aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Ranalysis2.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:37 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:37 +0000
commitffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch)
tree5368562b42af1aeef7e19b4bd897c9fc5655769b /theories/Reals/Ranalysis2.v
parenta46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff)
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago by the automatic 7.x -> 8.0 translator git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Reals/Ranalysis2.v')
-rw-r--r--theories/Reals/Ranalysis2.v88
1 files changed, 44 insertions, 44 deletions
diff --git a/theories/Reals/Ranalysis2.v b/theories/Reals/Ranalysis2.v
index 218f2a38f..971983987 100644
--- a/theories/Reals/Ranalysis2.v
+++ b/theories/Reals/Ranalysis2.v
@@ -24,7 +24,7 @@ Lemma formule :
f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2) +
l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x).
Proof.
- intros; unfold Rdiv, Rminus, Rsqr in |- *.
+ intros; unfold Rdiv, Rminus, Rsqr.
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rinv_mult_distr; try assumption.
replace (l1 * f2 x * (/ f2 x * / f2 x)) with (l1 * / f2 x * (f2 x * / f2 x));
@@ -81,10 +81,10 @@ Proof.
rewrite Rabs_Rinv; [ left; exact H7 | assumption ].
apply Rlt_le_trans with (2 / Rabs (f2 x) * Rabs (eps * f2 x / 8)).
apply Rmult_lt_compat_l.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
exact H8.
- right; unfold Rdiv in |- *.
+ right; unfold Rdiv.
repeat rewrite Rabs_mult.
rewrite Rabs_Rinv; discrR.
replace (Rabs 8) with 8.
@@ -96,8 +96,8 @@ Proof.
replace (Rabs eps) with eps.
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
- symmetry in |- *; apply Rabs_right; left; assumption.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup.
Qed.
Lemma maj_term2 :
@@ -129,11 +129,11 @@ Proof.
(Rabs (2 * (l1 / (f2 x * f2 x))) * Rabs (eps * Rsqr (f2 x) / (8 * l1))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; unfold Rsqr in |- *; repeat apply prod_neq_R0;
+ unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
try assumption || discrR.
- red in |- *; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
+ red; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0; try assumption || discrR.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rinv_mult_distr; try assumption.
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
@@ -147,9 +147,9 @@ Proof.
repeat rewrite Rabs_Rinv; try assumption.
rewrite <- (Rmult_comm 2).
unfold Rdiv in H8; exact H8.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup0.
right.
- unfold Rsqr, Rdiv in |- *.
+ unfold Rsqr, Rdiv.
do 1 rewrite Rinv_mult_distr; try assumption || discrR.
do 1 rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
@@ -166,9 +166,9 @@ Proof.
(Rabs (f2 x) * / Rabs (f2 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try (apply Rabs_no_R0; assumption) || discrR.
ring.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
- symmetry in |- *; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
Qed.
Lemma maj_term3 :
@@ -204,11 +204,11 @@ Proof.
(Rabs (2 * (f1 x / (f2 x * f2 x))) * Rabs (Rsqr (f2 x) * eps / (8 * f1 x))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; unfold Rsqr in |- *; repeat apply prod_neq_R0;
+ unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
try assumption.
- red in |- *; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
+ red; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rinv_mult_distr; try assumption.
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
@@ -222,9 +222,9 @@ Proof.
repeat rewrite Rabs_Rinv; assumption || idtac.
rewrite <- (Rmult_comm 2).
unfold Rdiv in H9; exact H9.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup0.
right.
- unfold Rsqr, Rdiv in |- *.
+ unfold Rsqr, Rdiv.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
@@ -241,9 +241,9 @@ Proof.
(Rabs (f1 x) * / Rabs (f1 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
- symmetry in |- *; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
Qed.
Lemma maj_term4 :
@@ -281,17 +281,17 @@ Proof.
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; unfold Rsqr in |- *; repeat apply prod_neq_R0;
+ unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
assumption || idtac.
- red in |- *; intro H11; rewrite H11 in H; elim (Rlt_irrefl _ H).
+ red; intro H11; rewrite H11 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0.
apply prod_neq_R0.
discrR.
assumption.
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rinv_mult_distr;
- try assumption || (unfold Rsqr in |- *; apply prod_neq_R0; assumption).
+ try assumption || (unfold Rsqr; apply prod_neq_R0; assumption).
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
replace
@@ -305,13 +305,13 @@ Proof.
repeat apply Rmult_lt_compat_l.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; assumption.
- apply Rabs_pos_lt; apply Rinv_neq_0_compat; unfold Rsqr in |- *;
+ apply Rabs_pos_lt; apply Rinv_neq_0_compat; unfold Rsqr;
apply prod_neq_R0; assumption.
repeat rewrite Rabs_Rinv; [ idtac | assumption | assumption ].
rewrite <- (Rmult_comm 2).
unfold Rdiv in H10; exact H10.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- right; unfold Rsqr, Rdiv in |- *.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ right; unfold Rsqr, Rdiv.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
@@ -333,9 +333,9 @@ Proof.
(Rabs (f2 x) * / Rabs (f2 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
- symmetry in |- *; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
apply prod_neq_R0; assumption || discrR.
apply prod_neq_R0; assumption.
Qed.
@@ -343,11 +343,11 @@ Qed.
Lemma D_x_no_cond : forall x a:R, a <> 0 -> D_x no_cond x (x + a).
Proof.
intros.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split.
trivial.
apply Rminus_not_eq.
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite Ropp_plus_distr.
rewrite <- Rplus_assoc.
rewrite Rplus_opp_r.
@@ -394,7 +394,7 @@ Qed.
Lemma quadruple_var : forall x:R, x = x / 4 + x / 4 + x / 4 + x / 4.
Proof.
intro; rewrite <- quadruple.
- unfold Rdiv in |- *; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR.
+ unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR.
reflexivity.
Qed.
@@ -413,10 +413,10 @@ Proof.
cut
(dist R_met (x0 + h) x0 < x ->
dist R_met (f (x0 + h)) (f x0) < Rabs (f x0 / 2)).
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold dist; simpl; unfold R_dist;
replace (x0 + h - x0) with h.
intros; assert (H7 := H6 H4).
- red in |- *; intro.
+ red; intro.
rewrite H8 in H7; unfold Rminus in H7; rewrite Rplus_0_l in H7;
rewrite Rabs_Ropp in H7; unfold Rdiv in H7; rewrite Rabs_mult in H7;
pattern (Rabs (f x0)) at 1 in H7; rewrite <- Rmult_1_r in H7.
@@ -429,10 +429,10 @@ Proof.
rewrite Rmult_1_r in H12; rewrite <- Rinv_r_sym in H12;
[ idtac | discrR ].
cut (IZR 1 < IZR 2).
- unfold IZR in |- *; unfold INR, Pos.to_nat in |- *; simpl in |- *; intro;
+ unfold IZR; unfold INR, Pos.to_nat; simpl; intro;
elim (Rlt_irrefl 1 (Rlt_trans _ _ _ H13 H12)).
apply IZR_lt; omega.
- unfold Rabs in |- *; case (Rcase_abs (/ 2)); intro.
+ unfold Rabs; case (Rcase_abs (/ 2)); intro.
assert (Hyp : 0 < 2).
prove_sup0.
assert (H11 := Rmult_lt_compat_l 2 _ _ Hyp r); rewrite Rmult_0_r in H11;
@@ -442,18 +442,18 @@ Proof.
apply (Rabs_pos_lt _ H0).
ring.
assert (H6 := Req_dec x0 (x0 + h)); elim H6; intro.
- intro; rewrite <- H7; unfold dist, R_met in |- *; unfold R_dist in |- *;
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ intro; rewrite <- H7; unfold dist, R_met; unfold R_dist;
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rabs_pos_lt.
- unfold Rdiv in |- *; apply prod_neq_R0;
+ unfold Rdiv; apply prod_neq_R0;
[ assumption | apply Rinv_neq_0_compat; discrR ].
intro; apply H5.
split.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split; trivial || assumption.
assumption.
- change (0 < Rabs (f x0 / 2)) in |- *.
- apply Rabs_pos_lt; unfold Rdiv in |- *; apply prod_neq_R0.
+ change (0 < Rabs (f x0 / 2)).
+ apply Rabs_pos_lt; unfold Rdiv; apply prod_neq_R0.
assumption.
apply Rinv_neq_0_compat; discrR.
Qed.