aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/PSeries_reg.v
diff options
context:
space:
mode:
authorGravatar desmettr <desmettr@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-07-29 16:10:43 +0000
committerGravatar desmettr <desmettr@85f007b7-540e-0410-9357-904b9bb8a0f7>2002-07-29 16:10:43 +0000
commit204c508d8511259a268894321ff78675d712ada6 (patch)
treefa2b86e4d8308da75aa0dc2b1309657842257c32 /theories/Reals/PSeries_reg.v
parent83967773f50ead4be8e63127f84d556f38baa08c (diff)
Continuite des series de fonctions NC
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2932 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Reals/PSeries_reg.v')
-rw-r--r--theories/Reals/PSeries_reg.v519
1 files changed, 519 insertions, 0 deletions
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v
new file mode 100644
index 000000000..743e1184d
--- /dev/null
+++ b/theories/Reals/PSeries_reg.v
@@ -0,0 +1,519 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(*i $Id$ i*)
+
+Require Rbase.
+Require DiscrR.
+Require Rfunctions.
+Require Rseries.
+Require Rsigma.
+Require Alembert.
+Require Alembert_compl.
+Require Binome.
+Require Cv_prop.
+Require Rcomplet.
+Require Rtrigo_alt.
+Require Cos_plus.
+Require Ranalysis1.
+Require Max.
+Require Even.
+
+Definition Boule [x:R;r:posreal] : R -> Prop := [y:R]``(Rabsolu (y-x))<r``.
+
+Definition CVU [fn:nat->R->R;f:R->R;x:R;r:posreal] : Prop := (eps:R)``0<eps``->(EX N:nat | (n:nat;y:R) (le N n)->(Boule x r y)->``(Rabsolu ((f y)-(fn n y)))<eps``).
+
+Definition CVN_r [fn:nat->R->R;r:posreal] : Type := (SigT ? [An:nat->R](sigTT R [l:R]((Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu (An k)) n) l)/\((n:nat)(y:R)(Boule R0 r y)->(Rle (Rabsolu (fn n y)) (An n)))))).
+
+Definition CVN_R [fn:nat->R->R] : Type := (r:posreal) (CVN_r fn r).
+
+Definition SP [fn:nat->R->R;N:nat] : R->R := [x:R](sum_f_R0 [k:nat]``(fn k x)`` N).
+
+Definition SFL [fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))] : R-> R := [y:R](Cases (cv y) of (existTT a b) => a end).
+
+(**********)
+Lemma sum_incr : (An:nat->R;N:nat;l:R) (Un_cv [n:nat](sum_f_R0 An n) l) -> ((n:nat)``0<=(An n)``) -> ``(sum_f_R0 An N)<=l``.
+Intros; Case (total_order_T (sum_f_R0 An N) l); Intro.
+Elim s; Intro.
+Left; Apply a.
+Right; Apply b.
+Cut (Un_growing [n:nat](sum_f_R0 An n)).
+Intro; Pose l1 := (sum_f_R0 An N).
+Fold l1 in r.
+Unfold Un_cv in H; Cut ``0<l1-l``.
+Intro; Elim (H ? H2); Intros.
+Pose N0 := (max x N); Cut (ge N0 x).
+Intro; Assert H5 := (H3 N0 H4).
+Cut ``l1<=(sum_f_R0 An N0)``.
+Intro; Unfold R_dist in H5; Rewrite Rabsolu_right in H5.
+Cut ``(sum_f_R0 An N0)<l1``.
+Intro; Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H7 H6)).
+Apply Rlt_anti_compatibility with ``-l``.
+Do 2 Rewrite (Rplus_sym ``-l``).
+Apply H5.
+Apply Rle_sym1; Apply Rle_anti_compatibility with l.
+Rewrite Rplus_Or; Replace ``l+((sum_f_R0 An N0)-l)`` with (sum_f_R0 An N0); [Idtac | Ring]; Apply Rle_trans with l1.
+Left; Apply r.
+Apply H6.
+Unfold l1; Apply Rle_sym2; Apply (growing_prop [k:nat](sum_f_R0 An k)).
+Apply H1.
+Unfold ge N0; Apply le_max_r.
+Unfold ge N0; Apply le_max_l.
+Apply Rlt_anti_compatibility with l; Rewrite Rplus_Or; Replace ``l+(l1-l)`` with l1; [Apply r | Ring].
+Unfold Un_growing; Intro; Simpl; Pattern 1 (sum_f_R0 An n); Rewrite <- Rplus_Or; Apply Rle_compatibility; Apply H0.
+Qed.
+
+(**********)
+Lemma sum_cv_maj : (An:nat->R;fn:nat->R->R;x,l1,l2:R) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu l1)<=l2``.
+Intros; Case (total_order_T (Rabsolu l1) l2); Intro.
+Elim s; Intro.
+Left; Apply a.
+Right; Apply b.
+Cut (n0:nat)``(Rabsolu (SP fn n0 x))<=(sum_f_R0 An n0)``.
+Intro; Cut ``0<((Rabsolu l1)-l2)/2``.
+Intro; Unfold Un_cv in H H0.
+Elim (H ? H3); Intros Na H4.
+Elim (H0 ? H3); Intros Nb H5.
+Pose N := (max Na Nb).
+Unfold R_dist in H4 H5.
+Cut ``(Rabsolu ((sum_f_R0 An N)-l2))<((Rabsolu l1)-l2)/2``.
+Intro; Cut ``(Rabsolu ((Rabsolu l1)-(Rabsolu (SP fn N x))))<((Rabsolu l1)-l2)/2``.
+Intro; Cut ``(sum_f_R0 An N)<((Rabsolu l1)+l2)/2``.
+Intro; Cut ``((Rabsolu l1)+l2)/2<(Rabsolu (SP fn N x))``.
+Intro; Cut ``(sum_f_R0 An N)<(Rabsolu (SP fn N x))``.
+Intro; Assert H11 := (H2 N).
+Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H10)).
+Apply Rlt_trans with ``((Rabsolu l1)+l2)/2``; Assumption.
+Case (case_Rabsolu ``(Rabsolu l1)-(Rabsolu (SP fn N x))``); Intro.
+Apply Rlt_trans with (Rabsolu l1).
+Apply Rlt_monotony_contra with ``2``.
+Apply Rgt_2_0.
+Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Rewrite double; Apply Rlt_compatibility; Apply r.
+DiscrR.
+Apply (Rminus_lt ? ? r0).
+Rewrite (Rabsolu_right ? r0) in H7.
+Apply Rlt_anti_compatibility with ``((Rabsolu l1)-l2)/2-(Rabsolu (SP fn N x))``.
+Replace ``((Rabsolu l1)-l2)/2-(Rabsolu (SP fn N x))+((Rabsolu l1)+l2)/2`` with ``(Rabsolu l1)-(Rabsolu (SP fn N x))``.
+Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H7.
+Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Rewrite <- (Rmult_sym ``/2``); Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``/2``); Pattern 1 (Rabsolu l1); Rewrite double_var; Unfold Rdiv; Ring.
+Case (case_Rabsolu ``(sum_f_R0 An N)-l2``); Intro.
+Apply Rlt_trans with l2.
+Apply (Rminus_lt ? ? r0).
+Apply Rlt_monotony_contra with ``2``.
+Apply Rgt_2_0.
+Rewrite (double l2); Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Rewrite (Rplus_sym (Rabsolu l1)); Apply Rlt_compatibility; Apply r.
+DiscrR.
+Rewrite (Rabsolu_right ? r0) in H6; Apply Rlt_anti_compatibility with ``-l2``.
+Replace ``-l2+((Rabsolu l1)+l2)/2`` with ``((Rabsolu l1)-l2)/2``.
+Rewrite Rplus_sym; Apply H6.
+Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite Rminus_distr; Rewrite Rmult_Rplus_distrl; Pattern 2 l2; Rewrite double_var; Repeat Rewrite (Rmult_sym ``/2``); Rewrite Ropp_distr1; Unfold Rdiv; Ring.
+Apply Rle_lt_trans with ``(Rabsolu ((SP fn N x)-l1))``.
+Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply Rabsolu_triang_inv2.
+Apply H4; Unfold ge N; Apply le_max_l.
+Apply H5; Unfold ge N; Apply le_max_r.
+Unfold Rdiv; Apply Rmult_lt_pos.
+Apply Rlt_anti_compatibility with l2.
+Rewrite Rplus_Or; Replace ``l2+((Rabsolu l1)-l2)`` with (Rabsolu l1); [Apply r | Ring].
+Apply Rlt_Rinv; Apply Rgt_2_0.
+Intros; Induction n0.
+Unfold SP; Simpl; Apply H1.
+Unfold SP; Simpl.
+Apply Rle_trans with (Rplus (Rabsolu (sum_f_R0 [k:nat](fn k x) n0)) (Rabsolu (fn (S n0) x))).
+Apply Rabsolu_triang.
+Apply Rle_trans with ``(sum_f_R0 An n0)+(Rabsolu (fn (S n0) x))``.
+Do 2 Rewrite <- (Rplus_sym (Rabsolu (fn (S n0) x))).
+Apply Rle_compatibility; Apply Hrecn0.
+Apply Rle_compatibility; Apply H1.
+Qed.
+
+(**********)
+Lemma sum_maj1 : (fn:nat->R->R;An:nat->R;x,l1,l2:R;N:nat) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu (l1-(SP fn N x)))<=l2-(sum_f_R0 An N)``.
+Intros; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](fn (plus (S N) l) x) n) l)).
+Intro; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](An (plus (S N) l)) n) l)).
+Intro; Elim X; Intros l1N H2.
+Elim X0; Intros l2N H3.
+Cut ``l1-(SP fn N x)==l1N``.
+Intro; Cut ``l2-(sum_f_R0 An N)==l2N``.
+Intro; Rewrite H4; Rewrite H5.
+Apply sum_cv_maj with [l:nat](An (plus (S N) l)) [l:nat][x:R](fn (plus (S N) l) x) x.
+Unfold SP; Apply H2.
+Apply H3.
+Intros; Apply H1.
+Symmetry; EApply UL_suite.
+Apply H3.
+Unfold Un_cv in H0; Unfold Un_cv; Intros; Elim (H0 eps H5); Intros N0 H6.
+Unfold R_dist in H6; Exists N0; Intros.
+Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))).
+Apply H6; Unfold ge; Apply le_trans with n.
+Apply H7.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H10 := (sigma_split An H9 H8).
+Unfold sigma in H10.
+Do 2 Rewrite <- minus_n_O in H10.
+Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))).
+Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H11 in H10.
+Apply H10.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm; Apply le_plus_l.
+Apply le_O_n.
+Symmetry; EApply UL_suite.
+Apply H2.
+Unfold Un_cv in H; Unfold Un_cv; Intros.
+Elim (H eps H4); Intros N0 H5.
+Unfold R_dist in H5; Exists N0; Intros.
+Unfold R_dist SP; Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))).
+Unfold SP in H5; Apply H5; Unfold ge; Apply le_trans with n.
+Apply H6.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H9 := (sigma_split [k:nat](fn k x) H8 H7).
+Unfold sigma in H9.
+Do 2 Rewrite <- minus_n_O in H9.
+Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))).
+Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H10 in H9.
+Apply H9.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm.
+Apply le_plus_l.
+Apply le_O_n.
+Apply existTT with ``l2-(sum_f_R0 An N)``.
+Unfold Un_cv in H0; Unfold Un_cv; Intros.
+Elim (H0 eps H2); Intros N0 H3.
+Unfold R_dist in H3; Exists N0; Intros.
+Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))).
+Apply H3; Unfold ge; Apply le_trans with n.
+Apply H4.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H7 := (sigma_split An H6 H5).
+Unfold sigma in H7.
+Do 2 Rewrite <- minus_n_O in H7.
+Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))).
+Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H8 in H7.
+Apply H7.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm.
+Apply le_plus_l.
+Apply le_O_n.
+Apply existTT with ``l1-(SP fn N x)``.
+Unfold Un_cv in H; Unfold Un_cv; Intros.
+Elim (H eps H2); Intros N0 H3.
+Unfold R_dist in H3; Exists N0; Intros.
+Unfold R_dist SP.
+Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))).
+Unfold SP in H3; Apply H3.
+Unfold ge; Apply le_trans with n.
+Apply H4.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H7 := (sigma_split [k:nat](fn k x) H6 H5).
+Unfold sigma in H7.
+Do 2 Rewrite <- minus_n_O in H7.
+Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))).
+Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H8 in H7.
+Apply H7.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm.
+Apply le_plus_l.
+Apply le_O_n.
+Qed.
+
+Lemma pow1 : (n:nat) (pow R1 n)==R1.
+Intro; Induction n.
+Reflexivity.
+Simpl; Rewrite Hrecn; Rewrite Rmult_1r; Reflexivity.
+Qed.
+
+Lemma pow_Rabs : (x:R;n:nat) ``(pow x n)<=(pow (Rabsolu x) n)``.
+Intros; Induction n.
+Right; Reflexivity.
+Simpl; Case (case_Rabsolu x); Intro.
+Apply Rle_trans with (Rabsolu ``x*(pow x n)``).
+Apply Rle_Rabsolu.
+Rewrite Rabsolu_mult.
+Apply Rle_monotony.
+Apply Rabsolu_pos.
+Right; Symmetry; Apply Pow_Rabsolu.
+Pattern 1 (Rabsolu x); Rewrite (Rabsolu_right x r); Apply Rle_monotony.
+Apply Rle_sym2; Exact r.
+Apply Hrecn.
+Qed.
+
+Lemma pow_maj_Rabs : (x,y:R;n:nat) ``(Rabsolu y)<=x`` -> ``(pow y n)<=(pow x n)``.
+Intros; Cut ``0<=x``.
+Intro; Apply Rle_trans with (pow (Rabsolu y) n).
+Apply pow_Rabs.
+Induction n.
+Right; Reflexivity.
+Simpl; Apply Rle_trans with ``x*(pow (Rabsolu y) n)``.
+Do 2 Rewrite <- (Rmult_sym (pow (Rabsolu y) n)).
+Apply Rle_monotony.
+Apply pow_le; Apply Rabsolu_pos.
+Assumption.
+Apply Rle_monotony.
+Apply H0.
+Apply Hrecn.
+Apply Rle_trans with (Rabsolu y); [Apply Rabsolu_pos | Exact H].
+Qed.
+
+(* Dans un espace complet, la convergence normale implique la
+ convergence uniforme *)
+Lemma CVN_CVU : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> (CVU [n:nat](SP fn n) (SFL fn cv) ``0`` r).
+Intros; Unfold CVU; Intros.
+Unfold CVN_r in X.
+Elim X; Intros An X0.
+Elim X0; Intros s H0.
+Elim H0; Intros.
+Cut (Un_cv [n:nat](Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s) R0).
+Intro; Unfold Un_cv in H3.
+Elim (H3 eps H); Intros N0 H4.
+Exists N0; Intros.
+Apply Rle_lt_trans with (Rabsolu (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)).
+Rewrite <- (Rabsolu_Ropp (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)); Rewrite Ropp_distr3; Rewrite (Rabsolu_right (Rminus s (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n))).
+EApply sum_maj1.
+Unfold SFL; Case (cv y); Intro.
+Trivial.
+Apply H1.
+Intro; Elim H0; Intros.
+Rewrite (Rabsolu_right (An n0)).
+Apply H8; Apply H6.
+Apply Rle_sym1; Apply Rle_trans with (Rabsolu (fn n0 y)).
+Apply Rabsolu_pos.
+Apply H8; Apply H6.
+Apply Rle_sym1; Apply Rle_anti_compatibility with (sum_f_R0 [k:nat](Rabsolu (An k)) n).
+Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym s); Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Apply sum_incr.
+Apply H1.
+Intro; Apply Rabsolu_pos.
+Unfold R_dist in H4; Unfold Rminus in H4; Rewrite Ropp_O in H4.
+Assert H7 := (H4 n H5).
+Rewrite Rplus_Or in H7; Apply H7.
+Unfold Un_cv in H1; Unfold Un_cv; Intros.
+Elim (H1? H3); Intros.
+Exists x; Intros.
+Unfold R_dist; Unfold R_dist in H4.
+Rewrite minus_R0; Apply H4; Assumption.
+Qed.
+
+(* La limite d'une suite de fonctions continues convergeant uniformement
+ est continue *)
+Lemma CVU_continuity : (fn:nat->R->R;f:R->R;x:R;r:posreal) (CVU fn f x r) -> ((n:nat)(y:R) (Boule x r y)->(continuity_pt (fn n) y)) -> ((y:R) (Boule x r y) -> (continuity_pt f y)).
+Intros; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
+Unfold CVU in H.
+Cut ``0<eps/3``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rgt_3_0]].
+Elim (H ? H3); Intros N0 H4.
+Assert H5 := (H0 N0 y H1).
+Cut (EXT del : posreal | (h:R) ``(Rabsolu h)<del`` -> (Boule x r ``y+h``) ).
+Intro.
+Elim H6; Intros del1 H7.
+Unfold continuity_pt in H5; Unfold continue_in in H5; Unfold limit1_in in H5; Unfold limit_in in H5; Simpl in H5; Unfold R_dist in H5.
+Elim (H5 ? H3); Intros del2 H8.
+Pose del := (Rmin del1 del2).
+Exists del; Intros.
+Split.
+Unfold del; Unfold Rmin; Case (total_order_Rle del1 del2); Intro.
+Apply (cond_pos del1).
+Elim H8; Intros; Assumption.
+Intros; Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(f y)))``.
+Replace ``(f x0)-(f y)`` with ``((f x0)-(fn N0 x0))+((fn N0 x0)-(f y))``; [Apply Rabsolu_triang | Ring].
+Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(fn N0 y)))+(Rabsolu ((fn N0 y)-(f y)))``.
+Rewrite Rplus_assoc; Apply Rle_compatibility.
+Replace ``(fn N0 x0)-(f y)`` with ``((fn N0 x0)-(fn N0 y))+((fn N0 y)-(f y))``; [Apply Rabsolu_triang | Ring].
+Replace ``eps`` with ``eps/3+eps/3+eps/3``.
+Repeat Apply Rplus_lt.
+Apply H4.
+Apply le_n.
+Replace x0 with ``y+(x0-y)``; [Idtac | Ring]; Apply H7.
+Elim H9; Intros.
+Apply Rlt_le_trans with del.
+Assumption.
+Unfold del; Apply Rmin_l.
+Elim H8; Intros.
+Apply H11.
+Split.
+Elim H9; Intros; Assumption.
+Elim H9; Intros; Apply Rlt_le_trans with del.
+Assumption.
+Unfold del; Apply Rmin_r.
+Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply H4.
+Apply le_n.
+Assumption.
+Apply r_Rmult_mult with ``3``.
+Do 2 Rewrite Rmult_Rplus_distr; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m.
+Ring.
+DiscrR.
+DiscrR.
+Cut ``0<r-(Rabsolu (x-y))``.
+Intro; Exists (mkposreal ? H6).
+Simpl; Intros.
+Unfold Boule; Replace ``y+h-x`` with ``h+(y-x)``; [Idtac | Ring]; Apply Rle_lt_trans with ``(Rabsolu h)+(Rabsolu (y-x))``.
+Apply Rabsolu_triang.
+Apply Rlt_anti_compatibility with ``-(Rabsolu (x-y))``.
+Rewrite <- (Rabsolu_Ropp ``y-x``); Rewrite Ropp_distr3.
+Replace ``-(Rabsolu (x-y))+r`` with ``r-(Rabsolu (x-y))``.
+Replace ``-(Rabsolu (x-y))+((Rabsolu h)+(Rabsolu (x-y)))`` with (Rabsolu h).
+Apply H7.
+Ring.
+Ring.
+Unfold Boule in H1; Rewrite <- (Rabsolu_Ropp ``x-y``); Rewrite Ropp_distr3; Apply Rlt_anti_compatibility with ``(Rabsolu (y-x))``.
+Rewrite Rplus_Or; Replace ``(Rabsolu (y-x))+(r-(Rabsolu (y-x)))`` with ``(pos r)``; [Apply H1 | Ring].
+Qed.
+
+(**********)
+Lemma continuity_pt_finite_SF : (fn:nat->R->R;N:nat;x:R) ((n:nat)(le n N)->(continuity_pt (fn n) x)) -> (continuity_pt [y:R](sum_f_R0 [k:nat]``(fn k y)`` N) x).
+Intros; Induction N.
+Simpl; Apply (H O); Apply le_n.
+Simpl; Replace [y:R](Rplus (sum_f_R0 [k:nat](fn k y) N) (fn (S N) y)) with (plus_fct [y:R](sum_f_R0 [k:nat](fn k y) N) [y:R](fn (S N) y)); [Idtac | Reflexivity].
+Apply continuity_pt_plus.
+Apply HrecN.
+Intros; Apply H.
+Apply le_trans with N; [Assumption | Apply le_n_Sn].
+Apply (H (S N)); Apply le_n.
+Qed.
+
+(* Continuite d'une série de fonctions normalement convergeante *)
+Lemma SFL_continuity_pt : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> ((n:nat)(y:R) (Boule ``0`` r y) -> (continuity_pt (fn n) y)) -> ((y:R) (Boule ``0`` r y) -> (continuity_pt (SFL fn cv) y)).
+Intros; EApply CVU_continuity.
+Apply CVN_CVU.
+Apply X.
+Intros; Unfold SP; Apply continuity_pt_finite_SF.
+Intros; Apply H.
+Apply H1.
+Apply H0.
+Qed.
+
+Lemma SFL_continuity : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))) (CVN_R fn) -> ((n:nat)(continuity (fn n))) -> (continuity (SFL fn cv)).
+Intros; Unfold continuity; Intro.
+Cut ``0<(Rabsolu x)+1``; [Intro | Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1]].
+Cut (Boule ``0`` (mkposreal ? H0) x).
+Intro; EApply SFL_continuity_pt with (mkposreal ? H0).
+Apply X.
+Intros; Apply (H n y).
+Apply H1.
+Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
+Qed.
+
+(* Théorème de comparaison de convergence pour les séries *)
+Lemma Rseries_CV_comp : (An,Bn:nat->R) ((n:nat)``0<=(An n)<=(Bn n)``) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 Bn N) l)) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 An N) l)).
+Intros; Apply cv_cauchy_2.
+Assert H0 := (cv_cauchy_1 ? X).
+Unfold Cauchy_crit_series; Unfold Cauchy_crit.
+Intros; Elim (H0 eps H1); Intros.
+Exists x; Intros.
+Cut (Rle (R_dist (sum_f_R0 An n) (sum_f_R0 An m)) (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m))).
+Intro; Apply Rle_lt_trans with (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)).
+Assumption.
+Apply H2; Assumption.
+Assert H5 := (lt_eq_lt_dec n m).
+Elim H5; Intro.
+Elim a; Intro.
+Rewrite (tech2 An n m); [Idtac | Assumption].
+Rewrite (tech2 Bn n m); [Idtac | Assumption].
+Unfold R_dist; Unfold Rminus; Do 2 Rewrite Ropp_distr1; Do 2 Rewrite <- Rplus_assoc; Do 2 Rewrite Rplus_Ropp_r; Do 2 Rewrite Rplus_Ol; Do 2 Rewrite Rabsolu_Ropp; Repeat Rewrite Rabsolu_right.
+Apply sum_Rle; Intros.
+Elim (H (plus (S n) n0)); Intros.
+Apply H8.
+Apply Rle_sym1; Apply cond_pos_sum; Intro.
+Elim (H (plus (S n) n0)); Intros.
+Apply Rle_trans with (An (plus (S n) n0)); Assumption.
+Apply Rle_sym1; Apply cond_pos_sum; Intro.
+Elim (H (plus (S n) n0)); Intros; Assumption.
+Rewrite b; Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Right; Reflexivity.
+Rewrite (tech2 An m n); [Idtac | Assumption].
+Rewrite (tech2 Bn m n); [Idtac | Assumption].
+Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_assoc; Rewrite (Rplus_sym (sum_f_R0 An m)); Rewrite (Rplus_sym (sum_f_R0 Bn m)); Do 2 Rewrite Rplus_assoc; Do 2 Rewrite Rplus_Ropp_l; Do 2 Rewrite Rplus_Or; Repeat Rewrite Rabsolu_right.
+Apply sum_Rle; Intros.
+Elim (H (plus (S m) n0)); Intros; Apply H8.
+Apply Rle_sym1; Apply cond_pos_sum; Intro.
+Elim (H (plus (S m) n0)); Intros.
+Apply Rle_trans with (An (plus (S m) n0)); Assumption.
+Apply Rle_sym1.
+Apply cond_pos_sum; Intro.
+Elim (H (plus (S m) n0)); Intros; Assumption.
+Qed.
+
+(* Grace a la completude de R, on a le lemme suivant *)
+Lemma CVN_R_CVS : (fn:nat->R->R) (CVN_R fn) -> ((x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))).
+Intros; Apply R_complet.
+Unfold SP; Pose An := [N:nat](fn N x).
+Change (Cauchy_crit_series An).
+Apply cauchy_abs.
+Unfold Cauchy_crit_series; Apply CV_Cauchy.
+Unfold CVN_R in X; Cut ``0<(Rabsolu x)+1``.
+Intro; Assert H0 := (X (mkposreal ? H)).
+Unfold CVN_r in H0; Elim H0; Intros Bn H1.
+Elim H1; Intros l H2.
+Elim H2; Intros.
+Apply Rseries_CV_comp with Bn.
+Intro; Split.
+Apply Rabsolu_pos.
+Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0.
+Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
+Apply existTT with l.
+Cut (n:nat)``0<=(Bn n)``.
+Intro; Unfold Un_cv in H3; Unfold Un_cv; Intros.
+Elim (H3 ? H6); Intros.
+Exists x0; Intros.
+Replace (sum_f_R0 Bn n) with (sum_f_R0 [k:nat](Rabsolu (Bn k)) n).
+Apply H7; Assumption.
+Apply sum_eq; Intros; Apply Rabsolu_right; Apply Rle_sym1; Apply H5.
+Intro; Apply Rle_trans with (Rabsolu (An n)).
+Apply Rabsolu_pos.
+Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
+Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1].
+Qed.