aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/PArith/Pnat.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-18 18:02:20 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-18 18:02:20 +0000
commit59726c5343613379d38a9409af044d85cca130ed (patch)
tree185cef19334e67de344b6417a07c11ad61ed0c46 /theories/PArith/Pnat.v
parent16cf970765096f55a03efad96100add581ce0edb (diff)
Some more revision of {P,N,Z}Arith + bitwise ops in Ndigits
Initial plan was only to add shiftl/shiftr/land/... to N and other number type, this is only partly done, but this work has diverged into a big reorganisation and improvement session of PArith,NArith,ZArith. Bool/Bool: add lemmas orb_diag (a||a = a) and andb_diag (a&&a = a) PArith/BinPos: - added a power function Ppow - iterator iter_pos moved from Zmisc to here + some lemmas - added Psize_pos, which is 1+log2, used to define Nlog2/Zlog2 - more lemmas on Pcompare and succ/+/* and order, allow to simplify a lot some old proofs elsewhere. - new/revised results on Pminus (including some direct proof of stuff from Pnat) PArith/Pnat: - more direct proofs (limit the need of stuff about Pmult_nat). - provide nicer names for some lemmas (eg. Pplus_plus instead of nat_of_P_plus_morphism), compatibility notations provided. - kill some too-specific lemmas unused in stdlib + contribs NArith/BinNat: - N_of_nat, nat_of_N moved from Nnat to here. - a lemma relating Npred and Nminus - revised definitions and specification proofs of Npow and Nlog2 NArith/Nnat: - shorter proofs. - stuff about Z_of_N is moved to Znat. This way, NArith is entirely independent from ZArith. NArith/Ndigits: - added bitwise operations Nand Nor Ndiff Nshiftl Nshiftr - revised proofs about Nxor, still using functional bit stream - use the same approach to prove properties of Nand Nor Ndiff ZArith/BinInt: huge simplification of Zplus_assoc + cosmetic stuff ZArith/Zcompare: nicer proofs of ugly things like Zcompare_Zplus_compat ZArith/Znat: some nicer proofs and names, received stuff about Z_of_N ZArith/Zmisc: almost empty new, only contain stuff about badly-named iter. Should be reformed more someday. ZArith/Zlog_def: Zlog2 is now based on Psize_pos, this factorizes proofs and avoid slowdown due to adding 1 in Z instead of in positive Zarith/Zpow_def: Zpower_opt is renamed more modestly Zpower_alt as long as I dont't know why it's slower on powers of two. Elsewhere: propagate new names + some nicer proofs NB: Impact on compatibility is probably non-zero, but should be really moderate. We'll see on contribs, but a few Require here and there might be necessary. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13651 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/PArith/Pnat.v')
-rw-r--r--theories/PArith/Pnat.v511
1 files changed, 149 insertions, 362 deletions
diff --git a/theories/PArith/Pnat.v b/theories/PArith/Pnat.v
index b3f2493b2..590217d5d 100644
--- a/theories/PArith/Pnat.v
+++ b/theories/PArith/Pnat.v
@@ -7,332 +7,199 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import BinPos.
+Require Import BinPos Le Lt Gt Plus Mult Minus Compare_dec Wf_nat.
-(**********************************************************************)
-(** Properties of the injection from binary positive numbers to Peano
- natural numbers *)
+(** Properties of the injection from binary positive numbers
+ to Peano natural numbers *)
(** Original development by Pierre Crégut, CNET, Lannion, France *)
-Require Import Le.
-Require Import Lt.
-Require Import Gt.
-Require Import Plus.
-Require Import Mult.
-Require Import Minus.
-Require Import Compare_dec.
-
Local Open Scope positive_scope.
Local Open Scope nat_scope.
-(** [nat_of_P] is a morphism for addition *)
-
-Lemma Pmult_nat_succ_morphism :
- forall (p:positive) (n:nat), Pmult_nat (Psucc p) n = n + Pmult_nat p n.
-Proof.
-intro x; induction x as [p IHp| p IHp| ]; simpl in |- *; auto; intro m;
- rewrite IHp; rewrite plus_assoc; trivial.
-Qed.
+(** [Pmult_nat] in term of [nat_of_P] *)
-Lemma nat_of_P_succ_morphism :
- forall p:positive, nat_of_P (Psucc p) = S (nat_of_P p).
+Lemma Pmult_nat_mult : forall p n,
+ Pmult_nat p n = nat_of_P p * n.
Proof.
- intro; change (S (nat_of_P p)) with (1 + nat_of_P p) in |- *;
- unfold nat_of_P in |- *; apply Pmult_nat_succ_morphism.
+ induction p; intros n.
+ unfold nat_of_P. simpl. f_equal. rewrite 2 IHp.
+ rewrite <- mult_assoc. f_equal. simpl. now rewrite <- plus_n_O.
+ unfold nat_of_P. simpl. rewrite 2 IHp.
+ rewrite <- mult_assoc. f_equal. simpl. now rewrite <- plus_n_O.
+ simpl. now rewrite <- plus_n_O.
Qed.
-Theorem Pmult_nat_plus_carry_morphism :
- forall (p q:positive) (n:nat),
- Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n.
-Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
- intro m;
- [ rewrite IHp; rewrite plus_assoc; trivial with arith
- | rewrite IHp; rewrite plus_assoc; trivial with arith
- | rewrite Pmult_nat_succ_morphism; rewrite plus_assoc; trivial with arith
- | rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ].
-Qed.
+(** [nat_of_P] is a morphism for successor, addition, multiplication *)
-Theorem nat_of_P_plus_carry_morphism :
- forall p q:positive, nat_of_P (Pplus_carry p q) = S (nat_of_P (p + q)).
+Lemma Psucc_S : forall p, nat_of_P (Psucc p) = S (nat_of_P p).
Proof.
-intros; unfold nat_of_P in |- *; rewrite Pmult_nat_plus_carry_morphism;
- simpl in |- *; trivial with arith.
+ induction p; unfold nat_of_P; simpl; trivial.
+ now rewrite !Pmult_nat_mult, IHp.
Qed.
-Theorem Pmult_nat_l_plus_morphism :
- forall (p q:positive) (n:nat),
- Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
+Theorem Pplus_plus :
+ forall p q, nat_of_P (p + q) = nat_of_P p + nat_of_P q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
- [ intros m; rewrite Pmult_nat_plus_carry_morphism; rewrite IHp;
- rewrite plus_assoc_reverse; rewrite plus_assoc_reverse;
- rewrite (plus_permute m (Pmult_nat p (m + m)));
- trivial with arith
- | intros m; rewrite IHp; apply plus_assoc
- | intros m; rewrite Pmult_nat_succ_morphism;
- rewrite (plus_comm (m + Pmult_nat p (m + m)));
- apply plus_assoc_reverse
- | intros m; rewrite IHp; apply plus_permute
- | intros m; rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ].
+ induction p using Pind; intros q.
+ now rewrite <- Pplus_one_succ_l, Psucc_S.
+ now rewrite Pplus_succ_permute_l, !Psucc_S, IHp.
Qed.
-Theorem nat_of_P_plus_morphism :
- forall p q:positive, nat_of_P (p + q) = nat_of_P p + nat_of_P q.
+Theorem Pmult_mult :
+ forall p q, nat_of_P (p * q) = nat_of_P p * nat_of_P q.
Proof.
-intros x y; exact (Pmult_nat_l_plus_morphism x y 1).
+ induction p using Pind; simpl; intros; trivial.
+ now rewrite Pmult_Sn_m, Pplus_plus, IHp, Psucc_S.
Qed.
-(** [Pmult_nat] is a morphism for addition *)
+(** Mapping of xH, xO and xI through [nat_of_P] *)
-Lemma Pmult_nat_r_plus_morphism :
- forall (p:positive) (n:nat),
- Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
+Lemma nat_of_P_xH : nat_of_P 1 = 1.
Proof.
-intro y; induction y as [p H| p H| ]; intro m;
- [ simpl in |- *; rewrite H; rewrite plus_assoc_reverse;
- rewrite (plus_permute m (Pmult_nat p (m + m)));
- rewrite plus_assoc_reverse; auto with arith
- | simpl in |- *; rewrite H; auto with arith
- | simpl in |- *; trivial with arith ].
+ reflexivity.
Qed.
-Lemma ZL6 : forall p:positive, Pmult_nat p 2 = nat_of_P p + nat_of_P p.
+Lemma nat_of_P_xO : forall p, nat_of_P (xO p) = 2 * nat_of_P p.
Proof.
-intro p; change 2 with (1 + 1) in |- *; rewrite Pmult_nat_r_plus_morphism;
- trivial.
+ intros. exact (Pmult_mult 2 p).
Qed.
-(** [nat_of_P] is a morphism for multiplication *)
-
-Theorem nat_of_P_mult_morphism :
- forall p q:positive, nat_of_P (p * q) = nat_of_P p * nat_of_P q.
+Lemma nat_of_P_xI : forall p, nat_of_P (xI p) = S (2 * nat_of_P p).
Proof.
-intros x y; induction x as [x' H| x' H| ];
- [ change (xI x' * y)%positive with (y + xO (x' * y))%positive in |- *;
- rewrite nat_of_P_plus_morphism; unfold nat_of_P at 2 3 in |- *;
- simpl in |- *; do 2 rewrite ZL6; rewrite H; rewrite mult_plus_distr_r;
- reflexivity
- | unfold nat_of_P at 1 2 in |- *; simpl in |- *; do 2 rewrite ZL6; rewrite H;
- rewrite mult_plus_distr_r; reflexivity
- | simpl in |- *; rewrite <- plus_n_O; reflexivity ].
+ intros. now rewrite xI_succ_xO, Psucc_S, nat_of_P_xO.
Qed.
(** [nat_of_P] maps to the strictly positive subset of [nat] *)
-Lemma ZL4 : forall p:positive, exists h : nat, nat_of_P p = S h.
+Lemma nat_of_P_is_S : forall p, exists n, nat_of_P p = S n.
Proof.
-intro y; induction y as [p H| p H| ];
- [ destruct H as [x H1]; exists (S x + S x); unfold nat_of_P in |- *;
- simpl in |- *; change 2 with (1 + 1) in |- *;
- rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1;
- rewrite H1; auto with arith
- | destruct H as [x H2]; exists (x + S x); unfold nat_of_P in |- *;
- simpl in |- *; change 2 with (1 + 1) in |- *;
- rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2;
- rewrite H2; auto with arith
- | exists 0; auto with arith ].
+induction p as [p (h,IH)| p (h,IH)| ]; unfold nat_of_P; simpl.
+ exists (S h * 2). now rewrite Pmult_nat_mult, IH.
+ exists (S (h*2)). now rewrite Pmult_nat_mult,IH.
+ now exists 0.
Qed.
-(** Extra lemmas on [lt] on Peano natural numbers *)
-
-Lemma ZL7 : forall n m:nat, n < m -> n + n < m + m.
-Proof.
-intros m n H; apply lt_trans with (m := m + n);
- [ apply plus_lt_compat_l with (1 := H)
- | rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ].
-Qed.
+(** [nat_of_P] is strictly positive *)
-Lemma ZL8 : forall n m:nat, n < m -> S (n + n) < m + m.
+Lemma nat_of_P_pos : forall p, 0 < nat_of_P p.
Proof.
-intros m n H; apply le_lt_trans with (m := m + n);
- [ change (m + m < m + n) in |- *; apply plus_lt_compat_l with (1 := H)
- | rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ].
+ intros p. destruct (nat_of_P_is_S p) as (n,->). auto with arith.
Qed.
-(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
- from [compare] on [positive])
+(** [nat_of_P] is a morphism for comparison *)
- Part 1: [lt] on [positive] is finer than [lt] on [nat]
-*)
-
-Lemma nat_of_P_lt_Lt_compare_morphism :
- forall p q:positive, (p ?= q) Eq = Lt -> nat_of_P p < nat_of_P q.
+Lemma Pcompare_nat_compare : forall p q,
+ (p ?= q) Eq = nat_compare (nat_of_P p) (nat_of_P q).
Proof.
-intro x; induction x as [p H| p H| ]; intro y; destruct y as [q| q| ];
- intro H2;
- [ unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; do 2 rewrite ZL6;
- apply ZL7; apply H; simpl in H2; assumption
- | unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; apply ZL8;
- apply H; simpl in H2; apply Pcompare_Gt_Lt; assumption
- | simpl in |- *; discriminate H2
- | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6;
- elim (Pcompare_Lt_Lt p q H2);
- [ intros H3; apply lt_S; apply ZL7; apply H; apply H3
- | intros E; rewrite E; apply lt_n_Sn ]
- | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6;
- apply ZL7; apply H; assumption
- | simpl in |- *; discriminate H2
- | unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; rewrite ZL6;
- elim (ZL4 q); intros h H3; rewrite H3; simpl in |- *;
- apply lt_O_Sn
- | unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 q);
- intros h H3; rewrite H3; simpl in |- *; rewrite <- plus_n_Sm;
- apply lt_n_S; apply lt_O_Sn
- | simpl in |- *; discriminate H2 ].
+ induction p as [ |p IH] using Pind; intros q.
+ destruct (Psucc_pred q) as [Hq|Hq]; [now subst|].
+ rewrite <- Hq, Plt_1_succ, Psucc_S, nat_of_P_xH, nat_compare_S.
+ symmetry. apply nat_compare_lt, nat_of_P_pos.
+ destruct (Psucc_pred q) as [Hq|Hq]; [subst|].
+ rewrite ZC4, Plt_1_succ, Psucc_S. simpl.
+ symmetry. apply nat_compare_gt, nat_of_P_pos.
+ now rewrite <- Hq, 2 Psucc_S, Pcompare_succ_succ, IH.
Qed.
-(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
- from [compare] on [positive])
+(** [nat_of_P] is hence injective *)
- Part 1: [gt] on [positive] is finer than [gt] on [nat]
-*)
-
-Lemma nat_of_P_gt_Gt_compare_morphism :
- forall p q:positive, (p ?= q) Eq = Gt -> nat_of_P p > nat_of_P q.
+Lemma nat_of_P_inj_iff : forall p q, nat_of_P p = nat_of_P q <-> p = q.
Proof.
-intros p q GT. unfold gt.
-apply nat_of_P_lt_Lt_compare_morphism.
-change ((q ?= p) (CompOpp Eq) = CompOpp Gt).
-rewrite <- Pcompare_antisym, GT; auto.
+ intros.
+ eapply iff_trans; [eapply iff_sym|eapply Pcompare_eq_iff].
+ rewrite Pcompare_nat_compare.
+ apply nat_compare_eq_iff.
Qed.
-(** [nat_of_P] is a morphism for [Pcompare] and [nat_compare] *)
-
-Lemma nat_of_P_compare_morphism : forall p q,
- (p ?= q) Eq = nat_compare (nat_of_P p) (nat_of_P q).
+Lemma nat_of_P_inj : forall p q, nat_of_P p = nat_of_P q -> p = q.
Proof.
- intros p q; symmetry.
- destruct ((p ?= q) Eq) as [ | | ]_eqn.
- rewrite (Pcompare_Eq_eq p q); auto.
- apply <- nat_compare_eq_iff; auto.
- apply -> nat_compare_lt. apply nat_of_P_lt_Lt_compare_morphism; auto.
- apply -> nat_compare_gt. apply nat_of_P_gt_Gt_compare_morphism; auto.
+ intros. now apply nat_of_P_inj_iff.
Qed.
-(** [nat_of_P] is hence injective. *)
+(** [nat_of_P] is a morphism for [lt], [le], etc *)
-Lemma nat_of_P_inj : forall p q:positive, nat_of_P p = nat_of_P q -> p = q.
+Lemma Plt_lt : forall p q, Plt p q <-> nat_of_P p < nat_of_P q.
Proof.
-intros.
-apply Pcompare_Eq_eq.
-rewrite nat_of_P_compare_morphism.
-apply <- nat_compare_eq_iff; auto.
+ intros. unfold Plt. rewrite Pcompare_nat_compare.
+ apply iff_sym, nat_compare_lt.
Qed.
-(** Stating this bidirectionally lets us reason equationally with it: *)
-
-Lemma nat_of_P_inj_iff : forall p q, nat_of_P p = nat_of_P q <-> p = q.
+Lemma Ple_le : forall p q, Ple p q <-> nat_of_P p <= nat_of_P q.
Proof.
- split; intro. now apply nat_of_P_inj. now subst.
+ intros. unfold Ple. rewrite Pcompare_nat_compare.
+ apply iff_sym, nat_compare_le.
Qed.
-(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
- from [compare] on [positive])
-
- Part 2: [lt] on [nat] is finer than [lt] on [positive]
-*)
-
-Lemma nat_of_P_lt_Lt_compare_complement_morphism :
- forall p q:positive, nat_of_P p < nat_of_P q -> (p ?= q) Eq = Lt.
+Lemma Pgt_gt : forall p q, Pgt p q <-> nat_of_P p > nat_of_P q.
Proof.
- intros. rewrite nat_of_P_compare_morphism.
- apply -> nat_compare_lt; auto.
+ intros. unfold Pgt. rewrite Pcompare_nat_compare.
+ apply iff_sym, nat_compare_gt.
Qed.
-(** Again, stating this bidirectionally lets us reason equationally with it: *)
-
-Lemma Plt_lt : forall p q, Plt p q <-> lt (nat_of_P p) (nat_of_P q).
+Lemma Pge_ge : forall p q, Pge p q <-> nat_of_P p >= nat_of_P q.
Proof.
- intros. unfold Plt. rewrite nat_of_P_compare_morphism.
- apply iff_sym, nat_compare_lt.
+ intros. unfold Pge. rewrite Pcompare_nat_compare.
+ apply iff_sym, nat_compare_ge.
Qed.
-(** And the same for Ple *)
+(** [nat_of_P] is a morphism for subtraction *)
-Lemma Ple_le : forall p q, Ple p q <-> le (nat_of_P p) (nat_of_P q).
+Theorem Pminus_minus :
+ forall p q, Plt q p -> nat_of_P (p - q) = nat_of_P p - nat_of_P q.
Proof.
- intros. unfold Ple. rewrite nat_of_P_compare_morphism.
- apply iff_sym, nat_compare_le.
+ intros x y H; apply plus_reg_l with (nat_of_P y); rewrite le_plus_minus_r.
+ rewrite <- Pplus_plus, Pplus_minus. trivial. now apply ZC2.
+ now apply lt_le_weak, Plt_lt.
Qed.
-(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
- from [compare] on [positive])
-
- Part 2: [gt] on [nat] is finer than [gt] on [positive]
-*)
+(** Results about [Pmult_nat], many are old intermediate results *)
-Lemma nat_of_P_gt_Gt_compare_complement_morphism :
- forall p q:positive, nat_of_P p > nat_of_P q -> (p ?= q) Eq = Gt.
+Lemma Pmult_nat_succ_morphism :
+ forall p n, Pmult_nat (Psucc p) n = n + Pmult_nat p n.
Proof.
- intros. rewrite nat_of_P_compare_morphism.
- apply -> nat_compare_gt; auto.
-Qed.
-
-
-(** [nat_of_P] is strictly positive *)
-
-Lemma le_Pmult_nat : forall (p:positive) (n:nat), n <= Pmult_nat p n.
-induction p; simpl in |- *; auto with arith.
-intro m; apply le_trans with (m + m); auto with arith.
-Qed.
-
-Lemma lt_O_nat_of_P : forall p:positive, 0 < nat_of_P p.
-intro; unfold nat_of_P in |- *; apply lt_le_trans with 1; auto with arith.
-apply le_Pmult_nat.
+ intros. now rewrite !Pmult_nat_mult, Psucc_S.
Qed.
-(** Pmult_nat permutes with multiplication *)
-
-Lemma Pmult_nat_mult_permute :
- forall (p:positive) (n m:nat), Pmult_nat p (m * n) = m * Pmult_nat p n.
+Theorem Pmult_nat_l_plus_morphism :
+ forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
Proof.
- simple induction p. intros. simpl in |- *. rewrite mult_plus_distr_l. rewrite <- (mult_plus_distr_l m n n).
- rewrite (H (n + n) m). reflexivity.
- intros. simpl in |- *. rewrite <- (mult_plus_distr_l m n n). apply H.
- trivial.
+ intros. rewrite !Pmult_nat_mult, Pplus_plus. apply mult_plus_distr_r.
Qed.
-Lemma Pmult_nat_2_mult_2_permute :
- forall p:positive, Pmult_nat p 2 = 2 * Pmult_nat p 1.
+Theorem Pmult_nat_plus_carry_morphism :
+ forall p q n, Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n.
Proof.
- intros. rewrite <- Pmult_nat_mult_permute. reflexivity.
+ intros. now rewrite Pplus_carry_spec, Pmult_nat_succ_morphism.
Qed.
-Lemma Pmult_nat_4_mult_2_permute :
- forall p:positive, Pmult_nat p 4 = 2 * Pmult_nat p 2.
+Lemma Pmult_nat_r_plus_morphism :
+ forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
Proof.
- intros. rewrite <- Pmult_nat_mult_permute. reflexivity.
+ intros. rewrite !Pmult_nat_mult. apply mult_plus_distr_l.
Qed.
-(** Mapping of xH, xO and xI through [nat_of_P] *)
-
-Lemma nat_of_P_xH : nat_of_P 1 = 1.
+Lemma ZL6 : forall p, Pmult_nat p 2 = nat_of_P p + nat_of_P p.
Proof.
- reflexivity.
+ intros. rewrite Pmult_nat_mult, mult_comm. simpl. now rewrite <- plus_n_O.
Qed.
-Lemma nat_of_P_xO : forall p:positive, nat_of_P (xO p) = 2 * nat_of_P p.
+Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n.
Proof.
- intros.
- change 2 with (nat_of_P 2).
- rewrite <- nat_of_P_mult_morphism.
- f_equal.
+ intros. rewrite Pmult_nat_mult.
+ apply le_trans with (1*n). now rewrite mult_1_l.
+ apply mult_le_compat_r. apply nat_of_P_pos.
Qed.
-Lemma nat_of_P_xI : forall p:positive, nat_of_P (xI p) = S (2 * nat_of_P p).
+(** [nat_of_P] is a morphism for [iter_pos] and [iter_nat] *)
+
+Theorem iter_nat_of_P :
+ forall p (A:Type) (f:A->A) (x:A),
+ iter_pos p A f x = iter_nat (nat_of_P p) A f x.
Proof.
- intros.
- change 2 with (nat_of_P 2).
- rewrite <- nat_of_P_mult_morphism, <- nat_of_P_succ_morphism.
- f_equal.
+ induction p as [p IH|p IH| ]; intros A f x; simpl; trivial.
+ f_equal. now rewrite 2 IH, <- iter_nat_plus, <- ZL6.
+ now rewrite 2 IH, <- iter_nat_plus, <- ZL6.
Qed.
(**********************************************************************)
@@ -341,143 +208,63 @@ Qed.
(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)
-Theorem nat_of_P_o_P_of_succ_nat_eq_succ :
- forall n:nat, nat_of_P (P_of_succ_nat n) = S n.
-Proof.
-induction n as [|n H].
-reflexivity.
-simpl; rewrite nat_of_P_succ_morphism, H; auto.
-Qed.
-
-(** Miscellaneous lemmas on [P_of_succ_nat] *)
-
-Lemma ZL3 :
- forall n:nat, Psucc (P_of_succ_nat (n + n)) = xO (P_of_succ_nat n).
+Theorem nat_of_P_of_succ_nat :
+ forall n, nat_of_P (P_of_succ_nat n) = S n.
Proof.
-induction n as [| n H]; simpl;
- [ auto with arith
- | rewrite plus_comm; simpl; rewrite H;
- rewrite xO_succ_permute; auto with arith ].
-Qed.
-
-Lemma ZL5 : forall n:nat, P_of_succ_nat (S n + S n) = xI (P_of_succ_nat n).
-Proof.
-induction n as [| n H]; simpl;
- [ auto with arith
- | rewrite <- plus_n_Sm; simpl; simpl in H; rewrite H;
- auto with arith ].
+induction n as [|n H]; trivial; simpl; now rewrite Psucc_S, H.
Qed.
(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *)
-Theorem P_of_succ_nat_o_nat_of_P_eq_succ :
- forall p:positive, P_of_succ_nat (nat_of_P p) = Psucc p.
+Theorem P_of_succ_nat_of_P :
+ forall p, P_of_succ_nat (nat_of_P p) = Psucc p.
Proof.
intros.
-apply nat_of_P_inj.
-rewrite nat_of_P_o_P_of_succ_nat_eq_succ, nat_of_P_succ_morphism; auto.
+apply nat_of_P_inj. now rewrite nat_of_P_of_succ_nat, Psucc_S.
Qed.
(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity
on [positive] *)
-Theorem pred_o_P_of_succ_nat_o_nat_of_P_eq_id :
- forall p:positive, Ppred (P_of_succ_nat (nat_of_P p)) = p.
+Theorem Ppred_of_succ_nat_of_P :
+ forall p, Ppred (P_of_succ_nat (nat_of_P p)) = p.
Proof.
-intros; rewrite P_of_succ_nat_o_nat_of_P_eq_succ, Ppred_succ; auto.
+intros; rewrite P_of_succ_nat_of_P, Ppred_succ; auto.
Qed.
(**********************************************************************)
-(** Extra properties of the injection from binary positive numbers to Peano
- natural numbers *)
-
-(** [nat_of_P] is a morphism for subtraction on positive numbers *)
-
-Theorem nat_of_P_minus_morphism :
- forall p q:positive,
- (p ?= q) Eq = Gt -> nat_of_P (p - q) = nat_of_P p - nat_of_P q.
-Proof.
-intros x y H; apply plus_reg_l with (nat_of_P y); rewrite le_plus_minus_r;
- [ rewrite <- nat_of_P_plus_morphism; rewrite Pplus_minus; auto with arith
- | apply lt_le_weak; exact (nat_of_P_gt_Gt_compare_morphism x y H) ].
-Qed.
-
-
-Lemma ZL16 : forall p q:positive, nat_of_P p - nat_of_P q < nat_of_P p.
-Proof.
-intros p q; elim (ZL4 p); elim (ZL4 q); intros h H1 i H2; rewrite H1;
- rewrite H2; simpl in |- *; unfold lt in |- *; apply le_n_S;
- apply le_minus.
-Qed.
-
-Lemma ZL17 : forall p q:positive, nat_of_P p < nat_of_P (p + q).
-Proof.
-intros p q; rewrite nat_of_P_plus_morphism; unfold lt in |- *; elim (ZL4 q);
- intros k H; rewrite H; rewrite plus_comm; simpl in |- *;
- apply le_n_S; apply le_plus_r.
-Qed.
-
-(** Comparison and subtraction *)
-
-Lemma Pcompare_minus_r :
- forall p q r:positive,
- (q ?= p) Eq = Lt ->
- (r ?= p) Eq = Gt ->
- (r ?= q) Eq = Gt -> (r - p ?= r - q) Eq = Lt.
-Proof.
-intros; apply nat_of_P_lt_Lt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ apply plus_lt_reg_l with (p := nat_of_P q); rewrite le_plus_minus_r;
- [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p);
- rewrite plus_assoc; rewrite le_plus_minus_r;
- [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l;
- apply nat_of_P_lt_Lt_compare_morphism;
- assumption
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption ]
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
- assumption ]
- | assumption ]
- | assumption ].
-Qed.
-
-Lemma Pcompare_minus_l :
- forall p q r:positive,
- (q ?= p) Eq = Lt ->
- (p ?= r) Eq = Gt ->
- (q ?= r) Eq = Gt -> (q - r ?= p - r) Eq = Lt.
-Proof.
-intros p q z; intros; apply nat_of_P_lt_Lt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z);
- rewrite le_plus_minus_r;
- [ rewrite le_plus_minus_r;
- [ apply nat_of_P_lt_Lt_compare_morphism; assumption
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption ]
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
- assumption ]
- | assumption ]
- | assumption ].
-Qed.
-
-(** Distributivity of multiplication over subtraction *)
-
-Theorem Pmult_minus_distr_l :
- forall p q r:positive,
- (q ?= r) Eq = Gt ->
- (p * (q - r) = p * q - p * r)%positive.
-Proof.
-intros x y z H; apply nat_of_P_inj; rewrite nat_of_P_mult_morphism;
- rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ do 2 rewrite nat_of_P_mult_morphism;
- do 3 rewrite (mult_comm (nat_of_P x)); apply mult_minus_distr_r
- | apply nat_of_P_gt_Gt_compare_complement_morphism;
- do 2 rewrite nat_of_P_mult_morphism; unfold gt in |- *;
- elim (ZL4 x); intros h H1; rewrite H1; apply mult_S_lt_compat_l;
- exact (nat_of_P_gt_Gt_compare_morphism y z H) ]
- | assumption ].
-Qed.
+(** Extra properties of the injection from binary positive numbers
+ to Peano natural numbers *)
+
+(** Old names and old-style lemmas *)
+
+Notation nat_of_P_succ_morphism := Psucc_S (only parsing).
+Notation nat_of_P_plus_morphism := Pplus_plus (only parsing).
+Notation nat_of_P_mult_morphism := Pmult_mult (only parsing).
+Notation nat_of_P_compare_morphism := Pcompare_nat_compare (only parsing).
+Notation lt_O_nat_of_P := nat_of_P_pos (only parsing).
+Notation ZL4 := nat_of_P_is_S (only parsing).
+Notation nat_of_P_o_P_of_succ_nat_eq_succ := nat_of_P_of_succ_nat (only parsing).
+Notation P_of_succ_nat_o_nat_of_P_eq_succ := P_of_succ_nat_of_P (only parsing).
+Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Ppred_of_succ_nat_of_P
+ (only parsing).
+
+Definition nat_of_P_minus_morphism p q :
+ (p ?= q) Eq = Gt -> nat_of_P (p - q) = nat_of_P p - nat_of_P q
+ := fun H => Pminus_minus p q (ZC1 _ _ H).
+
+Definition nat_of_P_lt_Lt_compare_morphism p q :
+ (p ?= q) Eq = Lt -> nat_of_P p < nat_of_P q
+ := proj1 (Plt_lt p q).
+
+Definition nat_of_P_gt_Gt_compare_morphism p q :
+ (p ?= q) Eq = Gt -> nat_of_P p > nat_of_P q
+ := proj1 (Pgt_gt p q).
+
+Definition nat_of_P_lt_Lt_compare_complement_morphism p q :
+ nat_of_P p < nat_of_P q -> (p ?= q) Eq = Lt
+ := proj2 (Plt_lt p q).
+
+Definition nat_of_P_gt_Gt_compare_complement_morphism p q :
+ nat_of_P p > nat_of_P q -> (p ?= q) Eq = Gt
+ := proj2 (Pgt_gt p q).