aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Rtrigo.v
diff options
context:
space:
mode:
authorGravatar desmettr <desmettr@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-07-16 09:03:02 +0000
committerGravatar desmettr <desmettr@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-07-16 09:03:02 +0000
commit7f8807d77df6d8e4605b26fbdb9075b5de5fc768 (patch)
treea3a962d6852eca10854d687bd3b248b9298c6ee0 /theories/Reals/Rtrigo.v
parent1e558a3ce46468154c719eba3f6812be23ab49d7 (diff)
MAJ Rtrigo pour sqrt
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2880 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Reals/Rtrigo.v')
-rw-r--r--theories/Reals/Rtrigo.v301
1 files changed, 0 insertions, 301 deletions
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v
index 92accec1c..f22ce994e 100644
--- a/theories/Reals/Rtrigo.v
+++ b/theories/Reals/Rtrigo.v
@@ -419,26 +419,6 @@ Pattern 1 ``2``; Rewrite <- Rplus_Or.
Replace ``6`` with ``2+4``; [Apply Rlt_compatibility; Sup0 | Ring].
Qed.
-Lemma sqrt2_neq_0 : ~``(sqrt 2)==0``.
-Generalize (Rlt_le ``0`` ``2`` Rgt_2_0); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``2`` H1 H2); Intro H; Absurd ``2==0``; [ DiscrR | Assumption].
-Qed.
-
-Lemma R1_sqrt2_neq_0 : ~``1/(sqrt 2)==0``.
-Generalize (Rinv_neq_R0 ``(sqrt 2)`` sqrt2_neq_0); Intro H; Generalize (prod_neq_R0 ``1`` ``(Rinv (sqrt 2))`` R1_neq_R0 H); Intro H0; Assumption.
-Qed.
-
-Lemma sqrt3_2_neq_0 : ~``2*(sqrt 3)==0``.
-Apply prod_neq_R0; [DiscrR | Generalize (Rlt_le ``0`` ``3`` Rgt_3_0); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``3`` H1 H2); Intro H; Absurd ``3==0``; [ DiscrR | Assumption]].
-Qed.
-
-Lemma Rlt_sqrt2_0 : ``0<(sqrt 2)``.
-Generalize (sqrt_positivity ``2`` (Rlt_le ``0`` ``2`` Rgt_2_0)); Intro H1; Elim H1; Intro H2; [Assumption | Absurd ``0 == (sqrt 2)``; [Apply not_sym; Apply sqrt2_neq_0 | Assumption]].
-Qed.
-
-Lemma Rlt_sqrt3_0 : ``0<(sqrt 3)``.
-Cut ~(O=(1)); [Intro H0; Generalize (Rlt_le ``0`` ``2`` Rgt_2_0); Intro H1; Generalize (Rlt_le ``0`` ``3`` Rgt_3_0); Intro H2; Generalize (lt_INR_0 (1) (neq_O_lt (1) H0)); Unfold INR; Intro H3; Generalize (Rlt_compatibility ``2`` ``0`` ``1`` H3); Rewrite Rplus_sym; Rewrite Rplus_Ol; Replace ``2+1`` with ``3``; [Intro H4; Generalize (sqrt_lt_1 ``2`` ``3`` H1 H2 H4); Clear H3; Intro H3; Apply (Rlt_trans ``0`` ``(sqrt 2)`` ``(sqrt 3)`` Rlt_sqrt2_0 H3) | Ring] | Discriminate].
-Qed.
-
Lemma PI2_Rlt_PI : ``PI/2<PI``.
Unfold Rdiv; Pattern 2 PI; Rewrite <- Rmult_1r.
Apply Rlt_monotony.
@@ -950,94 +930,6 @@ Rewrite <- Rinv_Rmult; [Rewrite H0; Ring | Apply aze | Apply aze].
Ring.
Qed.
-Lemma cos_PI4 : ``(cos (PI/4))==1/(sqrt 2)``.
-Apply Rsqr_inj.
-Apply cos_ge_0.
-Left; Apply (Rlt_trans ``-(PI/2)`` R0 ``PI/4`` _PI2_RLT_0 PI4_RGT_0).
-Left; Apply PI4_RLT_PI2.
-Left; Apply (Rmult_lt_pos R1 ``(Rinv (sqrt 2))``).
-Apply Rlt_R0_R1.
-Apply Rlt_Rinv.
-Apply Rlt_sqrt2_0.
-Rewrite Rsqr_div.
-Rewrite Rsqr_1; Rewrite Rsqr_sqrt.
-Unfold Rsqr; Pattern 1 ``(cos (PI/4))``; Rewrite <- sin_cos_PI4; Replace ``(sin (PI/4))*(cos (PI/4))`` with ``(1/2)*(2*(sin (PI/4))*(cos (PI/4)))``.
-Rewrite <- sin_2a; Replace ``2*(PI/4)`` with ``PI/2``.
-Rewrite sin_PI2.
-Apply Rmult_1r.
-Unfold Rdiv.
-Rewrite (Rmult_sym ``2``).
-Replace ``4`` with ``2*2``.
-Rewrite Rinv_Rmult.
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Reflexivity.
-Apply aze.
-Apply aze.
-Apply aze.
-Ring.
-Unfold Rdiv.
-Rewrite Rmult_1l.
-Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Reflexivity.
-Apply aze.
-Left; Apply Rgt_2_0.
-Apply sqrt2_neq_0.
-Qed.
-
-Lemma sin_PI4 : ``(sin (PI/4))==1/(sqrt 2)``.
-Rewrite sin_cos_PI4; Apply cos_PI4.
-Qed.
-
-Lemma cos3PI4 : ``(cos (3*(PI/4)))==-1/(sqrt 2)``.
-Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``.
-Rewrite cos_shift; Rewrite sin_neg; Rewrite sin_PI4.
-Unfold Rdiv.
-Rewrite Ropp_mul1.
-Reflexivity.
-Unfold Rminus.
-Rewrite Ropp_Ropp.
-Pattern 1 PI; Rewrite double_var.
-Unfold Rdiv.
-Rewrite Rmult_Rplus_distrl.
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_Rmult.
-Replace ``2*2`` with ``4``.
-Ring.
-Ring.
-Apply aze.
-Apply aze.
-Qed.
-
-Lemma sin3PI4 : ``(sin (3*(PI/4)))==1/(sqrt 2)``.
-Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``.
-Rewrite sin_shift; Rewrite cos_neg; Rewrite cos_PI4; Reflexivity.
-Unfold Rminus.
-Rewrite Ropp_Ropp.
-Pattern 1 PI; Rewrite double_var.
-Unfold Rdiv.
-Rewrite Rmult_Rplus_distrl.
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_Rmult.
-Replace ``2*2`` with ``4``.
-Ring.
-Ring.
-Apply aze.
-Apply aze.
-Qed.
-
-Lemma tan_PI4 : ``(tan (PI/4))==1``.
-Unfold tan; Rewrite sin_cos_PI4.
-Unfold Rdiv.
-Apply Rinv_r.
-Replace ``PI*/4`` with ``PI/4``.
-Rewrite cos_PI4; Apply R1_sqrt2_neq_0.
-Unfold Rdiv; Reflexivity.
-Qed.
-
Lemma sin_PI3_cos_PI6 : ``(sin (PI/3))==(cos (PI/6))``.
Replace ``PI/6`` with ``(PI/2)-(PI/3)``.
Rewrite cos_shift; Reflexivity.
@@ -1130,199 +1022,6 @@ Ring.
Apply prod_neq_R0; [DiscrR | Cut ``0<(cos (PI/6))``; [Intro H1; Auto with real | Apply cos_gt_0; [Apply (Rlt_trans ``-(PI/2)`` ``0`` ``PI/6`` _PI2_RLT_0 PI6_RGT_0) | Apply PI6_RLT_PI2]]].
Qed.
-Lemma cos_PI6 : ``(cos (PI/6))==(sqrt 3)/2``.
-Apply Rsqr_inj.
-Apply cos_ge_0.
-Left; Apply (Rlt_trans ``-(PI/2)`` R0 ``PI/6`` _PI2_RLT_0 PI6_RGT_0).
-Left; Apply PI6_RLT_PI2.
-Left; Apply (Rmult_lt_pos ``(sqrt 3)`` ``(Rinv 2)``).
-Apply Rlt_sqrt3_0.
-Apply Rlt_Rinv; Apply Rgt_2_0.
-Rewrite Rsqr_div.
-Rewrite cos2; Unfold Rsqr; Rewrite sin_PI6; Rewrite sqrt_def.
-Unfold Rdiv.
-Rewrite Rmult_1l.
-Rewrite <- Rinv_Rmult.
-Replace ``2*2`` with ``4``.
-Apply r_Rmult_mult with ``4``.
-Unfold Rminus.
-Rewrite Rmult_Rplus_distr.
-Rewrite Rmult_1r.
-Rewrite Ropp_mul3.
-Rewrite <- Rinv_r_sym.
-Rewrite (Rmult_sym ``3``).
-Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l.
-Ring.
-DiscrR.
-DiscrR.
-DiscrR.
-Ring.
-Apply aze.
-Apply aze.
-Left; Apply Rgt_3_0.
-Apply aze.
-Qed.
-
-Lemma tan_PI6 : ``(tan (PI/6))==1/(sqrt 3)``.
-Unfold tan; Rewrite sin_PI6; Rewrite cos_PI6.
-Unfold Rdiv.
-Repeat Rewrite Rmult_1l.
-Rewrite Rinv_Rmult.
-Rewrite Rinv_Rinv.
-Rewrite (Rmult_sym ``/2``).
-Rewrite Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Apply Rmult_1r.
-Apply aze.
-Apply aze.
-Red; Intro.
-Assert H1 := Rlt_sqrt3_0.
-Rewrite H in H1; Elim (Rlt_antirefl ``0`` H1).
-Apply Rinv_neq_R0.
-Apply aze.
-Qed.
-
-Lemma sin_PI3 : ``(sin (PI/3))==(sqrt 3)/2``.
-Rewrite sin_PI3_cos_PI6; Apply cos_PI6.
-Qed.
-
-Lemma cos_PI3 : ``(cos (PI/3))==1/2``.
-Rewrite sin_PI6_cos_PI3; Apply sin_PI6.
-Qed.
-
-Lemma tan_PI3 : ``(tan (PI/3))==(sqrt 3)``.
-Unfold tan; Rewrite sin_PI3; Rewrite cos_PI3.
-Unfold Rdiv.
-Rewrite Rmult_1l.
-Rewrite Rinv_Rinv.
-Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Apply Rmult_1r.
-Apply aze.
-Apply aze.
-Qed.
-
-Lemma sin_2PI3 : ``(sin (2*(PI/3)))==(sqrt 3)/2``.
-Rewrite double.
-Rewrite sin_plus; Rewrite sin_PI3; Rewrite cos_PI3.
-Unfold Rdiv.
-Repeat Rewrite Rmult_1l.
-Rewrite (Rmult_sym ``/2``).
-Pattern 3 ``(sqrt 3)``; Rewrite double_var.
-Rewrite Rmult_Rplus_distrl.
-Unfold Rdiv.
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_Rmult.
-Replace ``2*2`` with ``4``.
-Reflexivity.
-Ring.
-Apply aze.
-Apply aze.
-Qed.
-
-Lemma cos_2PI3 : ``(cos (2*(PI/3)))==-1/2``.
-Rewrite double.
-Rewrite cos_plus; Rewrite sin_PI3; Rewrite cos_PI3.
-Unfold Rdiv.
-Rewrite Rmult_1l.
-Apply r_Rmult_mult with ``2*2``.
-Rewrite Rminus_distr.
-Repeat Rewrite Rmult_assoc.
-Rewrite (Rmult_sym ``2``).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- (Rinv_l_sym).
-Rewrite Rmult_1r.
-Rewrite <- Rinv_r_sym.
-Pattern 4 ``2``; Rewrite (Rmult_sym ``2``).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Rewrite Ropp_mul3.
-Rewrite Rmult_1r.
-Rewrite (Rmult_sym ``2``).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Rewrite (Rmult_sym ``2``).
-Rewrite (Rmult_sym ``/2``).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Rewrite sqrt_def.
-Ring.
-Replace ``3`` with ``(INR (S (S (S O))))`` .
-Apply pos_INR.
-Rewrite INR_eq_INR2.
-Reflexivity.
-Apply aze.
-Apply aze.
-Apply aze.
-Apply aze.
-Apply aze.
-Apply prod_neq_R0; Apply aze.
-Qed.
-
-Lemma tan_2PI3 : ``(tan (2*(PI/3)))==-(sqrt 3)``.
-Unfold tan; Rewrite sin_2PI3; Rewrite cos_2PI3.
-Unfold Rdiv.
-Rewrite Rinv_Rmult.
-Rewrite Rinv_Rinv.
-Repeat Rewrite Rmult_assoc.
-Rewrite (Rmult_sym ``/2``).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r.
-Rewrite <- Ropp_Rinv.
-Rewrite Ropp_mul3.
-Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity.
-DiscrR.
-Apply aze.
-Apply aze.
-DiscrR.
-Apply Rinv_neq_R0; Apply aze.
-Qed.
-
-Lemma cos_5PI4 : ``(cos (5*(PI/4)))==-1/(sqrt 2)``.
-Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``.
-Rewrite neg_cos; Rewrite cos_PI4.
-Unfold Rdiv.
-Symmetry; Apply Ropp_mul1.
-Pattern 2 PI; Rewrite double_var.
-Pattern 2 3 PI; Rewrite double_var.
-Unfold Rdiv.
-Rewrite Rmult_Rplus_distrl.
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_Rmult.
-Replace ``2*2`` with ``4``.
-Ring.
-Ring.
-Apply aze.
-Apply aze.
-Qed.
-
-Lemma sin_5PI4 : ``(sin (5*(PI/4)))==-1/(sqrt 2)``.
-Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``.
-Rewrite neg_sin; Rewrite sin_PI4.
-Unfold Rdiv; Symmetry; Apply Ropp_mul1.
-Pattern 2 PI; Rewrite double_var.
-Pattern 2 3 PI; Rewrite double_var.
-Unfold Rdiv.
-Rewrite Rmult_Rplus_distrl.
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_Rmult.
-Replace ``2*2`` with ``4``.
-Ring.
-Ring.
-Apply aze.
-Apply aze.
-Qed.
-
-Lemma sin_cos5PI4 : ``(cos (5*(PI/4)))==(sin (5*(PI/4)))``.
-Rewrite cos_5PI4; Rewrite sin_5PI4; Reflexivity.
-Qed.
-
Lemma sin_eq_0_1 : (x:R) (EXT k:Z | x==(Rmult (IZR k) PI)) -> (sin x)==R0.
Intros.
Elim H; Intros.