aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Rtopology.v
diff options
context:
space:
mode:
authorGravatar barras <barras@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-12-15 19:48:24 +0000
committerGravatar barras <barras@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-12-15 19:48:24 +0000
commit3675bac6c38e0a26516e434be08bc100865b339b (patch)
tree87f8eb1905c7b508dea60b1e216f79120e9e772d /theories/Reals/Rtopology.v
parentc881bc37b91a201f7555ee021ccb74adb360d131 (diff)
modif existentielle (exists | --> exists ,) + bug d'affichage des pt fixes
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5099 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Reals/Rtopology.v')
-rw-r--r--theories/Reals/Rtopology.v170
1 files changed, 85 insertions, 85 deletions
diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v
index 17b884d45..75385b424 100644
--- a/theories/Reals/Rtopology.v
+++ b/theories/Reals/Rtopology.v
@@ -18,7 +18,7 @@ Require Import Classical_Pred_Type. Open Local Scope R_scope.
Definition included (D1 D2:R -> Prop) : Prop := forall x:R, D1 x -> D2 x.
Definition disc (x:R) (delta:posreal) (y:R) : Prop := Rabs (y - x) < delta.
Definition neighbourhood (V:R -> Prop) (x:R) : Prop :=
- exists delta : posreal | included (disc x delta) V.
+ exists delta : posreal, included (disc x delta) V.
Definition open_set (D:R -> Prop) : Prop :=
forall x:R, D x -> neighbourhood D x.
Definition complementary (D:R -> Prop) (c:R) : Prop := ~ D c.
@@ -41,7 +41,7 @@ Qed.
Definition point_adherent (D:R -> Prop) (x:R) : Prop :=
forall V:R -> Prop,
- neighbourhood V x -> exists y : R | intersection_domain V D y.
+ neighbourhood V x -> exists y : R, intersection_domain V D y.
Definition adherence (D:R -> Prop) (x:R) : Prop := point_adherent D x.
Lemma adherence_P1 : forall D:R -> Prop, included D (adherence D).
@@ -87,7 +87,7 @@ Qed.
Lemma complementary_P1 :
forall D:R -> Prop,
- ~ ( exists y : R | intersection_domain D (complementary D) y).
+ ~ (exists y : R, intersection_domain D (complementary D) y).
intro; red in |- *; intro; elim H; intros;
unfold intersection_domain, complementary in H0; elim H0;
intros; elim H2; assumption.
@@ -111,14 +111,14 @@ intro; unfold closed_set, adherence in |- *;
pose
(P :=
fun V:R -> Prop =>
- neighbourhood V x -> exists y : R | intersection_domain V D y);
+ neighbourhood V x -> exists y : R, intersection_domain V D y);
assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1;
unfold P in H1; assert (H2 := imply_to_and _ _ H1);
unfold neighbourhood in |- *; elim H2; intros; unfold neighbourhood in H3;
elim H3; intros; exists x0; unfold included in |- *;
intros; red in |- *; intro.
assert (H8 := H7 V0);
- cut ( exists delta : posreal | (forall x:R, disc x1 delta x -> V0 x)).
+ cut (exists delta : posreal, (forall x:R, disc x1 delta x -> V0 x)).
intro; assert (H10 := H8 H9); elim H4; assumption.
cut (0 < x0 - Rabs (x - x1)).
intro; pose (del := mkposreal _ H9); exists del; intros;
@@ -248,8 +248,8 @@ Lemma continuity_P1 :
continuity_pt f x <->
(forall W:R -> Prop,
neighbourhood W (f x) ->
- exists V : R -> Prop
- | neighbourhood V x /\ (forall y:R, V y -> W (f y))).
+ exists V : R -> Prop,
+ neighbourhood V x /\ (forall y:R, V y -> W (f y))).
intros; split.
intros; unfold neighbourhood in H0.
elim H0; intros del1 H1.
@@ -329,10 +329,10 @@ Qed.
Theorem Rsepare :
forall x y:R,
x <> y ->
- exists V : R -> Prop
- | ( exists W : R -> Prop
- | neighbourhood V x /\
- neighbourhood W y /\ ~ ( exists y : R | intersection_domain V W y)).
+ exists V : R -> Prop,
+ (exists W : R -> Prop,
+ neighbourhood V x /\
+ neighbourhood W y /\ ~ (exists y : R, intersection_domain V W y)).
intros x y Hsep; pose (D := Rabs (x - y)).
cut (0 < D / 2).
intro; exists (disc x (mkposreal _ H)).
@@ -360,17 +360,17 @@ Qed.
Record family : Type := mkfamily
{ind : R -> Prop;
f :> R -> R -> Prop;
- cond_fam : forall x:R, ( exists y : R | f x y) -> ind x}.
+ cond_fam : forall x:R, (exists y : R, f x y) -> ind x}.
Definition family_open_set (f:family) : Prop := forall x:R, open_set (f x).
Definition domain_finite (D:R -> Prop) : Prop :=
- exists l : Rlist | (forall x:R, D x <-> In x l).
+ exists l : Rlist, (forall x:R, D x <-> In x l).
Definition family_finite (f:family) : Prop := domain_finite (ind f).
Definition covering (D:R -> Prop) (f:family) : Prop :=
- forall x:R, D x -> exists y : R | f y x.
+ forall x:R, D x -> exists y : R, f y x.
Definition covering_open_set (D:R -> Prop) (f:family) : Prop :=
covering D f /\ family_open_set f.
@@ -380,7 +380,7 @@ Definition covering_finite (D:R -> Prop) (f:family) : Prop :=
Lemma restriction_family :
forall (f:family) (D:R -> Prop) (x:R),
- ( exists y : R | (fun z1 z2:R => f z1 z2 /\ D z1) x y) ->
+ (exists y : R, (fun z1 z2:R => f z1 z2 /\ D z1) x y) ->
intersection_domain (ind f) D x.
intros; elim H; intros; unfold intersection_domain in |- *; elim H0; intros;
split.
@@ -395,7 +395,7 @@ Definition subfamily (f:family) (D:R -> Prop) : family :=
Definition compact (X:R -> Prop) : Prop :=
forall f:family,
covering_open_set X f ->
- exists D : R -> Prop | covering_finite X (subfamily f D).
+ exists D : R -> Prop, covering_finite X (subfamily f D).
(**********)
Lemma family_P1 :
@@ -418,7 +418,7 @@ unfold open_set in |- *; unfold neighbourhood in |- *; intros; elim H3;
Qed.
Definition bounded (D:R -> Prop) : Prop :=
- exists m : R | ( exists M : R | (forall x:R, D x -> m <= x <= M)).
+ exists m : R, (exists M : R, (forall x:R, D x -> m <= x <= M)).
Lemma open_set_P6 :
forall D1 D2:R -> Prop, open_set D1 -> D1 =_D D2 -> open_set D2.
@@ -433,7 +433,7 @@ Qed.
Lemma compact_P1 : forall X:R -> Prop, compact X -> bounded X.
intros; unfold compact in H; pose (D := fun x:R => True);
pose (g := fun x y:R => Rabs y < x);
- cut (forall x:R, ( exists y : _ | g x y) -> True);
+ cut (forall x:R, (exists y : _, g x y) -> True);
[ intro | intro; trivial ].
pose (f0 := mkfamily D g H0); assert (H1 := H f0);
cut (covering_open_set X f0).
@@ -498,7 +498,7 @@ assumption.
cut (forall y:R, X y -> 0 < Rabs (y - x) / 2).
intro; pose (D := X);
pose (g := fun y z:R => Rabs (y - z) < Rabs (y - x) / 2 /\ D y);
- cut (forall x:R, ( exists y : _ | g x y) -> D x).
+ cut (forall x:R, (exists y : _, g x y) -> D x).
intro; pose (f0 := mkfamily D g H3); assert (H4 := H f0);
cut (covering_open_set X f0).
intro; assert (H6 := H4 H5); elim H6; clear H6; intros D' H6.
@@ -600,11 +600,11 @@ unfold compact in |- *; intros;
(A :=
fun x:R =>
a <= x <= b /\
- ( exists D : R -> Prop
- | covering_finite (fun c:R => a <= c <= x) (subfamily f0 D)));
+ (exists D : R -> Prop,
+ covering_finite (fun c:R => a <= c <= x) (subfamily f0 D)));
cut (A a).
intro; cut (bound A).
-intro; cut ( exists a0 : R | A a0).
+intro; cut (exists a0 : R, A a0).
intro; assert (H3 := completeness A H1 H2); elim H3; clear H3; intros m H3;
unfold is_lub in H3; cut (a <= m <= b).
intro; unfold covering_open_set in H; elim H; clear H; intros;
@@ -612,7 +612,7 @@ intro; unfold covering_open_set in H; elim H; clear H; intros;
clear H6; intros y0 H6; unfold family_open_set in H5;
assert (H7 := H5 y0); unfold open_set in H7; assert (H8 := H7 m H6);
unfold neighbourhood in H8; elim H8; clear H8; intros eps H8;
- cut ( exists x : R | A x /\ m - eps < x <= m).
+ cut (exists x : R, A x /\ m - eps < x <= m).
intro; elim H9; clear H9; intros x H9; elim H9; clear H9; intros;
case (Req_dec m b); intro.
rewrite H11 in H10; rewrite H11 in H8; unfold A in H9; elim H9; clear H9;
@@ -751,7 +751,7 @@ unfold intersection_domain in H17.
split.
elim H17; intros; assumption.
unfold Db in |- *; left; elim H17; intros; assumption.
-elim (classic ( exists x : R | A x /\ m - eps < x <= m)); intro.
+elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro.
assumption.
elim H3; intros; cut (is_upper_bound A (m - eps)).
intro; assert (H13 := H11 _ H12); cut (m - eps < m).
@@ -810,12 +810,12 @@ Qed.
Lemma compact_P4 :
forall X F:R -> Prop, compact X -> closed_set F -> included F X -> compact F.
-unfold compact in |- *; intros; elim (classic ( exists z : R | F z));
+unfold compact in |- *; intros; elim (classic (exists z : R, F z));
intro Hyp_F_NE.
pose (D := ind f0); pose (g := f f0); unfold closed_set in H0.
pose (g' := fun x y:R => f0 x y \/ complementary F y /\ D x).
pose (D' := D).
-cut (forall x:R, ( exists y : R | g' x y) -> D' x).
+cut (forall x:R, (exists y : R, g' x y) -> D' x).
intro; pose (f' := mkfamily D' g' H3); cut (covering_open_set X f').
intro; elim (H _ H4); intros DX H5; exists DX.
unfold covering_finite in |- *; unfold covering_finite in H5; elim H5;
@@ -847,7 +847,7 @@ unfold covering in |- *; unfold covering in H2; intros.
elim (classic (F x)); intro.
elim (H2 _ H6); intros y0 H7; exists y0; simpl in |- *; unfold g' in |- *;
left; assumption.
-cut ( exists z : R | D z).
+cut (exists z : R, D z).
intro; elim H7; clear H7; intros x0 H7; exists x0; simpl in |- *;
unfold g' in |- *; right.
split.
@@ -908,7 +908,7 @@ intro; elim H; clear H; intros; apply (compact_P5 _ H H0).
Qed.
Definition image_dir (f:R -> R) (D:R -> Prop) (x:R) : Prop :=
- exists y : R | x = f y /\ D y.
+ exists y : R, x = f y /\ D y.
(**********)
Lemma continuity_compact :
@@ -918,7 +918,7 @@ unfold compact in |- *; intros; unfold covering_open_set in H1.
elim H1; clear H1; intros.
pose (D := ind f1).
pose (g := fun x y:R => image_rec f0 (f1 x) y).
-cut (forall x:R, ( exists y : R | g x y) -> D x).
+cut (forall x:R, (exists y : R, g x y) -> D x).
intro; pose (f' := mkfamily D g H3).
cut (covering_open_set X f').
intro; elim (H0 f' H4); intros D' H5; exists D'.
@@ -958,8 +958,8 @@ Lemma prolongement_C0 :
forall (f:R -> R) (a b:R),
a <= b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
- exists g : R -> R
- | continuity g /\ (forall c:R, a <= c <= b -> g c = f c).
+ exists g : R -> R,
+ continuity g /\ (forall c:R, a <= c <= b -> g c = f c).
intros; elim H; intro.
pose
(h :=
@@ -1153,11 +1153,11 @@ Lemma continuity_ab_maj :
forall (f:R -> R) (a b:R),
a <= b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
- exists Mx : R | (forall c:R, a <= c <= b -> f c <= f Mx) /\ a <= Mx <= b.
+ exists Mx : R, (forall c:R, a <= c <= b -> f c <= f Mx) /\ a <= Mx <= b.
intros;
cut
- ( exists g : R -> R
- | continuity g /\ (forall c:R, a <= c <= b -> g c = f0 c)).
+ (exists g : R -> R,
+ continuity g /\ (forall c:R, a <= c <= b -> g c = f0 c)).
intro HypProl.
elim HypProl; intros g Hcont_eq.
elim Hcont_eq; clear Hcont_eq; intros Hcont Heq.
@@ -1166,7 +1166,7 @@ assert (H2 := continuity_compact g (fun c:R => a <= c <= b) Hcont H1).
assert (H3 := compact_P2 _ H2).
assert (H4 := compact_P1 _ H2).
cut (bound (image_dir g (fun c:R => a <= c <= b))).
-cut ( exists x : R | image_dir g (fun c:R => a <= c <= b) x).
+cut (exists x : R, image_dir g (fun c:R => a <= c <= b) x).
intros; assert (H7 := completeness _ H6 H5).
elim H7; clear H7; intros M H7; cut (image_dir g (fun c:R => a <= c <= b) M).
intro; unfold image_dir in H8; elim H8; clear H8; intros Mxx H8; elim H8;
@@ -1179,8 +1179,8 @@ apply H9.
elim (classic (image_dir g (fun c:R => a <= c <= b) M)); intro.
assumption.
cut
- ( exists eps : posreal
- | (forall y:R,
+ (exists eps : posreal,
+ (forall y:R,
~
intersection_domain (disc M eps)
(image_dir g (fun c:R => a <= c <= b)) y)).
@@ -1207,8 +1207,8 @@ apply Rge_minus; apply Rle_ge; apply H12.
apply H11.
apply H7; apply H11.
cut
- ( exists V : R -> Prop
- | neighbourhood V M /\
+ (exists V : R -> Prop,
+ neighbourhood V M /\
(forall y:R,
~ intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y)).
intro; elim H9; intros V H10; elim H10; clear H10; intros.
@@ -1225,8 +1225,8 @@ assert
not_all_ex_not _
(fun V:R -> Prop =>
neighbourhood V M ->
- exists y : R
- | intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y) H9).
+ exists y : R,
+ intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y) H9).
elim H10; intros V0 H11; exists V0; assert (H12 := imply_to_and _ _ H11);
elim H12; clear H12; intros.
split.
@@ -1253,7 +1253,7 @@ Lemma continuity_ab_min :
forall (f:R -> R) (a b:R),
a <= b ->
(forall c:R, a <= c <= b -> continuity_pt f c) ->
- exists mx : R | (forall c:R, a <= c <= b -> f mx <= f c) /\ a <= mx <= b.
+ exists mx : R, (forall c:R, a <= c <= b -> f mx <= f c) /\ a <= mx <= b.
intros.
cut (forall c:R, a <= c <= b -> continuity_pt (- f0) c).
intro; assert (H2 := continuity_ab_maj (- f0)%F a b H H1); elim H2;
@@ -1274,18 +1274,18 @@ Qed.
Definition ValAdh (un:nat -> R) (x:R) : Prop :=
forall (V:R -> Prop) (N:nat),
- neighbourhood V x -> exists p : nat | (N <= p)%nat /\ V (un p).
+ neighbourhood V x -> exists p : nat, (N <= p)%nat /\ V (un p).
Definition intersection_family (f:family) (x:R) : Prop :=
forall y:R, ind f y -> f y x.
Lemma ValAdh_un_exists :
- forall (un:nat -> R) (D:=fun x:R => exists n : nat | x = INR n)
+ forall (un:nat -> R) (D:=fun x:R => exists n : nat, x = INR n)
(f:=
fun x:R =>
adherence
- (fun y:R => ( exists p : nat | y = un p /\ x <= INR p) /\ D x))
- (x:R), ( exists y : R | f x y) -> D x.
+ (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x))
+ (x:R), (exists y : R, f x y) -> D x.
intros; elim H; intros; unfold f in H0; unfold adherence in H0;
unfold point_adherent in H0;
assert (H1 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0).
@@ -1296,11 +1296,11 @@ elim (H0 _ H1); intros; unfold intersection_domain in H2; elim H2; intros;
Qed.
Definition ValAdh_un (un:nat -> R) : R -> Prop :=
- let D := fun x:R => exists n : nat | x = INR n in
+ let D := fun x:R => exists n : nat, x = INR n in
let f :=
fun x:R =>
adherence
- (fun y:R => ( exists p : nat | y = un p /\ x <= INR p) /\ D x) in
+ (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x) in
intersection_family (mkfamily D f (ValAdh_un_exists un)).
Lemma ValAdh_un_prop :
@@ -1322,8 +1322,8 @@ unfold ValAdh in |- *; intros; unfold ValAdh_un in H;
(H1 :
adherence
(fun y0:R =>
- ( exists p : nat | y0 = un p /\ INR N <= INR p) /\
- ( exists n : nat | INR N = INR n)) x).
+ (exists p : nat, y0 = un p /\ INR N <= INR p) /\
+ (exists n : nat, INR N = INR n)) x).
apply H; exists N; reflexivity.
unfold adherence in H1; unfold point_adherent in H1; assert (H2 := H1 _ H0);
elim H2; intros; unfold intersection_domain in H3;
@@ -1348,7 +1348,7 @@ Definition family_closed_set (f:family) : Prop :=
Definition intersection_vide_in (D:R -> Prop) (f:family) : Prop :=
forall x:R,
(ind f x -> included (f x) D) /\
- ~ ( exists y : R | intersection_family f y).
+ ~ (exists y : R, intersection_family f y).
Definition intersection_vide_finite_in (D:R -> Prop)
(f:family) : Prop := intersection_vide_in D f /\ family_finite f.
@@ -1357,15 +1357,15 @@ Definition intersection_vide_finite_in (D:R -> Prop)
Lemma compact_P6 :
forall X:R -> Prop,
compact X ->
- ( exists z : R | X z) ->
+ (exists z : R, X z) ->
forall g:family,
family_closed_set g ->
intersection_vide_in X g ->
- exists D : R -> Prop | intersection_vide_finite_in X (subfamily g D).
+ exists D : R -> Prop, intersection_vide_finite_in X (subfamily g D).
intros X H Hyp g H0 H1.
pose (D' := ind g).
pose (f' := fun x y:R => complementary (g x) y /\ D' x).
-assert (H2 : forall x:R, ( exists y : R | f' x y) -> D' x).
+assert (H2 : forall x:R, (exists y : R, f' x y) -> D' x).
intros; elim H2; intros; unfold f' in H3; elim H3; intros; assumption.
pose (f0 := mkfamily D' f' H2).
unfold compact in H; assert (H3 : covering_open_set X f0).
@@ -1397,7 +1397,7 @@ intros; unfold included in |- *; intros; unfold intersection_vide_in in H1;
elim (H1 x); intros; elim H6; intros; apply H7.
unfold intersection_domain in H5; elim H5; intros; assumption.
assumption.
-elim (classic ( exists y : R | intersection_domain (ind g) SF y)); intro Hyp'.
+elim (classic (exists y : R, intersection_domain (ind g) SF y)); intro Hyp'.
red in |- *; intro; elim H5; intros; unfold intersection_family in H6;
simpl in H6.
cut (X x0).
@@ -1418,7 +1418,7 @@ apply H11.
apply H9.
apply (cond_fam g); exists x0; assumption.
unfold covering_finite in H4; elim H4; clear H4; intros H4 _;
- cut ( exists z : R | X z).
+ cut (exists z : R, X z).
intro; elim H5; clear H5; intros; unfold covering in H4; elim (H4 x0 H5);
intros; simpl in H6; elim Hyp'; exists x1; elim H6;
intros; unfold intersection_domain in |- *; split.
@@ -1435,18 +1435,18 @@ Qed.
Theorem Bolzano_Weierstrass :
forall (un:nat -> R) (X:R -> Prop),
- compact X -> (forall n:nat, X (un n)) -> exists l : R | ValAdh un l.
-intros; cut ( exists l : R | ValAdh_un un l).
+ compact X -> (forall n:nat, X (un n)) -> exists l : R, ValAdh un l.
+intros; cut (exists l : R, ValAdh_un un l).
intro; elim H1; intros; exists x; elim (ValAdh_un_prop un x); intros;
apply (H4 H2).
-assert (H1 : exists z : R | X z).
+assert (H1 : exists z : R, X z).
exists (un 0%nat); apply H0.
-pose (D := fun x:R => exists n : nat | x = INR n).
+pose (D := fun x:R => exists n : nat, x = INR n).
pose
(g :=
fun x:R =>
- adherence (fun y:R => ( exists p : nat | y = un p /\ x <= INR p) /\ D x)).
-assert (H2 : forall x:R, ( exists y : R | g x y) -> D x).
+ adherence (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x)).
+assert (H2 : forall x:R, (exists y : R, g x y) -> D x).
intros; elim H2; intros; unfold g in H3; unfold adherence in H3;
unfold point_adherent in H3.
assert (H4 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0).
@@ -1456,7 +1456,7 @@ elim (H3 _ H4); intros; unfold intersection_domain in H5; decompose [and] H5;
assumption.
pose (f0 := mkfamily D g H2).
assert (H3 := compact_P6 X H H1 f0).
-elim (classic ( exists l : R | ValAdh_un un l)); intro.
+elim (classic (exists l : R, ValAdh_un un l)); intro.
assumption.
cut (family_closed_set f0).
intro; cut (intersection_vide_in X f0).
@@ -1480,10 +1480,10 @@ elim (H9 r); intros.
simpl in H12; unfold intersection_domain in H12; cut (In r l).
intro; elim (H12 H13); intros; assumption.
unfold r in |- *; apply MaxRlist_P2;
- cut ( exists z : R | intersection_domain (ind f0) SF z).
+ cut (exists z : R, intersection_domain (ind f0) SF z).
intro; elim H13; intros; elim (H9 x); intros; simpl in H15;
assert (H17 := H15 H14); exists x; apply H17.
-elim (classic ( exists z : R | intersection_domain (ind f0) SF z)); intro.
+elim (classic (exists z : R, intersection_domain (ind f0) SF z)); intro.
assumption.
elim (H8 0); intros _ H14; elim H1; intros;
assert
@@ -1517,8 +1517,8 @@ Qed.
Definition uniform_continuity (f:R -> R) (X:R -> Prop) : Prop :=
forall eps:posreal,
- exists delta : posreal
- | (forall x y:R,
+ exists delta : posreal,
+ (forall x y:R,
X x -> X y -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps).
Lemma is_lub_u :
@@ -1529,11 +1529,11 @@ Qed.
Lemma domain_P1 :
forall X:R -> Prop,
- ~ ( exists y : R | X y) \/
- ( exists y : R | X y /\ (forall x:R, X x -> x = y)) \/
- ( exists x : R | ( exists y : R | X x /\ X y /\ x <> y)).
-intro; elim (classic ( exists y : R | X y)); intro.
-right; elim H; intros; elim (classic ( exists y : R | X y /\ y <> x)); intro.
+ ~ (exists y : R, X y) \/
+ (exists y : R, X y /\ (forall x:R, X x -> x = y)) \/
+ (exists x : R, (exists y : R, X x /\ X y /\ x <> y)).
+intro; elim (classic (exists y : R, X y)); intro.
+right; elim H; intros; elim (classic (exists y : R, X y /\ y <> x)); intro.
right; elim H1; intros; elim H2; intros; exists x; exists x0; intros.
split;
[ assumption
@@ -1564,7 +1564,7 @@ unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1);
(* X possède au moins deux éléments distincts *)
assert
(X_enc :
- exists m : R | ( exists M : R | (forall x:R, X x -> m <= x <= M) /\ m < M)).
+ exists m : R, (exists M : R, (forall x:R, X x -> m <= x <= M) /\ m < M)).
assert (H1 := compact_P1 X H0); unfold bounded in H1; elim H1; intros;
elim H2; intros; exists x; exists x0; split.
apply H3.
@@ -1587,14 +1587,14 @@ pose
(g :=
fun x y:R =>
X x /\
- ( exists del : posreal
- | (forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
+ (exists del : posreal,
+ (forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
is_lub
(fun zeta:R =>
0 < zeta <= M - m /\
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2))
del /\ disc x (mkposreal (del / 2) (H1 del)) y)).
-assert (H2 : forall x:R, ( exists y : R | g x y) -> X x).
+assert (H2 : forall x:R, (exists y : R, g x y) -> X x).
intros; elim H2; intros; unfold g in H3; elim H3; clear H3; intros H3 _;
apply H3.
pose (f' := mkfamily X g H2); unfold compact in H0;
@@ -1616,7 +1616,7 @@ assert (H4 := H _ H3); unfold continuity_pt in H4; unfold continue_in in H4;
unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *;
unfold E in |- *; intros; elim H6; clear H6; intros H6 _;
elim H6; clear H6; intros _ H6; apply H6.
-assert (H7 : exists x : R | E x).
+assert (H7 : exists x : R, E x).
elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E in |- *; intros;
split.
split.
@@ -1633,11 +1633,11 @@ apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H8 | apply Rmin_l ].
assert (H8 := completeness _ H6 H7); elim H8; clear H8; intros;
cut (0 < x1 <= M - m).
intro; elim H8; clear H8; intros; exists (mkposreal _ H8); split.
-intros; cut ( exists alp : R | Rabs (z - x) < alp <= x1 /\ E alp).
+intros; cut (exists alp : R, Rabs (z - x) < alp <= x1 /\ E alp).
intros; elim H11; intros; elim H12; clear H12; intros; unfold E in H13;
elim H13; intros; apply H15.
elim H12; intros; assumption.
-elim (classic ( exists alp : R | Rabs (z - x) < alp <= x1 /\ E alp)); intro.
+elim (classic (exists alp : R, Rabs (z - x) < alp <= x1 /\ E alp)); intro.
assumption.
assert
(H12 :=
@@ -1703,8 +1703,8 @@ elim (H0 _ H3); intros DF H4; unfold covering_finite in H4; elim H4; clear H4;
cut
(forall x:R,
In x l ->
- exists del : R
- | 0 < del /\
+ exists del : R,
+ 0 < del /\
(forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
included (g x) (fun z:R => Rabs (z - x) < del / 2)).
intros;
@@ -1769,7 +1769,7 @@ intros; elim (H5 x); intros; elim (H8 H6); intros;
unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *;
unfold E in |- *; intros; elim H11; clear H11; intros H11 _;
elim H11; clear H11; intros _ H11; apply H11.
-assert (H12 : exists x : R | E x).
+assert (H12 : exists x : R, E x).
assert (H13 := H _ H9); unfold continuity_pt in H13;
unfold continue_in in H13; unfold limit1_in in H13;
unfold limit_in in H13; simpl in H13; unfold R_dist in H13;
@@ -1791,10 +1791,10 @@ assert (H13 := completeness _ H11 H12); elim H13; clear H13; intros;
intro; elim H13; clear H13; intros; exists x0; split.
assumption.
split.
-intros; cut ( exists alp : R | Rabs (z - x) < alp <= x0 /\ E alp).
+intros; cut (exists alp : R, Rabs (z - x) < alp <= x0 /\ E alp).
intros; elim H16; intros; elim H17; clear H17; intros; unfold E in H18;
elim H18; intros; apply H20; elim H17; intros; assumption.
-elim (classic ( exists alp : R | Rabs (z - x) < alp <= x0 /\ E alp)); intro.
+elim (classic (exists alp : R, Rabs (z - x) < alp <= x0 /\ E alp)); intro.
assumption.
assert
(H17 :=
@@ -1822,4 +1822,4 @@ elim H12; intros; unfold E in H13; elim H13; intros H14 _; elim H14;
apply Rlt_le_trans with x1; [ assumption | apply (H16 _ H13) ].
apply H17; intros; unfold E in H18; elim H18; intros; elim H19; intros;
assumption.
-Qed. \ No newline at end of file
+Qed.