diff options
author | Guillaume Melquiond <guillaume.melquiond@inria.fr> | 2017-03-05 19:58:44 +0100 |
---|---|---|
committer | Maxime Dénès <mail@maximedenes.fr> | 2017-03-22 16:42:00 +0100 |
commit | 46d79ebd74876f34242c8c5d9ab3dcedbadba7cc (patch) | |
tree | 262da87e5fca237320e75be293244dd19628ca3a /theories/Reals | |
parent | d2061bd8cd2d809d6e5a849dd150e9e0d74331fc (diff) |
Simplify some proofs using ring and field.
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/RIneq.v | 48 | ||||
-rw-r--r-- | theories/Reals/R_sqr.v | 53 | ||||
-rw-r--r-- | theories/Reals/R_sqrt.v | 117 | ||||
-rw-r--r-- | theories/Reals/Ranalysis4.v | 11 | ||||
-rw-r--r-- | theories/Reals/Rderiv.v | 12 | ||||
-rw-r--r-- | theories/Reals/Rlimit.v | 3 | ||||
-rw-r--r-- | theories/Reals/Rpower.v | 19 | ||||
-rw-r--r-- | theories/Reals/Rtrigo1.v | 38 | ||||
-rw-r--r-- | theories/Reals/Rtrigo_calc.v | 181 | ||||
-rw-r--r-- | theories/Reals/Rtrigo_reg.v | 11 |
10 files changed, 99 insertions, 394 deletions
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v index 379fee6f4..07bcd9836 100644 --- a/theories/Reals/RIneq.v +++ b/theories/Reals/RIneq.v @@ -2017,42 +2017,18 @@ Qed. Lemma le_epsilon : forall r1 r2, (forall eps:R, 0 < eps -> r1 <= r2 + eps) -> r1 <= r2. Proof. - intros x y; intros; elim (Rtotal_order x y); intro. - left; assumption. - elim H0; intro. - right; assumption. - clear H0; generalize (Rgt_minus x y H1); intro H2; change (0 < x - y) in H2. - cut (0 < 2). - intro. - generalize (Rmult_lt_0_compat (x - y) (/ 2) H2 (Rinv_0_lt_compat 2 H0)); - intro H3; generalize (H ((x - y) * / 2) H3); - replace (y + (x - y) * / 2) with ((y + x) * / 2). - intro H4; - generalize (Rmult_le_compat_l 2 x ((y + x) * / 2) (Rlt_le 0 2 H0) H4); - rewrite <- (Rmult_comm ((y + x) * / 2)); rewrite Rmult_assoc; - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; replace (2 * x) with (x + x). - rewrite (Rplus_comm y); intro H5; apply Rplus_le_reg_l with x; assumption. - ring. - replace 2 with (INR 2); [ apply not_0_INR; discriminate | reflexivity ]. - pattern y at 2; replace y with (y / 2 + y / 2). - unfold Rminus, Rdiv. - repeat rewrite Rmult_plus_distr_r. - ring. - cut (forall z:R, 2 * z = z + z). - intro. - rewrite <- (H4 (y / 2)). - unfold Rdiv. - rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. - replace 2 with (INR 2). - apply not_0_INR. - discriminate. - unfold INR; reflexivity. - intro; ring. - cut (0%nat <> 2%nat); - [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR; - intro; assumption - | discriminate ]. + intros x y H. + destruct (Rle_or_lt x y) as [H1|H1]. + exact H1. + apply Rplus_le_reg_r with x. + replace (y + x) with (2 * (y + (x - y) * / 2)) by field. + replace (x + x) with (2 * x) by ring. + apply Rmult_le_compat_l. + now apply (IZR_le 0 2). + apply H. + apply Rmult_lt_0_compat. + now apply Rgt_minus. + apply Rinv_0_lt_compat, Rlt_0_2. Qed. (**********) diff --git a/theories/Reals/R_sqr.v b/theories/Reals/R_sqr.v index 445ffcb21..a8937e36f 100644 --- a/theories/Reals/R_sqr.v +++ b/theories/Reals/R_sqr.v @@ -296,56 +296,9 @@ Lemma canonical_Rsqr : a * Rsqr (x + b / (2 * a)) + (4 * a * c - Rsqr b) / (4 * a). Proof. intros. - rewrite Rsqr_plus. - repeat rewrite Rmult_plus_distr_l. - repeat rewrite Rplus_assoc. - apply Rplus_eq_compat_l. - unfold Rdiv, Rminus. - replace (2 * 1 + 2 * 1) with 4; [ idtac | ring ]. - rewrite (Rmult_plus_distr_r (4 * a * c) (- Rsqr b) (/ (4 * a))). - rewrite Rsqr_mult. - repeat rewrite Rinv_mult_distr. - repeat rewrite (Rmult_comm a). - repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite (Rmult_comm (/ 2)). - rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite (Rmult_comm a). - repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - repeat rewrite Rplus_assoc. - rewrite (Rplus_comm (Rsqr b * (Rsqr (/ a * / 2) * a))). - repeat rewrite Rplus_assoc. - rewrite (Rmult_comm x). - apply Rplus_eq_compat_l. - rewrite (Rmult_comm (/ a)). - unfold Rsqr; repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - ring. - apply (cond_nonzero a). - discrR. - apply (cond_nonzero a). - discrR. - discrR. - apply (cond_nonzero a). - discrR. - discrR. - discrR. - apply (cond_nonzero a). - discrR. - apply (cond_nonzero a). + unfold Rsqr. + field. + apply a. Qed. Lemma Rsqr_eq : forall x y:R, Rsqr x = Rsqr y -> x = y \/ x = - y. diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v index a6b1a26e0..5c975c3f5 100644 --- a/theories/Reals/R_sqrt.v +++ b/theories/Reals/R_sqrt.v @@ -359,107 +359,22 @@ Lemma Rsqr_sol_eq_0_1 : x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0. Proof. intros; elim H0; intro. - unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv; - repeat rewrite Rsqr_mult; rewrite Rsqr_plus; rewrite <- Rsqr_neg; - rewrite Rsqr_sqrt. - rewrite Rsqr_inv. - unfold Rsqr; repeat rewrite Rinv_mult_distr. - repeat rewrite Rmult_assoc; rewrite (Rmult_comm a). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; rewrite Rmult_plus_distr_r. - repeat rewrite Rmult_assoc. - pattern 2 at 2; rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite - (Rmult_plus_distr_r (- b) (sqrt (b * b - 2 * (2 * (a * c)))) (/ 2 * / a)) - . - rewrite Rmult_plus_distr_l; repeat rewrite Rplus_assoc. - replace - (- b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) + - (b * (- b * (/ 2 * / a)) + - (b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) + c))) with - (b * (- b * (/ 2 * / a)) + c). - unfold Rminus; repeat rewrite <- Rplus_assoc. - replace (b * b + b * b) with (2 * (b * b)). - rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc. - rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc; - rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; rewrite (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc; - rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; repeat rewrite Rmult_assoc. - rewrite (Rmult_comm a); rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; rewrite <- Rmult_opp_opp. - ring. - apply (cond_nonzero a). - discrR. - discrR. - discrR. - ring. - ring. - discrR. - apply (cond_nonzero a). - discrR. - apply (cond_nonzero a). - apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ]. - apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ]. - apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ]. - assumption. - unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv; - repeat rewrite Rsqr_mult; rewrite Rsqr_minus; rewrite <- Rsqr_neg; - rewrite Rsqr_sqrt. - rewrite Rsqr_inv. - unfold Rsqr; repeat rewrite Rinv_mult_distr; - repeat rewrite Rmult_assoc. - rewrite (Rmult_comm a); repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; unfold Rminus; rewrite Rmult_plus_distr_r. - rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc; - pattern 2 at 2; rewrite (Rmult_comm 2). - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; - rewrite - (Rmult_plus_distr_r (- b) (- sqrt (b * b + - (2 * (2 * (a * c))))) - (/ 2 * / a)). - rewrite Rmult_plus_distr_l; repeat rewrite Rplus_assoc. - rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_involutive. - replace - (b * (sqrt (b * b + - (2 * (2 * (a * c)))) * (/ 2 * / a)) + - (b * (- b * (/ 2 * / a)) + - (b * (- sqrt (b * b + - (2 * (2 * (a * c)))) * (/ 2 * / a)) + c))) with - (b * (- b * (/ 2 * / a)) + c). - repeat rewrite <- Rplus_assoc; replace (b * b + b * b) with (2 * (b * b)). - rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc; - rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; - rewrite <- Rinv_l_sym. - rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc. - rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; rewrite (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc. - rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; repeat rewrite Rmult_assoc; rewrite (Rmult_comm a); - rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; rewrite <- Rmult_opp_opp; ring. - apply (cond_nonzero a). - discrR. - discrR. - discrR. - ring. - ring. - discrR. - apply (cond_nonzero a). - discrR. - discrR. - apply (cond_nonzero a). - apply prod_neq_R0; discrR || apply (cond_nonzero a). - apply prod_neq_R0; discrR || apply (cond_nonzero a). - apply prod_neq_R0; discrR || apply (cond_nonzero a). - assumption. + rewrite H1. + unfold sol_x1, Delta, Rsqr. + field_simplify. + rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt. + field. + apply a. + apply H. + apply a. + rewrite H1. + unfold sol_x2, Delta, Rsqr. + field_simplify. + rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt. + field. + apply a. + apply H. + apply a. Qed. Lemma Rsqr_sol_eq_0_0 : diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v index 661bc8c76..23daedb8b 100644 --- a/theories/Reals/Ranalysis4.v +++ b/theories/Reals/Ranalysis4.v @@ -130,15 +130,8 @@ Proof. intro; exists (mkposreal (- x) H1); intros. rewrite (Rabs_left x). rewrite (Rabs_left (x + h)). - rewrite Rplus_comm. - rewrite Ropp_plus_distr. - unfold Rminus; rewrite Ropp_involutive; rewrite Rplus_assoc; - rewrite Rplus_opp_l. - rewrite Rplus_0_r; unfold Rdiv. - rewrite Ropp_mult_distr_l_reverse. - rewrite <- Rinv_r_sym. - rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0. - apply H2. + replace ((-(x + h) - - x) / h - -1) with 0 by now field. + rewrite Rabs_R0; apply H0. destruct (Rcase_abs h) as [Hlt|Hgt]. apply Ropp_lt_cancel. rewrite Ropp_0; rewrite Ropp_plus_distr; apply Rplus_lt_0_compat. diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v index bd330ac9b..5fb6bd2b7 100644 --- a/theories/Reals/Rderiv.v +++ b/theories/Reals/Rderiv.v @@ -296,14 +296,10 @@ Proof. intros; generalize (H0 eps H1); clear H0; intro; elim H0; clear H0; intros; elim H0; clear H0; simpl; intros; split with x; split; auto. - intros; generalize (H2 x1 H3); clear H2; intro; - rewrite Ropp_mult_distr_l_reverse in H2; - rewrite Ropp_mult_distr_l_reverse in H2; - rewrite Ropp_mult_distr_l_reverse in H2; - rewrite (let (H1, H2) := Rmult_ne (f x1) in H2) in H2; - rewrite (let (H1, H2) := Rmult_ne (f x0) in H2) in H2; - rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2; - assumption. + intros; generalize (H2 x1 H3); clear H2; intro. + replace (- f x1 - - f x0) with (-1 * f x1 - -1 * f x0) by ring. + replace (- df x0) with (-1 * df x0) by ring. + exact H2. Qed. (*********) diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v index e424a732a..f07140752 100644 --- a/theories/Reals/Rlimit.v +++ b/theories/Reals/Rlimit.v @@ -407,8 +407,7 @@ Proof. generalize (Rplus_lt_compat (R_dist (f x2) l) eps (R_dist (f x2) l') eps H H0); unfold R_dist; intros; rewrite (Rabs_minus_sym (f x2) l) in H1; - rewrite (Rmult_comm 2 eps); rewrite (Rmult_plus_distr_l eps 1 1); - elim (Rmult_ne eps); intros a b; rewrite a; clear a b; + rewrite (Rmult_comm 2 eps); replace (eps *2) with (eps + eps) by ring; generalize (R_dist_tri l l' (f x2)); unfold R_dist; intros; apply diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v index b3ce6fa33..a053c349e 100644 --- a/theories/Reals/Rpower.v +++ b/theories/Reals/Rpower.v @@ -55,25 +55,8 @@ Proof. simpl in H0. replace (/ 3) with (1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / 2 + - -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1)). + -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1)) by field. apply H0. - repeat rewrite Rinv_1; repeat rewrite Rmult_1_r; - rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l; - rewrite Ropp_involutive; rewrite Rplus_opp_r; rewrite Rmult_1_r; - rewrite Rplus_0_l; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 6. - rewrite Rmult_plus_distr_l; replace (2 + 1 + 1 + 1 + 1) with 6. - rewrite <- (Rmult_comm (/ 6)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; replace 6 with 6. - do 2 rewrite Rmult_assoc; rewrite <- Rinv_r_sym. - rewrite Rmult_1_r; rewrite (Rmult_comm 3); rewrite <- Rmult_assoc; - rewrite <- Rinv_r_sym. - ring. - discrR. - discrR. - ring. - discrR. - ring. - discrR. apply H. unfold Un_decreasing; intros; apply Rmult_le_reg_l with (INR (fact n)). diff --git a/theories/Reals/Rtrigo1.v b/theories/Reals/Rtrigo1.v index 4d2418639..5f2e0d5b5 100644 --- a/theories/Reals/Rtrigo1.v +++ b/theories/Reals/Rtrigo1.v @@ -1260,44 +1260,22 @@ Proof. intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y); rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); unfold INR in |- *; - replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). - replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). + replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field. + replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field. repeat rewrite cos_shift; intro H5; generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4). - replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). - replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). - replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). - replace (-3 * (PI / 2) + PI) with (- (PI / 2)). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring. + replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring. + replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field. + replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field. clear H1 H2 H3 H4; intros H1 H2 H3 H4; apply Rplus_lt_reg_l with (-3 * (PI / 2)); - replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). - replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring. + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring. apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5). - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - pattern PI at 3 in |- *; rewrite double_var. - ring. - rewrite double; pattern PI at 3 4 in |- *; rewrite double_var. - ring. - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - rewrite Rmult_1_r. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. - rewrite Rmult_1_r. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. Qed. Lemma cos_increasing_1 : diff --git a/theories/Reals/Rtrigo_calc.v b/theories/Reals/Rtrigo_calc.v index 9ba14ee73..53056cabd 100644 --- a/theories/Reals/Rtrigo_calc.v +++ b/theories/Reals/Rtrigo_calc.v @@ -32,48 +32,22 @@ Proof. Qed. Lemma sin_cos_PI4 : sin (PI / 4) = cos (PI / 4). -Proof with trivial. - rewrite cos_sin... - replace (PI / 2 + PI / 4) with (- (PI / 4) + PI)... - rewrite neg_sin; rewrite sin_neg; ring... - cut (PI = PI / 2 + PI / 2); [ intro | apply double_var ]... - pattern PI at 2 3; rewrite H; pattern PI at 2 3; rewrite H... - assert (H0 : 2 <> 0); - [ discrR | unfold Rdiv; rewrite Rinv_mult_distr; try ring ]... +Proof. + rewrite cos_sin. + replace (PI / 2 + PI / 4) with (- (PI / 4) + PI) by field. + rewrite neg_sin, sin_neg; ring. Qed. Lemma sin_PI3_cos_PI6 : sin (PI / 3) = cos (PI / 6). -Proof with trivial. - replace (PI / 6) with (PI / 2 - PI / 3)... - rewrite cos_shift... - assert (H0 : 6 <> 0); [ discrR | idtac ]... - assert (H1 : 3 <> 0); [ discrR | idtac ]... - assert (H2 : 2 <> 0); [ discrR | idtac ]... - apply Rmult_eq_reg_l with 6... - rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)... - unfold Rdiv; repeat rewrite Rmult_assoc... - rewrite <- Rinv_l_sym... - rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym... - rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r; - repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym... - ring... +Proof. + replace (PI / 6) with (PI / 2 - PI / 3) by field. + now rewrite cos_shift. Qed. Lemma sin_PI6_cos_PI3 : cos (PI / 3) = sin (PI / 6). -Proof with trivial. - replace (PI / 6) with (PI / 2 - PI / 3)... - rewrite sin_shift... - assert (H0 : 6 <> 0); [ discrR | idtac ]... - assert (H1 : 3 <> 0); [ discrR | idtac ]... - assert (H2 : 2 <> 0); [ discrR | idtac ]... - apply Rmult_eq_reg_l with 6... - rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)... - unfold Rdiv; repeat rewrite Rmult_assoc... - rewrite <- Rinv_l_sym... - rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym... - rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r; - repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym... - ring... +Proof. + replace (PI / 6) with (PI / 2 - PI / 3) by field. + now rewrite sin_shift. Qed. Lemma PI6_RGT_0 : 0 < PI / 6. @@ -90,29 +64,20 @@ Proof. Qed. Lemma sin_PI6 : sin (PI / 6) = 1 / 2. -Proof with trivial. - assert (H : 2 <> 0); [ discrR | idtac ]... - apply Rmult_eq_reg_l with (2 * cos (PI / 6))... +Proof. + apply Rmult_eq_reg_l with (2 * cos (PI / 6)). replace (2 * cos (PI / 6) * sin (PI / 6)) with - (2 * sin (PI / 6) * cos (PI / 6))... - rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3)... - rewrite sin_PI3_cos_PI6... - unfold Rdiv; rewrite Rmult_1_l; rewrite Rmult_assoc; - pattern 2 at 2; rewrite (Rmult_comm 2); rewrite Rmult_assoc; - rewrite <- Rinv_l_sym... - rewrite Rmult_1_r... - unfold Rdiv; rewrite Rinv_mult_distr... - rewrite (Rmult_comm (/ 2)); rewrite (Rmult_comm 2); - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... - rewrite Rmult_1_r... - discrR... - ring... - apply prod_neq_R0... + (2 * sin (PI / 6) * cos (PI / 6)) by ring. + rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3) by field. + rewrite sin_PI3_cos_PI6. + field. + apply prod_neq_R0. + discrR. cut (0 < cos (PI / 6)); [ intro H1; auto with real | apply cos_gt_0; [ apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0) - | apply PI6_RLT_PI2 ] ]... + | apply PI6_RLT_PI2 ] ]. Qed. Lemma sqrt2_neq_0 : sqrt 2 <> 0. @@ -188,20 +153,13 @@ Proof with trivial. apply Rinv_0_lt_compat; apply Rlt_sqrt2_0... rewrite Rsqr_div... rewrite Rsqr_1; rewrite Rsqr_sqrt... - assert (H : 2 <> 0); [ discrR | idtac ]... unfold Rsqr; pattern (cos (PI / 4)) at 1; rewrite <- sin_cos_PI4; replace (sin (PI / 4) * cos (PI / 4)) with - (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4)))... - rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2)... + (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4))) by field. + rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2) by field. rewrite sin_PI2... - apply Rmult_1_r... - unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr... - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... - rewrite Rmult_1_r... - unfold Rdiv; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc... - rewrite <- Rinv_l_sym... - rewrite Rmult_1_l... + field. left; prove_sup... apply sqrt2_neq_0... Qed. @@ -219,24 +177,17 @@ Proof. Qed. Lemma cos3PI4 : cos (3 * (PI / 4)) = -1 / sqrt 2. -Proof with trivial. - replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))... - rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4... - unfold Rdiv; rewrite Ropp_mult_distr_l_reverse... - unfold Rminus; rewrite Ropp_involutive; pattern PI at 1; - rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r; - repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr; - [ ring | discrR | discrR ]... +Proof. + replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4)) by field. + rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4. + unfold Rdiv. + ring. Qed. Lemma sin3PI4 : sin (3 * (PI / 4)) = 1 / sqrt 2. -Proof with trivial. - replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))... - rewrite sin_shift; rewrite cos_neg; rewrite cos_PI4... - unfold Rminus; rewrite Ropp_involutive; pattern PI at 1; - rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r; - repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr; - [ ring | discrR | discrR ]... +Proof. + replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4)) by field. + now rewrite sin_shift, cos_neg, cos_PI4. Qed. Lemma cos_PI6 : cos (PI / 6) = sqrt 3 / 2. @@ -248,19 +199,11 @@ Proof with trivial. left; apply (Rmult_lt_0_compat (sqrt 3) (/ 2))... apply Rlt_sqrt3_0... apply Rinv_0_lt_compat; prove_sup0... - assert (H : 2 <> 0); [ discrR | idtac ]... - assert (H1 : 4 <> 0); [ apply prod_neq_R0 | idtac ]... rewrite Rsqr_div... rewrite cos2; unfold Rsqr; rewrite sin_PI6; rewrite sqrt_def... - unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4... - rewrite Rmult_minus_distr_l; rewrite (Rmult_comm 3); - repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym... - rewrite Rmult_1_l; rewrite Rmult_1_r... - rewrite <- (Rmult_comm (/ 2)); repeat rewrite <- Rmult_assoc... - rewrite <- Rinv_l_sym... - rewrite Rmult_1_l; rewrite <- Rinv_r_sym... - ring... - left; prove_sup0... + field. + left ; prove_sup0. + discrR. Qed. Lemma tan_PI6 : tan (PI / 6) = 1 / sqrt 3. @@ -306,56 +249,32 @@ Proof. Qed. Lemma cos_2PI3 : cos (2 * (PI / 3)) = -1 / 2. -Proof with trivial. - assert (H : 2 <> 0); [ discrR | idtac ]... - assert (H0 : 4 <> 0); [ apply prod_neq_R0 | idtac ]... - rewrite double; rewrite cos_plus; rewrite sin_PI3; rewrite cos_PI3; - unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4... - rewrite Rmult_minus_distr_l; repeat rewrite Rmult_assoc; - rewrite (Rmult_comm 2)... - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... - rewrite Rmult_1_r; rewrite <- Rinv_r_sym... - pattern 2 at 4; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; - rewrite <- Rinv_l_sym... - rewrite Rmult_1_r; rewrite Ropp_mult_distr_r_reverse; rewrite Rmult_1_r... - rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... - rewrite Rmult_1_r; rewrite (Rmult_comm 2); rewrite (Rmult_comm (/ 2))... - repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... - rewrite Rmult_1_r; rewrite sqrt_def... - ring... - left; prove_sup... +Proof. + rewrite cos_2a, sin_PI3, cos_PI3. + replace (sqrt 3 / 2 * (sqrt 3 / 2)) with ((sqrt 3 * sqrt 3) / 4) by field. + rewrite sqrt_sqrt. + field. + left ; prove_sup0. Qed. Lemma tan_2PI3 : tan (2 * (PI / 3)) = - sqrt 3. -Proof with trivial. - assert (H : 2 <> 0); [ discrR | idtac ]... - unfold tan; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv; - rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l; - rewrite <- Ropp_inv_permute... - rewrite Rinv_involutive... - rewrite Rmult_assoc; rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_l_sym... - ring... - apply Rinv_neq_0_compat... +Proof. + unfold tan; rewrite sin_2PI3, cos_2PI3. + field. Qed. Lemma cos_5PI4 : cos (5 * (PI / 4)) = -1 / sqrt 2. -Proof with trivial. - replace (5 * (PI / 4)) with (PI / 4 + PI)... - rewrite neg_cos; rewrite cos_PI4; unfold Rdiv; - rewrite Ropp_mult_distr_l_reverse... - pattern PI at 2; rewrite double_var; pattern PI at 2 3; - rewrite double_var; assert (H : 2 <> 0); - [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]... +Proof. + replace (5 * (PI / 4)) with (PI / 4 + PI) by field. + rewrite neg_cos; rewrite cos_PI4; unfold Rdiv. + ring. Qed. Lemma sin_5PI4 : sin (5 * (PI / 4)) = -1 / sqrt 2. -Proof with trivial. - replace (5 * (PI / 4)) with (PI / 4 + PI)... - rewrite neg_sin; rewrite sin_PI4; unfold Rdiv; - rewrite Ropp_mult_distr_l_reverse... - pattern PI at 2; rewrite double_var; pattern PI at 2 3; - rewrite double_var; assert (H : 2 <> 0); - [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]... +Proof. + replace (5 * (PI / 4)) with (PI / 4 + PI) by field. + rewrite neg_sin; rewrite sin_PI4; unfold Rdiv. + ring. Qed. Lemma sin_cos5PI4 : cos (5 * (PI / 4)) = sin (5 * (PI / 4)). diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v index eed612d94..4a1e3179c 100644 --- a/theories/Reals/Rtrigo_reg.v +++ b/theories/Reals/Rtrigo_reg.v @@ -395,15 +395,8 @@ Proof. apply Rlt_le_trans with alp. apply H7. unfold alp; apply Rmin_l. - rewrite sin_plus; unfold Rminus, Rdiv; - repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l; - repeat rewrite Rmult_assoc; repeat rewrite Rplus_assoc; - apply Rplus_eq_compat_l. - rewrite (Rplus_comm (sin x * (-1 * / h))); repeat rewrite Rplus_assoc; - apply Rplus_eq_compat_l. - rewrite Ropp_mult_distr_r_reverse; rewrite Ropp_mult_distr_l_reverse; - rewrite Rmult_1_r; rewrite Rmult_1_l; rewrite Ropp_mult_distr_r_reverse; - rewrite <- Ropp_mult_distr_l_reverse; apply Rplus_comm. + rewrite sin_plus. + now field. unfold alp; unfold Rmin; case (Rle_dec alp1 alp2); intro. apply (cond_pos alp1). apply (cond_pos alp2). |