ]
+ [ unfold Rmin; decide (Rle_dec a b) with H; reflexivity
| assert (H7 : Rmax a b = b);
- [ unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ]
+ [ unfold Rmax; decide (Rle_dec a b) with H; reflexivity
| rewrite H5 in H3; rewrite H7 in H2; eapply StepFun_P35 with a b;
assumption ] ].
apply StepFun_P17 with (fe g) a b;
[ apply StepFun_P21; assumption | apply StepFun_P1 ].
apply StepFun_P17 with (fe f) a b;
[ apply StepFun_P21; assumption | apply StepFun_P1 ].
- elim n; assumption.
Qed.
Lemma StepFun_P37 :
@@ -1819,8 +1794,7 @@ Proof.
induction i as [| i Hreci].
simpl; rewrite H12; replace (Rmin r1 b) with r1.
simpl in H0; rewrite <- H0; apply (H 0%nat); simpl; apply lt_O_Sn.
- unfold Rmin; case (Rle_dec r1 b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec r1 b) with H7; reflexivity.
apply (H10 i); apply lt_S_n.
replace (S (pred (Rlength lg))) with (Rlength lg).
apply H9.
@@ -1829,8 +1803,7 @@ Proof.
simpl; assert (H14 : a <= b).
rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7;
[ assumption | left; reflexivity ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec a b) with H14; reflexivity.
assert (H14 : a <= b).
rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7;
[ assumption | left; reflexivity ].
@@ -1838,14 +1811,13 @@ Proof.
rewrite <- H11; induction lg as [| r0 lg Hreclg].
simpl in H13; discriminate.
reflexivity.
- unfold Rmax; case (Rle_dec a b); case (Rle_dec r1 b); intros;
- reflexivity || elim n; assumption.
+ unfold Rmax; decide (Rle_dec a b) with H14; decide (Rle_dec r1 b) with H7;
+ reflexivity.
simpl; rewrite H13; reflexivity.
intros; simpl in H9; induction i as [| i Hreci].
unfold constant_D_eq, open_interval; simpl; intros;
assert (H16 : Rmin r1 b = r1).
- unfold Rmin; case (Rle_dec r1 b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmin; decide (Rle_dec r1 b) with H7; reflexivity.
rewrite H16 in H12; rewrite H12 in H14; elim H14; clear H14; intros _ H14;
unfold g'; case (Rle_dec r1 x); intro r3.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H14)).
@@ -1862,9 +1834,9 @@ Proof.
assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
unfold constant_D_eq, open_interval; intros;
assert (H19 := H18 _ H14); rewrite <- H19; unfold g';
- case (Rle_dec r1 x); intro.
+ case (Rle_dec r1 x) as [|[]].
reflexivity.
- elim n; replace r1 with (Rmin r1 b).
+ replace r1 with (Rmin r1 b).
rewrite <- H12; elim H14; clear H14; intros H14 _; left;
apply Rle_lt_trans with (pos_Rl lg i); try assumption.
apply RList_P5.
@@ -1874,12 +1846,9 @@ Proof.
apply lt_trans with (pred (Rlength lg)); try assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H22 in H17;
elim (lt_n_O _ H17).
- unfold Rmin; case (Rle_dec r1 b); intro;
- [ reflexivity | elim n0; assumption ].
+ unfold Rmin; decide (Rle_dec r1 b) with H7; reflexivity.
exists (mkStepFun H8); split.
- simpl; unfold g'; case (Rle_dec r1 b); intro.
- assumption.
- elim n; assumption.
+ simpl; unfold g'; decide (Rle_dec r1 b) with H7; assumption.
intros; simpl in H9; induction i as [| i Hreci].
unfold constant_D_eq, co_interval; simpl; intros; simpl in H0;
rewrite H0; elim H10; clear H10; intros; unfold g';
@@ -1896,9 +1865,9 @@ Proof.
assert (H12 := H10 H11); unfold constant_D_eq, co_interval in H12;
unfold constant_D_eq, co_interval; intros;
rewrite <- (H12 _ H13); simpl; unfold g';
- case (Rle_dec r1 x); intro.
+ case (Rle_dec r1 x) as [|[]].
reflexivity.
- elim n; elim H13; clear H13; intros;
+ elim H13; clear H13; intros;
apply Rle_trans with (pos_Rl (cons r1 l) i); try assumption;
change (pos_Rl (cons r1 l) 0 <= pos_Rl (cons r1 l) i);
elim (RList_P6 (cons r1 l)); intros; apply H15;
@@ -1954,24 +1923,22 @@ Proof.
unfold adapted_couple; decompose [and] H1;
decompose [and] H2; clear H1 H2; repeat split.
apply RList_P25; try assumption.
- rewrite H10; rewrite H4; unfold Rmin, Rmax; case (Rle_dec a b);
- case (Rle_dec b c); intros;
- (right; reflexivity) || (elim n; left; assumption).
+ rewrite H10; rewrite H4; unfold Rmin, Rmax; case (Rle_dec a b) as [|[]];
+ case (Rle_dec b c) as [|[]];
+ (right; reflexivity) || (left; assumption).
rewrite RList_P22.
- rewrite H5; unfold Rmin, Rmax; case (Rle_dec a b); case (Rle_dec a c);
- intros;
+ rewrite H5; unfold Rmin, Rmax; case (Rle_dec a c) as [|[]]; case (Rle_dec a b) as [|[]];
[ reflexivity
- | elim n; apply Rle_trans with b; left; assumption
- | elim n; left; assumption
- | elim n0; left; assumption ].
+ | left; assumption
+ | apply Rle_trans with b; left; assumption
+ | left; assumption ].
red; intro; rewrite H1 in H6; discriminate.
rewrite RList_P24.
- rewrite H9; unfold Rmin, Rmax; case (Rle_dec b c); case (Rle_dec a c);
- intros;
+ rewrite H9; unfold Rmin, Rmax; case (Rle_dec a c) as [|[]]; case (Rle_dec b c) as [|[]];
[ reflexivity
- | elim n; apply Rle_trans with b; left; assumption
- | elim n; left; assumption
- | elim n0; left; assumption ].
+ | left; assumption
+ | apply Rle_trans with b; left; assumption
+ | left; assumption ].
red; intro; rewrite H1 in H11; discriminate.
apply StepFun_P20.
rewrite RList_P23; apply neq_O_lt; red; intro.
@@ -2061,7 +2028,7 @@ Proof.
assert (H16 : pos_Rl (cons_Rlist l1 l2) (S i) = b).
rewrite RList_P29.
rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin;
- case (Rle_dec b c); intro; [ reflexivity | elim n; left; assumption ].
+ case (Rle_dec b c) as [|[]]; [ reflexivity | left; assumption ].
rewrite H15; apply le_n.
induction l1 as [| r l1 Hrecl1].
simpl in H15; discriminate.
@@ -2069,8 +2036,8 @@ Proof.
assert (H17 : pos_Rl (cons_Rlist l1 l2) i = b).
rewrite RList_P26.
replace i with (pred (Rlength l1));
- [ rewrite H4; unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; left; assumption ]
+ [ rewrite H4; unfold Rmax; case (Rle_dec a b) as [|[]];
+ [ reflexivity | left; assumption ]
| rewrite H15; reflexivity ].
rewrite H15; apply lt_n_Sn.
rewrite H16 in H2; rewrite H17 in H2; elim H2; intros;
@@ -2095,8 +2062,8 @@ Proof.
discriminate.
clear Hrecl1; induction l1 as [| r0 l1 Hrecl1].
simpl in H5; simpl in H4; assert (H0 : Rmin a b < Rmax a b).
- unfold Rmin, Rmax; case (Rle_dec a b); intro;
- [ assumption | elim n; left; assumption ].
+ unfold Rmin, Rmax; case (Rle_dec a b) as [|[]];
+ [ assumption | left; assumption ].
rewrite <- H5 in H0; rewrite <- H4 in H0; elim (Rlt_irrefl _ H0).
clear Hrecl1; simpl; repeat apply le_n_S; apply le_O_n.
elim (RList_P20 _ H18); intros r1 [r2 [r3 H19]]; rewrite H19;
@@ -2222,9 +2189,9 @@ Proof.
| left _ => Int_SF lf3 l3
| right _ => - Int_SF lf3 l3
end.
- case (Rle_dec a b); case (Rle_dec b c); case (Rle_dec a c); intros.
- elim r1; intro.
- elim r0; intro.
+ case (Rle_dec a b) as [Hle|Hnle]; case (Rle_dec b c) as [Hle'|Hnle']; case (Rle_dec a c) as [Hle''|Hnle''].
+ elim Hle; intro.
+ elim Hle'; intro.
replace (Int_SF lf3 l3) with
(Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
@@ -2232,8 +2199,7 @@ Proof.
symmetry ; apply StepFun_P42.
unfold adapted_couple in H1, H2; decompose [and] H1; decompose [and] H2;
clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin;
- case (Rle_dec a b); case (Rle_dec b c); intros; reflexivity || elim n;
- assumption.
+ decide (Rle_dec a b) with Hle; decide (Rle_dec b c) with Hle'; reflexivity.
eapply StepFun_P17;
[ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2;
assumption
@@ -2250,13 +2216,13 @@ Proof.
rewrite Rplus_0_l; eapply StepFun_P17;
[ apply H2 | rewrite H in H3; apply H3 ].
symmetry ; eapply StepFun_P8; [ apply H1 | assumption ].
- elim n; apply Rle_trans with b; assumption.
+ elim Hnle''; apply Rle_trans with b; assumption.
apply Rplus_eq_reg_l with (Int_SF lf2 l2);
replace (Int_SF lf2 l2 + (Int_SF lf1 l1 + - Int_SF lf2 l2)) with
(Int_SF lf1 l1); [ idtac | ring ].
assert (H : c < b).
auto with real.
- elim r; intro.
+ elim Hle''; intro.
rewrite Rplus_comm;
replace (Int_SF lf1 l1) with
(Int_SF (FF (cons_Rlist l3 l2) f) (cons_Rlist l3 l2)).
@@ -2264,12 +2230,9 @@ Proof.
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
apply StepFun_P42.
unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3;
- clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin;
- case (Rle_dec a c); case (Rle_dec b c); intros;
- [ elim n; assumption
- | reflexivity
- | elim n0; assumption
- | elim n1; assumption ].
+ clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin.
+ decide (Rle_dec a c) with Hle''; decide (Rle_dec b c) with Hnle';
+ reflexivity.
eapply StepFun_P17;
[ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2
| assumption ].
@@ -2284,7 +2247,7 @@ Proof.
symmetry ; eapply StepFun_P8; [ apply H3 | assumption ].
replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1).
ring.
- elim r; intro.
+ elim Hle; intro.
replace (Int_SF lf2 l2) with
(Int_SF (FF (cons_Rlist l3 l1) f) (cons_Rlist l3 l1)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
@@ -2292,11 +2255,7 @@ Proof.
symmetry ; apply StepFun_P42.
unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3;
clear H3 H1; rewrite H9; rewrite H5; unfold Rmax, Rmin;
- case (Rle_dec a c); case (Rle_dec a b); intros;
- [ elim n; assumption
- | elim n1; assumption
- | reflexivity
- | elim n1; assumption ].
+ decide (Rle_dec a c) with Hnle''; decide (Rle_dec a b) with Hle; reflexivity.
eapply StepFun_P17;
[ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1
| assumption ].
@@ -2316,7 +2275,7 @@ Proof.
auto with real.
replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1).
ring.
- rewrite Rplus_comm; elim r; intro.
+ rewrite Rplus_comm; elim Hle''; intro.
replace (Int_SF lf2 l2) with
(Int_SF (FF (cons_Rlist l1 l3) f) (cons_Rlist l1 l3)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
@@ -2324,11 +2283,8 @@ Proof.
symmetry ; apply StepFun_P42.
unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3;
clear H3 H1; rewrite H11; rewrite H5; unfold Rmax, Rmin;
- case (Rle_dec a c); case (Rle_dec a b); intros;
- [ elim n; assumption
- | reflexivity
- | elim n0; assumption
- | elim n1; assumption ].
+ decide (Rle_dec a c) with Hle''; decide (Rle_dec a b) with Hnle;
+ reflexivity.
eapply StepFun_P17;
[ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1
| assumption ].
@@ -2346,7 +2302,7 @@ Proof.
auto with real.
replace (Int_SF lf1 l1) with (Int_SF lf2 l2 + Int_SF lf3 l3).
ring.
- elim r; intro.
+ elim Hle'; intro.
replace (Int_SF lf1 l1) with
(Int_SF (FF (cons_Rlist l2 l3) f) (cons_Rlist l2 l3)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
@@ -2354,11 +2310,8 @@ Proof.
symmetry ; apply StepFun_P42.
unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3;
clear H3 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin;
- case (Rle_dec a c); case (Rle_dec b c); intros;
- [ elim n; assumption
- | elim n1; assumption
- | reflexivity
- | elim n1; assumption ].
+ decide (Rle_dec a c) with Hnle''; decide (Rle_dec b c) with Hle';
+ reflexivity.
eapply StepFun_P17;
[ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2
| assumption ].
@@ -2371,8 +2324,8 @@ Proof.
replace (Int_SF lf2 l2) with 0.
rewrite Rplus_0_l; eapply StepFun_P17;
[ apply H3 | rewrite H0 in H1; apply H1 ].
- symmetry ; eapply StepFun_P8; [ apply H2 | assumption ].
- elim n; apply Rle_trans with a; try assumption.
+ symmetry; eapply StepFun_P8; [ apply H2 | assumption ].
+ elim Hnle'; apply Rle_trans with a; try assumption.
auto with real.
assert (H : c < b).
auto with real.
@@ -2387,11 +2340,8 @@ Proof.
symmetry ; apply StepFun_P42.
unfold adapted_couple in H2, H1; decompose [and] H2; decompose [and] H1;
clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin;
- case (Rle_dec a b); case (Rle_dec b c); intros;
- [ elim n1; assumption
- | elim n1; assumption
- | elim n0; assumption
- | reflexivity ].
+ decide (Rle_dec a b) with Hnle; decide (Rle_dec b c) with Hnle';
+ reflexivity.
eapply StepFun_P17;
[ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2
| assumption ].
@@ -2463,10 +2413,8 @@ Proof.
replace a with (Rmin a b).
pattern b at 2; replace b with (Rmax a b).
rewrite <- H2; rewrite H3; reflexivity.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with H7; reflexivity.
+ unfold Rmin; decide (Rle_dec a b) with H7; reflexivity.
split with (cons r nil); split with lf1; assert (H2 : c = b).
rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption.
rewrite H2; assumption.
@@ -2479,16 +2427,14 @@ Proof.
split with (cons r (cons c nil)); split with (cons r3 nil);
unfold adapted_couple in H; decompose [and] H; clear H;
assert (H6 : r = a).
- simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intro;
+ simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b) as [|[]];
[ reflexivity
- | elim n; elim H0; intros; apply Rle_trans with c; assumption ].
+ | elim H0; intros; apply Rle_trans with c; assumption ].
elim H0; clear H0; intros; unfold adapted_couple; repeat split.
rewrite H6; unfold ordered_Rlist; intros; simpl in H8; inversion H8;
[ simpl; assumption | elim (le_Sn_O _ H10) ].
- simpl; unfold Rmin; case (Rle_dec a c); intro;
- [ assumption | elim n; assumption ].
- simpl; unfold Rmax; case (Rle_dec a c); intro;
- [ reflexivity | elim n; assumption ].
+ simpl; unfold Rmin; decide (Rle_dec a c) with H; assumption.
+ simpl; unfold Rmax; decide (Rle_dec a c) with H; reflexivity.
unfold constant_D_eq, open_interval; intros; simpl in H8;
inversion H8.
simpl; assert (H10 := H7 0%nat);
@@ -2508,8 +2454,8 @@ Proof.
assert (H14 : a <= b).
elim H0; intros; apply Rle_trans with c; assumption.
assert (H16 : r = a).
- simpl in H7; rewrite H7; unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ simpl in H7; rewrite H7; unfold Rmin; decide (Rle_dec a b) with H14;
+ reflexivity.
induction l1' as [| r4 l1' Hrecl1'].
simpl in H13; discriminate.
clear Hrecl1'; unfold adapted_couple; repeat split.
@@ -2517,18 +2463,18 @@ Proof.
simpl; replace r4 with r1.
apply (H5 0%nat).
simpl; apply lt_O_Sn.
- simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c); intro;
- [ reflexivity | elim n; left; assumption ].
+ simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c) as [|[]];
+ [ reflexivity | left; assumption ].
apply (H9 i); simpl; apply lt_S_n; assumption.
- simpl; unfold Rmin; case (Rle_dec a c); intro;
- [ assumption | elim n; elim H0; intros; assumption ].
+ simpl; unfold Rmin; case (Rle_dec a c) as [|[]];
+ [ assumption | elim H0; intros; assumption ].
replace (Rmax a c) with (Rmax r1 c).
rewrite <- H11; reflexivity.
- unfold Rmax; case (Rle_dec r1 c); case (Rle_dec a c); intros;
- [ reflexivity
- | elim n; elim H0; intros; assumption
- | elim n; left; assumption
- | elim n0; left; assumption ].
+ unfold Rmax; case (Rle_dec a c) as [|[]]; case (Rle_dec r1 c) as [|[]];
+ [ reflexivity
+ | left; assumption
+ | elim H0; intros; assumption
+ | left; assumption ].
simpl; simpl in H13; rewrite H13; reflexivity.
intros; simpl in H; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
@@ -2539,8 +2485,8 @@ Proof.
elim H4; clear H4; intros; split; try assumption;
replace r1 with r4.
assumption.
- simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c); intro;
- [ reflexivity | elim n; left; assumption ].
+ simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c) as [|[]];
+ [ reflexivity | left; assumption ].
clear Hreci; simpl; apply H15.
simpl; apply lt_S_n; assumption.
unfold open_interval; apply H4.
@@ -2578,10 +2524,8 @@ Proof.
replace a with (Rmin a b).
pattern b at 2; replace b with (Rmax a b).
rewrite <- H2; rewrite H3; reflexivity.
- unfold Rmax; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
- unfold Rmin; case (Rle_dec a b); intro;
- [ reflexivity | elim n; assumption ].
+ unfold Rmax; decide (Rle_dec a b) with H7; reflexivity.
+ unfold Rmin; decide (Rle_dec a b) with H7; reflexivity.
split with (cons r nil); split with lf1; assert (H2 : c = b).
rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption.
rewrite <- H2 in H1; rewrite <- H1; assumption.
@@ -2597,15 +2541,15 @@ Proof.
unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci].
simpl; assumption.
clear Hreci; apply (H2 (S i)); simpl; assumption.
- simpl; unfold Rmin; case (Rle_dec c b); intro;
- [ reflexivity | elim n; elim H0; intros; assumption ].
+ simpl; unfold Rmin; case (Rle_dec c b) as [|[]];
+ [ reflexivity | elim H0; intros; assumption ].
replace (Rmax c b) with (Rmax a b).
rewrite <- H3; reflexivity.
- unfold Rmax; case (Rle_dec a b); case (Rle_dec c b); intros;
+ unfold Rmax; case (Rle_dec c b) as [|[]]; case (Rle_dec a b) as [|[]];
[ reflexivity
- | elim n; elim H0; intros; assumption
- | elim n; elim H0; intros; apply Rle_trans with c; assumption
- | elim n0; elim H0; intros; apply Rle_trans with c; assumption ].
+ | elim H0; intros; apply Rle_trans with c; assumption
+ | elim H0; intros; assumption
+ | elim H0; intros; apply Rle_trans with c; assumption ].
simpl; simpl in H5; apply H5.
intros; simpl in H; induction i as [| i Hreci].
unfold constant_D_eq, open_interval; intros; simpl;
@@ -2615,9 +2559,9 @@ Proof.
intros; split; try assumption; apply Rle_lt_trans with c;
try assumption; replace r with a.
elim H0; intros; assumption.
- simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intros;
+ simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b) as [|[]];
[ reflexivity
- | elim n; elim H0; intros; apply Rle_trans with c; assumption ].
+ | elim H0; intros; apply Rle_trans with c; assumption ].
clear Hreci; apply (H7 (S i)); simpl; assumption.
cut (adapted_couple f r1 b (cons r1 r2) lf1).
cut (r1 <= c <= b).
diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v
index 3d52a98cd..375cc2752 100644
--- a/theories/Reals/Rlimit.v
+++ b/theories/Reals/Rlimit.v
@@ -347,11 +347,11 @@ Proof.
unfold limit1_in; unfold limit_in; intros.
simpl in *.
cut (forall eps:R, eps > 0 -> dist R_met l l' < 2 * eps).
- clear H0 H1; simpl @dist; unfold R_met; unfold R_dist, dist;
- unfold Rabs; case (Rcase_abs (l - l')); intros.
+ clear H0 H1; unfold dist in |- *; unfold R_met; unfold R_dist in |- *;
+ unfold Rabs; case (Rcase_abs (l - l')) as [Hlt|Hge]; intros.
cut (forall eps:R, eps > 0 -> - (l - l') < eps).
intro; generalize (prop_eps (- (l - l')) H1); intro;
- generalize (Ropp_gt_lt_0_contravar (l - l') r); intro;
+ generalize (Ropp_gt_lt_0_contravar (l - l') Hlt); intro;
unfold Rgt in H3; generalize (Rgt_not_le (- (l - l')) 0 H3);
intro; exfalso; auto.
intros; cut (eps * / 2 > 0).
@@ -375,7 +375,7 @@ Proof.
intros a b; clear b; apply (Rminus_diag_uniq l l');
apply a; split.
assumption.
- apply (Rge_le (l - l') 0 r).
+ apply (Rge_le (l - l') 0 Hge).
intros; cut (eps * / 2 > 0).
intro; generalize (H0 (eps * / 2) H2); rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v
index 555bdcfab..2eb485188 100644
--- a/theories/Reals/Rpower.v
+++ b/theories/Reals/Rpower.v
@@ -43,7 +43,7 @@ Proof.
rewrite Rmult_1_r; rewrite <- (Rmult_comm 3); rewrite <- Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ exp 1) with (exp (-1)).
- unfold exp; case (exist_exp (-1)); intros; simpl;
+ unfold exp; case (exist_exp (-1)) as (?,e); simpl in |- *;
unfold exp_in in e;
assert (H := alternated_series_ineq (fun i:nat => / INR (fact i)) x 1).
cut
@@ -178,13 +178,13 @@ Qed.
(**********)
Lemma ln_exists : forall y:R, 0 < y -> { z:R | y = exp z }.
Proof.
- intros; case (Rle_dec 1 y); intro.
- apply (ln_exists1 _ r).
+ intros; destruct (Rle_dec 1 y) as [Hle|Hnle].
+ apply (ln_exists1 _ Hle).
assert (H0 : 1 <= / y).
apply Rmult_le_reg_l with y.
apply H.
rewrite <- Rinv_r_sym.
- rewrite Rmult_1_r; left; apply (Rnot_le_lt _ _ n).
+ rewrite Rmult_1_r; left; apply (Rnot_le_lt _ _ Hnle).
red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
destruct (ln_exists1 _ H0) as (x,p); exists (- x);
apply Rmult_eq_reg_l with (exp x / y).
@@ -213,12 +213,10 @@ Definition ln (x:R) : R :=
Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x.
Proof.
- intros; unfold ln; case (Rlt_dec 0 x); intro.
+ intros; unfold ln; decide (Rlt_dec 0 x) with H.
unfold Rln;
- case (ln_exists (mkposreal x r) (cond_pos (mkposreal x r)));
- intros.
- simpl in e; symmetry ; apply e.
- elim n; apply H.
+ case (ln_exists (mkposreal x H) (cond_pos (mkposreal x H))) as (?,Hex).
+ symmetry; apply Hex.
Qed.
Theorem exp_inv : forall x y:R, exp x = exp y -> x = y.
@@ -610,7 +608,7 @@ Proof.
replace h with (x + h - x); [ idtac | ring ].
apply H3; split.
unfold D_x; split.
- case (Rcase_abs h); intro.
+ destruct (Rcase_abs h) as [Hlt|Hgt].
assert (H7 : Rabs h < x / 2).
apply Rlt_le_trans with alp.
apply H6.
@@ -623,9 +621,9 @@ Proof.
replace (- h - x / 2 + x / 2) with (- h); [ idtac | ring ].
pattern x at 2; rewrite double_var.
replace (- h - x / 2 + (x / 2 + x / 2 + h)) with (x / 2); [ apply H7 | ring ].
- apply r.
- apply Rplus_lt_le_0_compat; [ assumption | apply Rge_le; apply r ].
- apply (not_eq_sym (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h;
+ apply Hlt.
+ apply Rplus_lt_le_0_compat; [ assumption | apply Rge_le; apply Hgt ].
+ apply (sym_not_eq (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h;
[ apply H5 | ring ].
replace (x + h - x) with h;
[ apply Rlt_le_trans with alp;
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index 328ba27e6..57b9d3d2f 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -237,9 +237,9 @@ Section sequence.
apply le_n_Sn.
rewrite (IHN H6), Rplus_0_l.
unfold test.
- destruct Rle_lt_dec.
+ destruct Rle_lt_dec as [Hle|Hlt].
apply eq_refl.
- now elim Rlt_not_le with (1 := r).
+ now elim Rlt_not_le with (1 := Hlt).
destruct (le_or_lt N n) as [Hn|Hn].
rewrite le_plus_minus with (1 := Hn).
diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v
index 48ed16fd4..f9ad64b86 100644
--- a/theories/Reals/Rsqrt_def.v
+++ b/theories/Reals/Rsqrt_def.v
@@ -276,8 +276,7 @@ Proof.
intros.
unfold cv_infty.
intro.
- case (total_order_T 0 M); intro.
- elim s; intro.
+ destruct (total_order_T 0 M) as [[Hlt|<-]|Hgt].
set (N := up M).
cut (0 <= N)%Z.
intro.
@@ -302,7 +301,6 @@ Proof.
assert (H0 := archimed M); elim H0; intros.
left; apply Rlt_trans with M; assumption.
exists 0%nat; intros.
- rewrite <- b.
unfold pow_2_n; apply pow_lt; prove_sup0.
exists 0%nat; intros.
apply Rlt_trans with 0.
@@ -342,8 +340,7 @@ Proof.
unfold Un_cv; unfold R_dist.
intros.
assert (H4 := cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty).
- case (total_order_T x y); intro.
- elim s; intro.
+ destruct (total_order_T x y) as [[ Hlt | -> ]|Hgt].
unfold Un_cv in H4; unfold R_dist in H4.
cut (0 < y - x).
intro Hyp.
@@ -376,16 +373,15 @@ Proof.
apply Rplus_lt_reg_l with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
exists 0%nat; intros.
- replace (dicho_lb x y P n - dicho_up x y P n - 0) with
- (dicho_lb x y P n - dicho_up x y P n); [ idtac | ring ].
+ replace (dicho_lb y y P n - dicho_up y y P n - 0) with
+ (dicho_lb y y P n - dicho_up y y P n); [ idtac | ring ].
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
- rewrite b.
unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l;
rewrite Rabs_R0; assumption.
assumption.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)).
Qed.
Definition cond_positivity (x:R) : bool :=
@@ -515,14 +511,14 @@ Proof.
left; assumption.
intro.
unfold cond_positivity.
- case (Rle_dec 0 z); intro.
+ case (Rle_dec 0 z) as [Hle|Hnle].
split.
intro; assumption.
intro; reflexivity.
split.
intro feqt;discriminate feqt.
intro.
- elim n0; assumption.
+ contradiction.
unfold Vn.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
@@ -536,20 +532,19 @@ Proof.
assumption.
intro.
unfold cond_positivity.
- case (Rle_dec 0 z); intro.
+ case (Rle_dec 0 z) as [Hle|Hnle].
split.
intro feqt; discriminate feqt.
- intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H7)).
+ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H7)).
split.
intro; auto with real.
intro; reflexivity.
cut (Un_cv Wn x0).
intros.
assert (H7 := continuity_seq f Wn x0 (H x0) H5).
- case (total_order_T 0 (f x0)); intro.
- elim s; intro.
+ destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt].
left; assumption.
- rewrite <- b; right; reflexivity.
+ right; reflexivity.
unfold Un_cv in H7; unfold R_dist in H7.
cut (0 < - f x0).
intro.
@@ -570,10 +565,9 @@ Proof.
cut (Un_cv Vn x0).
intros.
assert (H7 := continuity_seq f Vn x0 (H x0) H5).
- case (total_order_T 0 (f x0)); intro.
- elim s; intro.
+ destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt].
unfold Un_cv in H7; unfold R_dist in H7.
- elim (H7 (f x0) a); intros.
+ elim (H7 (f x0) Hlt); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
@@ -592,7 +586,7 @@ Proof.
[ unfold Rminus; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
- right; rewrite <- b; reflexivity.
+ right; reflexivity.
left; assumption.
unfold Vn; assumption.
Qed.
@@ -603,22 +597,15 @@ Lemma IVT_cor :
x <= y -> f x * f y <= 0 -> { z:R | x <= z <= y /\ f z = 0 }.
Proof.
intros.
- case (total_order_T 0 (f x)); intro.
- case (total_order_T 0 (f y)); intro.
- elim s; intro.
- elim s0; intro.
+ destruct (total_order_T 0 (f x)) as [[Hltx|Heqx]|Hgtx].
+ destruct (total_order_T 0 (f y)) as [[Hlty|Heqy]|Hgty].
cut (0 < f x * f y);
[ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 H2))
| apply Rmult_lt_0_compat; assumption ].
exists y.
split.
split; [ assumption | right; reflexivity ].
- symmetry ; exact b.
- exists x.
- split.
- split; [ right; reflexivity | assumption ].
- symmetry ; exact b.
- elim s; intro.
+ symmetry ; exact Heqy.
cut (x < y).
intro.
assert (H3 := IVT (- f)%F x y (continuity_opp f H) H2).
@@ -639,21 +626,20 @@ Proof.
assumption.
inversion H0.
assumption.
- rewrite H2 in a.
- elim (Rlt_irrefl _ (Rlt_trans _ _ _ r a)).
+ rewrite H2 in Hltx.
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ Hgty Hltx)).
exists x.
split.
split; [ right; reflexivity | assumption ].
symmetry ; assumption.
- case (total_order_T 0 (f y)); intro.
- elim s; intro.
+ destruct (total_order_T 0 (f y)) as [[Hlty|Heqy]|Hgty].
cut (x < y).
intro.
apply IVT; assumption.
inversion H0.
assumption.
- rewrite H2 in r.
- elim (Rlt_irrefl _ (Rlt_trans _ _ _ r a)).
+ rewrite H2 in Hgtx.
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ Hlty Hgtx)).
exists y.
split.
split; [ assumption | right; reflexivity ].
@@ -676,8 +662,7 @@ Proof.
intro.
cut (continuity f).
intro.
- case (total_order_T y 1); intro.
- elim s; intro.
+ destruct (total_order_T y 1) as [[Hlt| -> ]|Hgt].
cut (0 <= f 1).
intro.
cut (f 0 * f 1 <= 0).
@@ -701,7 +686,7 @@ Proof.
exists 1.
split.
left; apply Rlt_0_1.
- rewrite b; symmetry ; apply Rsqr_1.
+ symmetry; apply Rsqr_1.
cut (0 <= f y).
intro.
cut (f 0 * f y <= 0).
@@ -723,7 +708,7 @@ Proof.
pattern y at 1; rewrite <- Rmult_1_r.
unfold Rsqr; apply Rmult_le_compat_l.
assumption.
- left; exact r.
+ left; exact Hgt.
replace f with (Rsqr - fct_cte y)%F.
apply continuity_minus.
apply derivable_continuous; apply derivable_Rsqr.
@@ -743,39 +728,31 @@ Definition Rsqrt (y:nonnegreal) : R :=
Lemma Rsqrt_positivity : forall x:nonnegreal, 0 <= Rsqrt x.
Proof.
intro.
- assert (X := Rsqrt_exists (nonneg x) (cond_nonneg x)).
- elim X; intros.
+ destruct (Rsqrt_exists (nonneg x) (cond_nonneg x)) as (x0 & H1 & H2).
cut (x0 = Rsqrt x).
intros.
- elim p; intros.
- rewrite H in H0; assumption.
+ rewrite <- H; assumption.
unfold Rsqrt.
- case (Rsqrt_exists x (cond_nonneg x)).
- intros.
- elim p; elim a; intros.
+ case (Rsqrt_exists x (cond_nonneg x)) as (?,[]).
apply Rsqr_inj.
assumption.
assumption.
- rewrite <- H0; rewrite <- H2; reflexivity.
+ rewrite <- H0, <- H2; reflexivity.
Qed.
(**********)
Lemma Rsqrt_Rsqrt : forall x:nonnegreal, Rsqrt x * Rsqrt x = x.
Proof.
intros.
- assert (X := Rsqrt_exists (nonneg x) (cond_nonneg x)).
- elim X; intros.
+ destruct (Rsqrt_exists (nonneg x) (cond_nonneg x)) as (x0 & H1 & H2).
cut (x0 = Rsqrt x).
intros.
rewrite <- H.
- elim p; intros.
- rewrite H1; reflexivity.
+ rewrite H2; reflexivity.
unfold Rsqrt.
- case (Rsqrt_exists x (cond_nonneg x)).
- intros.
- elim p; elim a; intros.
+ case (Rsqrt_exists x (cond_nonneg x)) as (x1 & ? & ?).
apply Rsqr_inj.
assumption.
assumption.
- rewrite <- H0; rewrite <- H2; reflexivity.
+ rewrite <- H0, <- H2; reflexivity.
Qed.
diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v
index 7e020dd41..991a52409 100644
--- a/theories/Reals/Rtopology.v
+++ b/theories/Reals/Rtopology.v
@@ -339,7 +339,7 @@ Proof.
unfold neighbourhood in H4; elim H4; intros del H5.
exists (pos del); split.
apply (cond_pos del).
- intros. unfold included in H5; apply H5; elim H6; intros; apply H8.
+ intros; unfold included in H5; apply H5; elim H6; intros; apply H8.
unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply H0.
apply disc_P1.
@@ -623,87 +623,79 @@ Qed.
(** Borel-Lebesgue's lemma *)
Lemma compact_P3 : forall a b:R, compact (fun c:R => a <= c <= b).
Proof.
- intros; case (Rle_dec a b); intro.
- unfold compact; intros;
+ intros a b; destruct (Rle_dec a b) as [Hle|Hnle].
+ unfold compact; intros f0 (H,H5);
set
(A :=
fun x:R =>
a <= x <= b /\
(exists D : R -> Prop,
- covering_finite (fun c:R => a <= c <= x) (subfamily f0 D)));
- cut (A a).
- intro; cut (bound A).
- intro; cut (exists a0 : R, A a0).
- intro; assert (H3 := completeness A H1 H2); elim H3; clear H3; intros m H3;
- unfold is_lub in H3; cut (a <= m <= b).
- intro; unfold covering_open_set in H; elim H; clear H; intros;
- unfold covering in H; assert (H6 := H m H4); elim H6;
- clear H6; intros y0 H6; unfold family_open_set in H5;
- assert (H7 := H5 y0); unfold open_set in H7; assert (H8 := H7 m H6);
- unfold neighbourhood in H8; elim H8; clear H8; intros eps H8;
- cut (exists x : R, A x /\ m - eps < x <= m).
- intro; elim H9; clear H9; intros x H9; elim H9; clear H9; intros;
- case (Req_dec m b); intro.
- rewrite H11 in H10; rewrite H11 in H8; unfold A in H9; elim H9; clear H9;
- intros; elim H12; clear H12; intros Dx H12;
- set (Db := fun x:R => Dx x \/ x = y0); exists Db;
- unfold covering_finite; split.
- unfold covering; unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold covering in H12; case (Rle_dec x0 x);
- intro.
- cut (a <= x0 <= x).
- intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
- simpl in H16; simpl; unfold Db; elim H16;
- clear H16; intros; split; [ apply H16 | left; apply H17 ].
- split.
- elim H14; intros; assumption.
- assumption.
+ covering_finite (fun c:R => a <= c <= x) (subfamily f0 D))).
+ cut (A a); [intro H0|].
+ cut (bound A); [intro H1|].
+ cut (exists a0 : R, A a0); [intro H2|].
+ pose proof (completeness A H1 H2) as (m,H3); unfold is_lub in H3.
+ cut (a <= m <= b); [intro H4|].
+ unfold covering in H; pose proof (H m H4) as (y0,H6).
+ unfold family_open_set in H5; pose proof (H5 y0 m H6) as (eps,H8).
+ cut (exists x : R, A x /\ m - eps < x <= m);
+ [intros (x,((H9 & Dx & H12 & H13),(Hltx,_)))|].
+ destruct (Req_dec m b) as [->|H11].
+ set (Db := fun x:R => Dx x \/ x = y0); exists Db;
+ unfold covering_finite; split.
+ unfold covering; intros x0 (H14,H18);
+ unfold covering in H12; destruct (Rle_dec x0 x) as [Hle'|Hnle'].
+ cut (a <= x0 <= x); [intro H15|].
+ pose proof (H12 x0 H15) as (x1 & H16 & H17); exists x1;
+ simpl; unfold Db; split; [ apply H16 | left; apply H17 ].
+ split; assumption.
exists y0; simpl; split.
- apply H8; unfold disc; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
- rewrite Rabs_right.
+ apply H8; unfold disc;
+ rewrite <- Rabs_Ropp, Ropp_minus_distr, Rabs_right.
apply Rlt_trans with (b - x).
- unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
+ unfold Rminus; apply Rplus_lt_compat_l, Ropp_lt_gt_contravar;
auto with real.
- elim H10; intros H15 _; apply Rplus_lt_reg_l with (x - eps);
+ apply Rplus_lt_reg_l with (x - eps);
replace (x - eps + (b - x)) with (b - eps);
- [ replace (x - eps + eps) with x; [ apply H15 | ring ] | ring ].
- apply Rge_minus; apply Rle_ge; elim H14; intros _ H15; apply H15.
+ [ replace (x - eps + eps) with x; [ apply Hltx | ring ] | ring ].
+ apply Rge_minus, Rle_ge, H18.
unfold Db; right; reflexivity.
- unfold family_finite; unfold domain_finite;
- unfold covering_finite in H12; elim H12; clear H12;
+ unfold family_finite, domain_finite.
intros; unfold family_finite in H13; unfold domain_finite in H13;
- elim H13; clear H13; intros l H13; exists (cons y0 l);
+ destruct H13 as (l,H13); exists (cons y0 l);
intro; split.
- intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
- clear H13; intros; case (Req_dec x0 y0); intro.
+ intro H14; simpl in H14; unfold intersection_domain in H14;
+ specialize H13 with x0; destruct H13 as (H13,H15);
+ destruct (Req_dec x0 y0) as [H16|H16].
simpl; left; apply H16.
simpl; right; apply H13.
simpl; unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim H16; assumption.
- intro; simpl in H14; elim H14; intro; simpl;
+ intro H14; simpl in H14; destruct H14 as [H15|H15]; simpl;
unfold intersection_domain.
split.
- apply (cond_fam f0); rewrite H15; exists m; apply H6.
+ apply (cond_fam f0); rewrite H15; exists b; apply H6.
unfold Db; right; assumption.
simpl; unfold intersection_domain; elim (H13 x0).
intros _ H16; assert (H17 := H16 H15); simpl in H17;
unfold intersection_domain in H17; split.
elim H17; intros; assumption.
unfold Db; left; elim H17; intros; assumption.
- set (m' := Rmin (m + eps / 2) b); cut (A m').
- intro; elim H3; intros; unfold is_upper_bound in H13;
- assert (H15 := H13 m' H12); cut (m < m').
- intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H15 H16)).
- unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro.
- pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
- unfold Rdiv; apply Rmult_lt_0_compat;
- [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
- elim H4; intros.
- elim H17; intro.
- assumption.
- elim H11; assumption.
+ set (m' := Rmin (m + eps / 2) b).
+ cut (A m'); [intro H7|].
+ destruct H3 as (H14,H15); unfold is_upper_bound in H14.
+ assert (H16 := H14 m' H7).
+ cut (m < m'); [intro H17|].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H16 H17))...
+ unfold m', Rmin; destruct (Rle_dec (m + eps / 2) b) as [Hle'|Hnle'].
+ pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ unfold Rdiv; apply Rmult_lt_0_compat;
+ [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
+ destruct H4 as (_,[]).
+ assumption.
+ elim H11; assumption.
unfold A; split.
split.
apply Rle_trans with m.
@@ -712,32 +704,26 @@ Proof.
pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
- elim H4; intros.
- elim H13; intro.
+ destruct H4.
assumption.
- elim H11; assumption.
unfold m'; apply Rmin_r.
- unfold A in H9; elim H9; clear H9; intros; elim H12; clear H12; intros Dx H12;
- set (Db := fun x:R => Dx x \/ x = y0); exists Db;
- unfold covering_finite; split.
- unfold covering; unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold covering in H12; case (Rle_dec x0 x);
- intro.
- cut (a <= x0 <= x).
- intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
- simpl in H16; simpl; unfold Db.
- elim H16; clear H16; intros; split; [ apply H16 | left; apply H17 ].
- elim H14; intros; split; assumption.
+ set (Db := fun x:R => Dx x \/ x = y0); exists Db;
+ unfold covering_finite; split.
+ unfold covering; intros x0 (H14,H18);
+ unfold covering in H12; destruct (Rle_dec x0 x) as [Hle'|Hnle'].
+ cut (a <= x0 <= x); [intro H15|].
+ pose proof (H12 x0 H15) as (x1 & H16 & H17); exists x1;
+ simpl; unfold Db; split; [ apply H16 | left; apply H17 ].
+ split; assumption.
exists y0; simpl; split.
- apply H8; unfold disc; unfold Rabs; case (Rcase_abs (x0 - m));
- intro.
+ apply H8; unfold disc, Rabs; destruct (Rcase_abs (x0 - m)) as [Hlt|Hge].
rewrite Ropp_minus_distr; apply Rlt_trans with (m - x).
unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
auto with real.
apply Rplus_lt_reg_l with (x - eps);
replace (x - eps + (m - x)) with (m - eps).
replace (x - eps + eps) with x.
- elim H10; intros; assumption.
+ assumption.
ring.
ring.
apply Rle_lt_trans with (m' - m).
@@ -755,22 +741,20 @@ Proof.
discrR.
ring.
unfold Db; right; reflexivity.
- unfold family_finite; unfold domain_finite;
- unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold family_finite in H13; unfold domain_finite in H13;
- elim H13; clear H13; intros l H13; exists (cons y0 l);
+ unfold family_finite, domain_finite;
+ unfold family_finite, domain_finite in H13;
+ destruct H13 as (l,H13); exists (cons y0 l);
intro; split.
- intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
- clear H13; intros; case (Req_dec x0 y0); intro.
- simpl; left; apply H16.
+ intro H14; simpl in H14; unfold intersection_domain in H14;
+ specialize (H13 x0); destruct H13 as (H13,H15);
+ destruct (Req_dec x0 y0) as [Heq|Hneq].
+ simpl; left; apply Heq.
simpl; right; apply H13; simpl;
unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
- elim H16; assumption.
- intro; simpl in H14; elim H14; intro; simpl;
- unfold intersection_domain.
- split.
+ elim Hneq; assumption.
+ intros [H15|H15]. split.
apply (cond_fam f0); rewrite H15; exists m; apply H6.
unfold Db; right; assumption.
elim (H13 x0); intros _ H16.
@@ -780,22 +764,22 @@ Proof.
split.
elim H17; intros; assumption.
unfold Db; left; elim H17; intros; assumption.
- elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro.
+ elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro H9.
assumption.
- elim H3; intros; cut (is_upper_bound A (m - eps)).
- intro; assert (H13 := H11 _ H12); cut (m - eps < m).
- intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H14)).
+ elim H3; intros H10 H11; cut (is_upper_bound A (m - eps)).
+ intro H12; assert (H13 := H11 _ H12); cut (m - eps < m).
+ intro H14; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H14)).
pattern m at 2; rewrite <- Rplus_0_r; unfold Rminus;
apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_involutive;
rewrite Ropp_0; apply (cond_pos eps).
set (P := fun n:R => A n /\ m - eps < n <= m);
assert (H12 := not_ex_all_not _ P H9); unfold P in H12;
- unfold is_upper_bound; intros;
+ unfold is_upper_bound; intros x H13;
assert (H14 := not_and_or _ _ (H12 x)); elim H14;
- intro.
+ intro H15.
elim H15; apply H13.
- elim (not_and_or _ _ H15); intro.
- case (Rle_dec x (m - eps)); intro.
+ destruct (not_and_or _ _ H15) as [H16|H16].
+ destruct (Rle_dec x (m - eps)) as [H17|H17].
assumption.
elim H16; auto with real.
unfold is_upper_bound in H10; assert (H17 := H10 x H13); elim H16; apply H17.
@@ -803,7 +787,8 @@ Proof.
unfold is_upper_bound in H3.
split.
apply (H3 _ H0).
- apply (H4 b); unfold is_upper_bound; intros; unfold A in H5; elim H5;
+ clear H5.
+ apply (H4 b); unfold is_upper_bound; intros x H5; unfold A in H5; elim H5;
clear H5; intros H5 _; elim H5; clear H5; intros _ H5;
apply H5.
exists a; apply H0.
@@ -811,30 +796,28 @@ Proof.
unfold A in H1; elim H1; clear H1; intros H1 _; elim H1;
clear H1; intros _ H1; apply H1.
unfold A; split.
- split; [ right; reflexivity | apply r ].
- unfold covering_open_set in H; elim H; clear H; intros; unfold covering in H;
- cut (a <= a <= b).
- intro; elim (H _ H1); intros y0 H2; set (D' := fun x:R => x = y0); exists D';
+ split; [ right; reflexivity | apply Hle ].
+ unfold covering in H; cut (a <= a <= b).
+ intro H1; elim (H _ H1); intros y0 H2; set (D' := fun x:R => x = y0); exists D';
unfold covering_finite; split.
- unfold covering; simpl; intros; cut (x = a).
- intro; exists y0; split.
+ unfold covering; simpl; intros x H3; cut (x = a).
+ intro H4; exists y0; split.
rewrite H4; apply H2.
unfold D'; reflexivity.
elim H3; intros; apply Rle_antisym; assumption.
unfold family_finite; unfold domain_finite;
exists (cons y0 nil); intro; split.
- simpl; unfold intersection_domain; intro; elim H3; clear H3;
- intros; unfold D' in H4; left; apply H4.
- simpl; unfold intersection_domain; intro; elim H3; intro.
+ simpl; unfold intersection_domain; intros (H3,H4).
+ unfold D' in H4; left; apply H4.
+ simpl; unfold intersection_domain; intros [H4|[]].
split; [ rewrite H4; apply (cond_fam f0); exists a; apply H2 | apply H4 ].
- elim H4.
- split; [ right; reflexivity | apply r ].
+ split; [ right; reflexivity | apply Hle ].
apply compact_eqDom with (fun c:R => False).
apply compact_EMP.
unfold eq_Dom; split.
unfold included; intros; elim H.
unfold included; intros; elim H; clear H; intros;
- assert (H1 := Rle_trans _ _ _ H H0); elim n; apply H1.
+ assert (H1 := Rle_trans _ _ _ H H0); elim Hnle; apply H1.
Qed.
Lemma compact_P4 :
@@ -1017,14 +1000,14 @@ Proof.
split.
change (0 < a - x); apply Rlt_Rminus; assumption.
intros; elim H5; clear H5; intros _ H5; unfold h.
- case (Rle_dec x a); intro.
- case (Rle_dec x0 a); intro.
- unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
- elim n; left; apply Rplus_lt_reg_l with (- x);
+ case (Rle_dec x a) as [|[]].
+ case (Rle_dec x0 a) as [|[]].
+ unfold Rminus; rewrite Rplus_opp_r, Rabs_R0; assumption.
+ left; apply Rplus_lt_reg_l with (- x);
do 2 rewrite (Rplus_comm (- x)); apply Rle_lt_trans with (Rabs (x0 - x)).
apply RRle_abs.
assumption.
- elim n; left; assumption.
+ left; assumption.
elim H3; intro.
assert (H5 : a <= a <= b).
split; [ right; reflexivity | left; assumption ].
@@ -1039,19 +1022,19 @@ Proof.
elim H8; intros; assumption.
change (0 < b - a); apply Rlt_Rminus; assumption.
intros; elim H9; clear H9; intros _ H9; cut (x1 < b).
- intro; unfold h; case (Rle_dec x a); intro.
- case (Rle_dec x1 a); intro.
+ intro; unfold h; case (Rle_dec x a) as [|[]].
+ case (Rle_dec x1 a) as [Hlta|Hnlea].
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
- case (Rle_dec x1 b); intro.
+ case (Rle_dec x1 b) as [Hleb|[]].
elim H8; intros; apply H12; split.
unfold D_x, no_cond; split.
trivial.
- red; intro; elim n; right; symmetry ; assumption.
+ red; intro; elim Hnlea; right; symmetry ; assumption.
apply Rlt_le_trans with (Rmin x0 (b - a)).
rewrite H4 in H9; apply H9.
apply Rmin_l.
- elim n0; left; assumption.
- elim n; right; assumption.
+ left; assumption.
+ right; assumption.
apply Rplus_lt_reg_l with (- a); do 2 rewrite (Rplus_comm (- a));
rewrite H4 in H9; apply Rle_lt_trans with (Rabs (x1 - a)).
apply RRle_abs.
@@ -1073,28 +1056,27 @@ Proof.
assert (H12 : 0 < b - x).
apply Rlt_Rminus; assumption.
exists (Rmin x0 (Rmin (x - a) (b - x))); split.
- unfold Rmin; case (Rle_dec (x - a) (b - x)); intro.
- case (Rle_dec x0 (x - a)); intro.
+ unfold Rmin; case (Rle_dec (x - a) (b - x)) as [Hle|Hnle].
+ case (Rle_dec x0 (x - a)) as [Hlea|Hnlea].
assumption.
assumption.
- case (Rle_dec x0 (b - x)); intro.
+ case (Rle_dec x0 (b - x)) as [Hleb|Hnleb].
assumption.
assumption.
- intros; elim H13; clear H13; intros; cut (a < x1 < b).
- intro; elim H15; clear H15; intros; unfold h; case (Rle_dec x a);
- intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
- case (Rle_dec x b); intro.
- case (Rle_dec x1 a); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H15)).
- case (Rle_dec x1 b); intro.
+ intros x1 (H13,H14); cut (a < x1 < b).
+ intro; elim H15; clear H15; intros; unfold h; case (Rle_dec x a) as [Hle|Hnle].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H4)).
+ case (Rle_dec x b) as [|[]].
+ case (Rle_dec x1 a) as [Hle0|].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle0 H15)).
+ case (Rle_dec x1 b) as [|[]].
apply H10; split.
assumption.
apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))).
assumption.
apply Rmin_l.
- elim n1; left; assumption.
- elim n0; left; assumption.
+ left; assumption.
+ left; assumption.
split.
apply Ropp_lt_cancel; apply Rplus_lt_reg_l with x;
apply Rle_lt_trans with (Rabs (x1 - x)).
@@ -1124,13 +1106,13 @@ Proof.
elim H10; intros; assumption.
change (0 < b - a); apply Rlt_Rminus; assumption.
intros; elim H11; clear H11; intros _ H11; cut (a < x1).
- intro; unfold h; case (Rle_dec x a); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
- case (Rle_dec x1 a); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H12)).
- case (Rle_dec x b); intro.
- case (Rle_dec x1 b); intro.
- rewrite H6; elim H10; intros; elim r0; intro.
+ intro; unfold h; case (Rle_dec x a) as [Hlea|Hnlea].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hlea H4)).
+ case (Rle_dec x1 a) as [Hlea'|Hnlea'].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hlea' H12)).
+ case (Rle_dec x b) as [Hleb|Hnleb].
+ case (Rle_dec x1 b) as [Hleb'|Hnleb'].
+ rewrite H6; elim H10; intros; destruct Hleb'.
apply H14; split.
unfold D_x, no_cond; split.
trivial.
@@ -1142,7 +1124,7 @@ Proof.
assumption.
rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
- elim n1; right; assumption.
+ elim Hnleb; right; assumption.
rewrite H6 in H11; apply Ropp_lt_cancel; apply Rplus_lt_reg_l with b;
apply Rle_lt_trans with (Rabs (x1 - b)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
@@ -1160,22 +1142,21 @@ Proof.
apply Rle_lt_trans with (Rabs (x0 - x)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
assumption.
- unfold h; case (Rle_dec x a); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
- case (Rle_dec x b); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H6)).
- case (Rle_dec x0 a); intro.
- elim (Rlt_irrefl _ (Rlt_trans _ _ _ H1 (Rlt_le_trans _ _ _ H10 r))).
- case (Rle_dec x0 b); intro.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10)).
+ unfold h; case (Rle_dec x a) as [Hle|Hnle].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H4)).
+ case (Rle_dec x b) as [Hleb|Hnleb].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hleb H6)).
+ case (Rle_dec x0 a) as [Hlea'|Hnlea'].
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H1 (Rlt_le_trans _ _ _ H10 Hlea'))).
+ case (Rle_dec x0 b) as [Hleb'|Hnleb'].
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hleb' H10)).
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
- intros; elim H3; intros; unfold h; case (Rle_dec c a); intro.
- elim r; intro.
+ intros; elim H3; intros; unfold h; case (Rle_dec c a) as [[|]|].
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 H6)).
rewrite H6; reflexivity.
- case (Rle_dec c b); intro.
+ case (Rle_dec c b) as [|[]].
reflexivity.
- elim n0; assumption.
+ assumption.
exists (fun _:R => f0 a); split.
apply derivable_continuous; apply (derivable_const (f0 a)).
intros; elim H2; intros; rewrite H1 in H3; cut (b = c).
@@ -1229,8 +1210,8 @@ Proof.
apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_0;
rewrite Ropp_involutive; apply (cond_pos eps).
unfold is_upper_bound, image_dir; intros; cut (x <= M).
- intro; case (Rle_dec x (M - eps)); intro.
- apply r.
+ intro; destruct (Rle_dec x (M - eps)) as [H13|].
+ apply H13.
elim (H9 x); unfold intersection_domain, disc, image_dir; split.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right.
apply Rplus_lt_reg_l with (x - eps);
@@ -1615,13 +1596,12 @@ Proof.
apply H3.
elim Hyp; intros; elim H4; intros; decompose [and] H5;
assert (H10 := H3 _ H6); assert (H11 := H3 _ H8);
- elim H10; intros; elim H11; intros; case (total_order_T x x0);
- intro.
- elim s; intro.
+ elim H10; intros; elim H11; intros;
+ destruct (total_order_T x x0) as [[|H15]|H15].
assumption.
- rewrite b in H13; rewrite b in H7; elim H9; apply Rle_antisym;
+ rewrite H15 in H13, H7; elim H9; apply Rle_antisym;
apply Rle_trans with x0; assumption.
- elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H13 H14) r)).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H13 H14) H15)).
elim X_enc; clear X_enc; intros m X_enc; elim X_enc; clear X_enc;
intros M X_enc; elim X_enc; clear X_enc Hyp; intros X_enc Hyp;
unfold uniform_continuity; intro;
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v
index f9cbb6e9d..c9704db3b 100644
--- a/theories/Reals/Rtrigo.v
+++ b/theories/Reals/Rtrigo.v
@@ -22,4 +22,4 @@ Require Import Rsqrt_def.
Require Import PSeries_reg.
Require Export Rtrigo1.
Require Export Ratan.
-Require Export Machin. \ No newline at end of file
+Require Export Machin.
diff --git a/theories/Reals/Rtrigo1.v b/theories/Reals/Rtrigo1.v
index 0e8beaad3..e42610424 100644
--- a/theories/Reals/Rtrigo1.v
+++ b/theories/Reals/Rtrigo1.v
@@ -147,11 +147,11 @@ Proof.
apply H4.
intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6.
intro; unfold cos, SFL in |- *.
- case (cv x); case (exist_cos (Rsqr x)); intros.
- symmetry in |- *; eapply UL_sequence.
- apply u.
- unfold cos_in in c; unfold infinite_sum in c; unfold Un_cv in |- *; intros.
- elim (c _ H0); intros N0 H1.
+ case (cv x) as (x1,HUn); case (exist_cos (Rsqr x)) as (x0,Hcos); intros.
+ symmetry; eapply UL_sequence.
+ apply HUn.
+ unfold cos_in, infinite_sum in Hcos; unfold Un_cv in |- *; intros.
+ elim (Hcos _ H0); intros N0 H1.
exists N0; intros.
unfold R_dist in H1; unfold R_dist, SP in |- *.
replace (sum_f_R0 (fun k:nat => fn k x) n) with
@@ -585,8 +585,8 @@ Qed.
Lemma SIN_bound : forall x:R, -1 <= sin x <= 1.
Proof.
- intro; case (Rle_dec (-1) (sin x)); intro.
- case (Rle_dec (sin x) 1); intro.
+ intro; destruct (Rle_dec (-1) (sin x)) as [Hle|Hnle].
+ destruct (Rle_dec (sin x) 1) as [Hle'|Hnle'].
split; assumption.
cut (1 < sin x).
intro;
diff --git a/theories/Reals/Rtrigo_alt.v b/theories/Reals/Rtrigo_alt.v
index 23b8e847a..448901f28 100644
--- a/theories/Reals/Rtrigo_alt.v
+++ b/theories/Reals/Rtrigo_alt.v
@@ -134,13 +134,13 @@ Proof.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_S; assumption.
apply le_n_Sn.
ring.
- assert (X := exist_sin (Rsqr a)); elim X; intros.
- cut (x = sin a / a).
- intro; rewrite H3 in p; unfold sin_in in p; unfold infinite_sum in p;
- unfold R_dist in p; unfold Un_cv; unfold R_dist;
+ unfold sin.
+ destruct (exist_sin (Rsqr a)) as (x,p).
+ unfold sin_in, infinite_sum, R_dist in p;
+ unfold Un_cv, R_dist;
intros.
cut (0 < eps / Rabs a).
- intro; elim (p _ H5); intros N H6.
+ intro H4; destruct (p _ H4) as (N,H6).
exists N; intros.
replace (sum_f_R0 (tg_alt Un) n0) with
(a * (1 - sum_f_R0 (fun i:nat => sin_n i * Rsqr a ^ i) (S n0))).
@@ -151,12 +151,12 @@ Proof.
rewrite Rplus_opp_l; rewrite Rplus_0_r; apply Rmult_lt_reg_l with (/ Rabs a).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
pattern (/ Rabs a) at 1; rewrite <- (Rabs_Rinv a Hyp_a).
- rewrite <- Rabs_mult; rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc;
- rewrite <- Rinv_l_sym; [ rewrite Rmult_1_l | assumption ];
- rewrite (Rmult_comm (/ a)); rewrite (Rmult_comm (/ Rabs a));
- rewrite <- Rabs_Ropp; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
- unfold Rminus, Rdiv in H6; apply H6; unfold ge;
- apply le_trans with n0; [ exact H7 | apply le_n_Sn ].
+ rewrite <- Rabs_mult, Rmult_plus_distr_l, <- 2!Rmult_assoc, <- Rinv_l_sym;
+ [ rewrite Rmult_1_l | assumption ];
+ rewrite (Rmult_comm (/ Rabs a)),
+ <- Rabs_Ropp, Ropp_plus_distr, Ropp_involutive, Rmult_1_l.
+ unfold Rminus, Rdiv in H6. apply H6; unfold ge;
+ apply le_trans with n0; [ exact H5 | apply le_n_Sn ].
rewrite (decomp_sum (fun i:nat => sin_n i * Rsqr a ^ i) (S n0)).
replace (sin_n 0) with 1.
simpl; rewrite Rmult_1_r; unfold Rminus;
@@ -176,13 +176,6 @@ Proof.
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
- unfold sin; case (exist_sin (Rsqr a)).
- intros; cut (x = x0).
- intro; rewrite H3; unfold Rdiv.
- symmetry ; apply Rinv_r_simpl_m; assumption.
- unfold sin_in in p; unfold sin_in in s; eapply uniqueness_sum.
- apply p.
- apply s.
intros; elim H2; intros.
replace (sin a - a) with (- (a - sin a)); [ idtac | ring ].
split; apply Ropp_le_contravar; assumption.
@@ -318,12 +311,10 @@ Proof.
apply le_n_2n.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_Sn.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_S; assumption.
- assert (X := exist_cos (Rsqr a0)); elim X; intros.
- cut (x = cos a0).
- intro; rewrite H4 in p; unfold cos_in in p; unfold infinite_sum in p;
- unfold R_dist in p; unfold Un_cv; unfold R_dist;
- intros.
- elim (p _ H5); intros N H6.
+ unfold cos. destruct (exist_cos (Rsqr a0)) as (x,p).
+ unfold cos_in, infinite_sum, R_dist in p;
+ unfold Un_cv, R_dist; intros.
+ destruct (p _ H4) as (N,H6).
exists N; intros.
replace (sum_f_R0 (tg_alt Un) n1) with
(1 - sum_f_R0 (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
@@ -334,7 +325,7 @@ Proof.
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
unfold Rminus in H6; apply H6.
unfold ge; apply le_trans with n1.
- exact H7.
+ exact H5.
apply le_n_Sn.
rewrite (decomp_sum (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
replace (cos_n 0) with 1.
@@ -354,10 +345,6 @@ Proof.
unfold cos_n; unfold Rdiv; simpl; rewrite Rinv_1;
rewrite Rmult_1_r; reflexivity.
apply lt_O_Sn.
- unfold cos; case (exist_cos (Rsqr a0)); intros; unfold cos_in in p;
- unfold cos_in in c; eapply uniqueness_sum.
- apply p.
- apply c.
intros; elim H3; intros; replace (cos a0 - 1) with (- (1 - cos a0));
[ idtac | ring ].
split; apply Ropp_le_contravar; assumption.
@@ -394,8 +381,7 @@ Proof.
replace (2 * n0 + 1)%nat with (S (2 * n0)).
apply lt_O_Sn.
ring.
- intros; case (total_order_T 0 a); intro.
- elim s; intro.
+ intros; destruct (total_order_T 0 a) as [[Hlt|Heq]|Hgt].
apply H; [ left; assumption | assumption ].
apply H; [ right; assumption | assumption ].
cut (0 < - a).
diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v
index fff4fec98..aafa3357e 100644
--- a/theories/Reals/Rtrigo_reg.v
+++ b/theories/Reals/Rtrigo_reg.v
@@ -176,14 +176,14 @@ Proof.
intro; rewrite H9 in H8; rewrite H10 in H8.
apply H8.
unfold SFL, sin.
- case (cv h); intros.
- case (exist_sin (Rsqr h)); intros.
+ case (cv h) as (x,HUn).
+ case (exist_sin (Rsqr h)) as (x0,Hsin).
unfold Rdiv; rewrite (Rinv_r_simpl_m h x0 H6).
eapply UL_sequence.
- apply u.
- unfold sin_in in s; unfold sin_n, infinite_sum in s;
+ apply HUn.
+ unfold sin_in in Hsin; unfold sin_n, infinite_sum in Hsin;
unfold SP, fn, Un_cv; intros.
- elim (s _ H10); intros N0 H11.
+ elim (Hsin _ H10); intros N0 H11.
exists N0; intros.
unfold R_dist; unfold R_dist in H11.
replace
@@ -194,9 +194,9 @@ Proof.
apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr;
rewrite pow_sqr; reflexivity.
unfold SFL, sin.
- case (cv 0); intros.
+ case (cv 0) as (?,HUn).
eapply UL_sequence.
- apply u.
+ apply HUn.
unfold SP, fn; unfold Un_cv; intros; exists 1%nat; intros.
unfold R_dist;
replace
diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v
index 7f3282a35..d8f1cc6aa 100644
--- a/theories/Reals/SeqProp.v
+++ b/theories/Reals/SeqProp.v
@@ -461,8 +461,7 @@ Lemma cond_eq :
forall x y:R, (forall eps:R, 0 < eps -> Rabs (x - y) < eps) -> x = y.
Proof.
intros.
- case (total_order_T x y); intro.
- elim s; intro.
+ destruct (total_order_T x y) as [[Hlt|Heq]|Hgt].
cut (0 < y - x).
intro.
assert (H1 := H (y - x) H0).
@@ -897,8 +896,7 @@ Lemma growing_ineq :
forall (Un:nat -> R) (l:R),
Un_growing Un -> Un_cv Un l -> forall n:nat, Un n <= l.
Proof.
- intros; case (total_order_T (Un n) l); intro.
- elim s; intro.
+ intros; destruct (total_order_T (Un n) l) as [[Hlt|Heq]|Hgt].
left; assumption.
right; assumption.
cut (0 < Un n - l).
@@ -1103,11 +1101,11 @@ Proof.
apply (cv_infty_cv_R0 (fun n:nat => INR (S n))).
intro; apply not_O_INR; discriminate.
assumption.
- unfold cv_infty; intro; case (total_order_T M0 0); intro.
- elim s; intro.
+ unfold cv_infty; intro;
+ destruct (total_order_T M0 0) as [[Hlt|Heq]|Hgt].
exists 0%nat; intros.
apply Rlt_trans with 0; [ assumption | apply lt_INR_0; apply lt_O_Sn ].
- exists 0%nat; intros; rewrite b; apply lt_INR_0; apply lt_O_Sn.
+ exists 0%nat; intros; rewrite Heq; apply lt_INR_0; apply lt_O_Sn.
set (M0_z := up M0).
assert (H10 := archimed M0).
cut (0 <= M0_z)%Z.
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
index 6ff3fa8b8..462a94db1 100644
--- a/theories/Reals/SeqSeries.v
+++ b/theories/Reals/SeqSeries.v
@@ -375,11 +375,11 @@ Proof with trivial.
assert (H1 : forall n:nat, 0 < sum_f_R0 An n)...
intro; apply tech1...
assert (H2 : cv_infty (fun n:nat => sum_f_R0 An n))...
- unfold cv_infty; intro; case (Rle_dec M 0); intro...
+ unfold cv_infty; intro; destruct (Rle_dec M 0) as [Hle|Hnle]...
exists 0%nat; intros; apply Rle_lt_trans with 0...
assert (H2 : 0 < M)...
auto with real...
- clear n; set (m := up M); elim (archimed M); intros;
+ clear Hnle; set (m := up M); elim (archimed M); intros;
assert (H5 : (0 <= m)%Z)...
apply le_IZR; unfold m; simpl; left; apply Rlt_trans with M...
elim (IZN _ H5); intros; exists x; intros; unfold An; rewrite sum_cte;
diff --git a/theories/Reals/SplitAbsolu.v b/theories/Reals/SplitAbsolu.v
index d0de58b09..c5eec7012 100644
--- a/theories/Reals/SplitAbsolu.v
+++ b/theories/Reals/SplitAbsolu.v
@@ -11,7 +11,7 @@ Require Import Rbasic_fun.
Ltac split_case_Rabs :=
match goal with
| |- context [(Rcase_abs ?X1)] =>
- case (Rcase_abs X1); try split_case_Rabs
+ destruct (Rcase_abs X1) as [?Hlt|?Hge]; try split_case_Rabs
end.
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v
index 985faa21e..87c624182 100644
--- a/theories/Reals/Sqrt_reg.v
+++ b/theories/Reals/Sqrt_reg.v
@@ -18,8 +18,7 @@ Lemma sqrt_var_maj :
Proof.
intros; cut (0 <= 1 + h).
intro; apply Rle_trans with (Rabs (sqrt (Rsqr (1 + h)) - 1)).
- case (total_order_T h 0); intro.
- elim s; intro.
+ destruct (total_order_T h 0) as [[Hlt|Heq]|Hgt].
repeat rewrite Rabs_left.
unfold Rminus; do 2 rewrite <- (Rplus_comm (-1)).
do 2 rewrite Ropp_plus_distr; rewrite Ropp_involutive;
@@ -51,7 +50,7 @@ Proof.
left; apply Rlt_0_1.
pattern 1 at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
- rewrite b; rewrite Rplus_0_r; rewrite Rsqr_1; rewrite sqrt_1; right;
+ rewrite Heq; rewrite Rplus_0_r; rewrite Rsqr_1; rewrite sqrt_1; right;
reflexivity.
repeat rewrite Rabs_right.
unfold Rminus; do 2 rewrite <- (Rplus_comm (-1));
@@ -86,16 +85,15 @@ Proof.
rewrite sqrt_Rsqr.
replace (1 + h - 1) with h; [ right; reflexivity | ring ].
apply H0.
- case (total_order_T h 0); intro.
- elim s; intro.
- rewrite (Rabs_left h a) in H.
+ destruct (total_order_T h 0) as [[Hlt|Heq]|Hgt].
+ rewrite (Rabs_left h Hlt) in H.
apply Rplus_le_reg_l with (- h).
rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; exact H.
- left; rewrite b; rewrite Rplus_0_r; apply Rlt_0_1.
+ left; rewrite Heq; rewrite Rplus_0_r; apply Rlt_0_1.
left; apply Rplus_lt_0_compat.
apply Rlt_0_1.
- apply r.
+ apply Hgt.
Qed.
(** sqrt is continuous in 1 *)
@@ -203,8 +201,8 @@ Proof.
left; apply Rlt_0_1.
left; apply H.
elim H6; intros.
- case (Rcase_abs (x0 - x)); intro.
- rewrite (Rabs_left (x0 - x) r) in H8.
+ destruct (Rcase_abs (x0 - x)) as [Hlt|Hgt].
+ rewrite (Rabs_left (x0 - x) Hlt) in H8.
rewrite Rplus_comm.
apply Rplus_le_reg_l with (- ((x0 - x) / x)).
rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
@@ -220,7 +218,7 @@ Proof.
apply Rplus_le_le_0_compat.
left; apply Rlt_0_1.
unfold Rdiv; apply Rmult_le_pos.
- apply Rge_le; exact r.
+ apply Rge_le; exact Hgt.
left; apply Rinv_0_lt_compat; apply H.
unfold Rdiv; apply Rmult_lt_0_compat.
apply H1.
@@ -273,8 +271,8 @@ Proof.
apply Rplus_lt_le_0_compat.
apply sqrt_lt_R0; apply H.
apply sqrt_positivity; apply H10.
- case (Rcase_abs h); intro.
- rewrite (Rabs_left h r) in H9.
+ destruct (Rcase_abs h) as [Hlt|Hgt].
+ rewrite (Rabs_left h Hlt) in H9.
apply Rplus_le_reg_l with (- h).
rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; left; apply Rlt_le_trans with alpha1.
@@ -282,7 +280,7 @@ Proof.
unfold alpha1; apply Rmin_r.
apply Rplus_le_le_0_compat.
left; assumption.
- apply Rge_le; apply r.
+ apply Rge_le; apply Hgt.
unfold alpha1; unfold Rmin; case (Rle_dec alpha x); intro.
apply H5.
apply H.
@@ -341,17 +339,16 @@ Proof.
rewrite <- H1; rewrite sqrt_0; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite <- H1 in H5; unfold Rminus in H5;
rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5.
- case (Rcase_abs x0); intro.
- unfold sqrt; case (Rcase_abs x0); intro.
+ destruct (Rcase_abs x0) as [Hlt|Hgt]_eqn:Heqs.
+ unfold sqrt. rewrite Heqs.
rewrite Rabs_R0; apply H2.
- assert (H6 := Rge_le _ _ r0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 r)).
rewrite Rabs_right.
apply Rsqr_incrst_0.
rewrite Rsqr_sqrt.
- rewrite (Rabs_right x0 r) in H5; apply H5.
- apply Rge_le; exact r.
- apply sqrt_positivity; apply Rge_le; exact r.
+ rewrite (Rabs_right x0 Hgt) in H5; apply H5.
+ apply Rge_le; exact Hgt.
+ apply sqrt_positivity; apply Rge_le; exact Hgt.
left; exact H2.
- apply Rle_ge; apply sqrt_positivity; apply Rge_le; exact r.
+ apply Rle_ge; apply sqrt_positivity; apply Rge_le; exact Hgt.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H1 H)).
Qed.