aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/PArith/BinPos.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-02 14:44:08 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-02 14:44:08 +0000
commitdf7acfad0ce0270b62644a5e9f8709ed0e7936e6 (patch)
tree746850496c47f6618219ad5d5560f021b7b8e56b /theories/PArith/BinPos.v
parente5c4bc888c1f0516928a32f70529f95e36243c5d (diff)
Move stuff about positive into a distinct PArith subdir
Beware! after this, a ./configure must be done. It might also be a good idea to chase any phantom .vo remaining after a make clean git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13601 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/PArith/BinPos.v')
-rw-r--r--theories/PArith/BinPos.v1255
1 files changed, 1255 insertions, 0 deletions
diff --git a/theories/PArith/BinPos.v b/theories/PArith/BinPos.v
new file mode 100644
index 000000000..663233c57
--- /dev/null
+++ b/theories/PArith/BinPos.v
@@ -0,0 +1,1255 @@
+(* -*- coding: utf-8 -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Unset Boxed Definitions.
+
+Declare ML Module "z_syntax_plugin".
+
+(**********************************************************************)
+(** Binary positive numbers *)
+
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
+
+Inductive positive : Set :=
+| xI : positive -> positive
+| xO : positive -> positive
+| xH : positive.
+
+(** Declare binding key for scope positive_scope *)
+
+Delimit Scope positive_scope with positive.
+
+(** Automatically open scope positive_scope for type positive, xO and xI *)
+
+Bind Scope positive_scope with positive.
+Arguments Scope xO [positive_scope].
+Arguments Scope xI [positive_scope].
+
+(** Postfix notation for positive numbers, allowing to mimic
+ the position of bits in a big-endian representation.
+ For instance, we can write 1~1~0 instead of (xO (xI xH))
+ for the number 6 (which is 110 in binary notation).
+*)
+
+Notation "p ~ 1" := (xI p)
+ (at level 7, left associativity, format "p '~' '1'") : positive_scope.
+Notation "p ~ 0" := (xO p)
+ (at level 7, left associativity, format "p '~' '0'") : positive_scope.
+
+Open Local Scope positive_scope.
+
+(* In the current file, [xH] cannot yet be written as [1], since the
+ interpretation of positive numerical constants is not available
+ yet. We fix this here with an ad-hoc temporary notation. *)
+
+Notation Local "1" := xH (at level 7).
+
+(** Successor *)
+
+Fixpoint Psucc (x:positive) : positive :=
+ match x with
+ | p~1 => (Psucc p)~0
+ | p~0 => p~1
+ | 1 => 1~0
+ end.
+
+(** Addition *)
+
+Set Boxed Definitions.
+
+Fixpoint Pplus (x y:positive) : positive :=
+ match x, y with
+ | p~1, q~1 => (Pplus_carry p q)~0
+ | p~1, q~0 => (Pplus p q)~1
+ | p~1, 1 => (Psucc p)~0
+ | p~0, q~1 => (Pplus p q)~1
+ | p~0, q~0 => (Pplus p q)~0
+ | p~0, 1 => p~1
+ | 1, q~1 => (Psucc q)~0
+ | 1, q~0 => q~1
+ | 1, 1 => 1~0
+ end
+
+with Pplus_carry (x y:positive) : positive :=
+ match x, y with
+ | p~1, q~1 => (Pplus_carry p q)~1
+ | p~1, q~0 => (Pplus_carry p q)~0
+ | p~1, 1 => (Psucc p)~1
+ | p~0, q~1 => (Pplus_carry p q)~0
+ | p~0, q~0 => (Pplus p q)~1
+ | p~0, 1 => (Psucc p)~0
+ | 1, q~1 => (Psucc q)~1
+ | 1, q~0 => (Psucc q)~0
+ | 1, 1 => 1~1
+ end.
+
+Unset Boxed Definitions.
+
+Infix "+" := Pplus : positive_scope.
+
+Definition Piter_op {A}(op:A->A->A) :=
+ fix iter (p:positive)(a:A) : A :=
+ match p with
+ | 1 => a
+ | p~0 => iter p (op a a)
+ | p~1 => op a (iter p (op a a))
+ end.
+
+Lemma Piter_op_succ : forall A (op:A->A->A),
+ (forall x y z, op x (op y z) = op (op x y) z) ->
+ forall p a,
+ Piter_op op (Psucc p) a = op a (Piter_op op p a).
+Proof.
+ induction p; simpl; intros; trivial.
+ rewrite H. apply IHp.
+Qed.
+
+(** From binary positive numbers to Peano natural numbers *)
+
+Definition Pmult_nat : positive -> nat -> nat :=
+ Eval unfold Piter_op in (* for compatibility *)
+ Piter_op plus.
+
+Definition nat_of_P (x:positive) := Pmult_nat x (S O).
+
+(** From Peano natural numbers to binary positive numbers *)
+
+Fixpoint P_of_succ_nat (n:nat) : positive :=
+ match n with
+ | O => 1
+ | S x => Psucc (P_of_succ_nat x)
+ end.
+
+(** Operation x -> 2*x-1 *)
+
+Fixpoint Pdouble_minus_one (x:positive) : positive :=
+ match x with
+ | p~1 => p~0~1
+ | p~0 => (Pdouble_minus_one p)~1
+ | 1 => 1
+ end.
+
+(** Predecessor *)
+
+Definition Ppred (x:positive) :=
+ match x with
+ | p~1 => p~0
+ | p~0 => Pdouble_minus_one p
+ | 1 => 1
+ end.
+
+(** An auxiliary type for subtraction *)
+
+Inductive positive_mask : Set :=
+| IsNul : positive_mask
+| IsPos : positive -> positive_mask
+| IsNeg : positive_mask.
+
+(** Operation x -> 2*x+1 *)
+
+Definition Pdouble_plus_one_mask (x:positive_mask) :=
+ match x with
+ | IsNul => IsPos 1
+ | IsNeg => IsNeg
+ | IsPos p => IsPos p~1
+ end.
+
+(** Operation x -> 2*x *)
+
+Definition Pdouble_mask (x:positive_mask) :=
+ match x with
+ | IsNul => IsNul
+ | IsNeg => IsNeg
+ | IsPos p => IsPos p~0
+ end.
+
+(** Operation x -> 2*x-2 *)
+
+Definition Pdouble_minus_two (x:positive) :=
+ match x with
+ | p~1 => IsPos p~0~0
+ | p~0 => IsPos (Pdouble_minus_one p)~0
+ | 1 => IsNul
+ end.
+
+(** Subtraction of binary positive numbers into a positive numbers mask *)
+
+Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
+ match x, y with
+ | p~1, q~1 => Pdouble_mask (Pminus_mask p q)
+ | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q)
+ | p~1, 1 => IsPos p~0
+ | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~0, 1 => IsPos (Pdouble_minus_one p)
+ | 1, 1 => IsNul
+ | 1, _ => IsNeg
+ end
+
+with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
+ match x, y with
+ | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~1, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~1, 1 => IsPos (Pdouble_minus_one p)
+ | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, 1 => Pdouble_minus_two p
+ | 1, _ => IsNeg
+ end.
+
+(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
+
+Definition Pminus (x y:positive) :=
+ match Pminus_mask x y with
+ | IsPos z => z
+ | _ => 1
+ end.
+
+Infix "-" := Pminus : positive_scope.
+
+(** Multiplication on binary positive numbers *)
+
+Fixpoint Pmult (x y:positive) : positive :=
+ match x with
+ | p~1 => y + (Pmult p y)~0
+ | p~0 => (Pmult p y)~0
+ | 1 => y
+ end.
+
+Infix "*" := Pmult : positive_scope.
+
+(** Division by 2 rounded below but for 1 *)
+
+Definition Pdiv2 (z:positive) :=
+ match z with
+ | 1 => 1
+ | p~0 => p
+ | p~1 => p
+ end.
+
+Infix "/" := Pdiv2 : positive_scope.
+
+(** Comparison on binary positive numbers *)
+
+Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
+ match x, y with
+ | p~1, q~1 => Pcompare p q r
+ | p~1, q~0 => Pcompare p q Gt
+ | p~1, 1 => Gt
+ | p~0, q~1 => Pcompare p q Lt
+ | p~0, q~0 => Pcompare p q r
+ | p~0, 1 => Gt
+ | 1, q~1 => Lt
+ | 1, q~0 => Lt
+ | 1, 1 => r
+ end.
+
+Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.
+
+Definition Plt (x y:positive) := (Pcompare x y Eq) = Lt.
+Definition Pgt (x y:positive) := (Pcompare x y Eq) = Gt.
+Definition Ple (x y:positive) := (Pcompare x y Eq) <> Gt.
+Definition Pge (x y:positive) := (Pcompare x y Eq) <> Lt.
+
+Infix "<=" := Ple : positive_scope.
+Infix "<" := Plt : positive_scope.
+Infix ">=" := Pge : positive_scope.
+Infix ">" := Pgt : positive_scope.
+
+Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
+Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
+
+
+Definition Pmin (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p
+ | Gt => p'
+ end.
+
+Definition Pmax (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p'
+ | Gt => p
+ end.
+
+(********************************************************************)
+(** Boolean equality *)
+
+Fixpoint Peqb (x y : positive) {struct y} : bool :=
+ match x, y with
+ | 1, 1 => true
+ | p~1, q~1 => Peqb p q
+ | p~0, q~0 => Peqb p q
+ | _, _ => false
+ end.
+
+(**********************************************************************)
+(** Decidability of equality on binary positive numbers *)
+
+Lemma positive_eq_dec : forall x y: positive, {x = y} + {x <> y}.
+Proof.
+ decide equality.
+Defined.
+
+(* begin hide *)
+Corollary ZL11 : forall p:positive, p = 1 \/ p <> 1.
+Proof.
+ intro; edestruct positive_eq_dec; eauto.
+Qed.
+(* end hide *)
+
+(**********************************************************************)
+(** Properties of successor on binary positive numbers *)
+
+(** Specification of [xI] in term of [Psucc] and [xO] *)
+
+Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma Psucc_discr : forall p:positive, p <> Psucc p.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+(** Successor and double *)
+
+Lemma Psucc_o_double_minus_one_eq_xO :
+ forall p:positive, Psucc (Pdouble_minus_one p) = p~0.
+Proof.
+ induction p; simpl; f_equal; auto.
+Qed.
+
+Lemma Pdouble_minus_one_o_succ_eq_xI :
+ forall p:positive, Pdouble_minus_one (Psucc p) = p~1.
+Proof.
+ induction p; simpl; f_equal; auto.
+Qed.
+
+Lemma xO_succ_permute :
+ forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0).
+Proof.
+ induction p; simpl; auto.
+Qed.
+
+Lemma double_moins_un_xO_discr :
+ forall p:positive, Pdouble_minus_one p <> p~0.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+(** Successor and predecessor *)
+
+Lemma Psucc_not_one : forall p:positive, Psucc p <> 1.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
+Proof.
+ intros [[p|p| ]|[p|p| ]| ]; simpl; auto.
+ f_equal; apply Pdouble_minus_one_o_succ_eq_xI.
+Qed.
+
+Lemma Psucc_pred : forall p:positive, p = 1 \/ Psucc (Ppred p) = p.
+Proof.
+ induction p; simpl; auto.
+ right; apply Psucc_o_double_minus_one_eq_xO.
+Qed.
+
+Ltac destr_eq H := discriminate H || (try (injection H; clear H; intro H)).
+
+(** Injectivity of successor *)
+
+Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
+Proof.
+ induction p; intros [q|q| ] H; simpl in *; destr_eq H; f_equal; auto.
+ elim (Psucc_not_one p); auto.
+ elim (Psucc_not_one q); auto.
+Qed.
+
+(**********************************************************************)
+(** Properties of addition on binary positive numbers *)
+
+(** Specification of [Psucc] in term of [Pplus] *)
+
+Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + 1.
+Proof.
+ destruct p; reflexivity.
+Qed.
+
+Lemma Pplus_one_succ_l : forall p:positive, Psucc p = 1 + p.
+Proof.
+ destruct p; reflexivity.
+Qed.
+
+(** Specification of [Pplus_carry] *)
+
+Theorem Pplus_carry_spec :
+ forall p q:positive, Pplus_carry p q = Psucc (p + q).
+Proof.
+ induction p; destruct q; simpl; f_equal; auto.
+Qed.
+
+(** Commutativity *)
+
+Theorem Pplus_comm : forall p q:positive, p + q = q + p.
+Proof.
+ induction p; destruct q; simpl; f_equal; auto.
+ rewrite 2 Pplus_carry_spec; f_equal; auto.
+Qed.
+
+(** Permutation of [Pplus] and [Psucc] *)
+
+Theorem Pplus_succ_permute_r :
+ forall p q:positive, p + Psucc q = Psucc (p + q).
+Proof.
+ induction p; destruct q; simpl; f_equal;
+ auto using Pplus_one_succ_r; rewrite Pplus_carry_spec; auto.
+Qed.
+
+Theorem Pplus_succ_permute_l :
+ forall p q:positive, Psucc p + q = Psucc (p + q).
+Proof.
+ intros p q; rewrite Pplus_comm, (Pplus_comm p);
+ apply Pplus_succ_permute_r.
+Qed.
+
+Theorem Pplus_carry_pred_eq_plus :
+ forall p q:positive, q <> 1 -> Pplus_carry p (Ppred q) = p + q.
+Proof.
+ intros p q H; rewrite Pplus_carry_spec, <- Pplus_succ_permute_r; f_equal.
+ destruct (Psucc_pred q); [ elim H; assumption | assumption ].
+Qed.
+
+(** No neutral for addition on strictly positive numbers *)
+
+Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H;
+ destr_eq H; apply (IHp q H).
+Qed.
+
+Lemma Pplus_carry_no_neutral :
+ forall p q:positive, Pplus_carry q p <> Psucc p.
+Proof.
+ intros p q H; elim (Pplus_no_neutral p q).
+ apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption.
+Qed.
+
+(** Simplification *)
+
+Lemma Pplus_carry_plus :
+ forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
+Proof.
+ intros p q r s H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
+ assumption.
+Qed.
+
+Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
+Proof.
+ intros p q r; revert p q; induction r.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H;
+ f_equal; auto using Pplus_carry_plus;
+ contradict H; auto using Pplus_carry_no_neutral.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
+ contradict H; auto using Pplus_no_neutral.
+ intros p q H; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
+Qed.
+
+Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
+Proof.
+ intros p q r H; apply Pplus_reg_r with (r:=p).
+ rewrite (Pplus_comm r), (Pplus_comm q); assumption.
+Qed.
+
+Lemma Pplus_carry_reg_r :
+ forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
+Proof.
+ intros p q r H; apply Pplus_reg_r with (r:=r); apply Pplus_carry_plus;
+ assumption.
+Qed.
+
+Lemma Pplus_carry_reg_l :
+ forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
+Proof.
+ intros p q r H; apply Pplus_reg_r with (r:=p);
+ rewrite (Pplus_comm r), (Pplus_comm q); apply Pplus_carry_plus; assumption.
+Qed.
+
+(** Addition on positive is associative *)
+
+Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
+Proof.
+ induction p.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
+ intros p r; rewrite <- 2 Pplus_one_succ_l, Pplus_succ_permute_l; auto.
+Qed.
+
+(** Commutation of addition with the double of a positive number *)
+
+Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0.
+Proof.
+ destruct n; destruct m; simpl; auto.
+Qed.
+
+Lemma Pplus_xI_double_minus_one :
+ forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q.
+Proof.
+ intros; change (p~1) with (p~0 + 1).
+ rewrite <- Pplus_assoc, <- Pplus_one_succ_l, Psucc_o_double_minus_one_eq_xO.
+ reflexivity.
+Qed.
+
+Lemma Pplus_xO_double_minus_one :
+ forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q.
+Proof.
+ induction p as [p IHp| p IHp| ]; destruct q; simpl;
+ rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI,
+ ?Pplus_xI_double_minus_one; try reflexivity.
+ rewrite IHp; auto.
+ rewrite <- Psucc_o_double_minus_one_eq_xO, Pplus_one_succ_l; reflexivity.
+Qed.
+
+(** Misc *)
+
+Lemma Pplus_diag : forall p:positive, p + p = p~0.
+Proof.
+ induction p as [p IHp| p IHp| ]; simpl;
+ try rewrite ?Pplus_carry_spec, ?IHp; reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Peano induction and recursion on binary positive positive numbers *)
+(** (a nice proof from Conor McBride, see "The view from the left") *)
+
+Inductive PeanoView : positive -> Type :=
+| PeanoOne : PeanoView 1
+| PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p).
+
+Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
+ match q in PeanoView x return PeanoView (x~0) with
+ | PeanoOne => PeanoSucc _ PeanoOne
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
+ end.
+
+Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
+ match q in PeanoView x return PeanoView (x~1) with
+ | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
+ end.
+
+Fixpoint peanoView p : PeanoView p :=
+ match p return PeanoView p with
+ | 1 => PeanoOne
+ | p~0 => peanoView_xO p (peanoView p)
+ | p~1 => peanoView_xI p (peanoView p)
+ end.
+
+Definition PeanoView_iter (P:positive->Type)
+ (a:P 1) (f:forall p, P p -> P (Psucc p)) :=
+ (fix iter p (q:PeanoView p) : P p :=
+ match q in PeanoView p return P p with
+ | PeanoOne => a
+ | PeanoSucc _ q => f _ (iter _ q)
+ end).
+
+Require Import Eqdep_dec EqdepFacts.
+
+Theorem eq_dep_eq_positive :
+ forall (P:positive->Type) (p:positive) (x y:P p),
+ eq_dep positive P p x p y -> x = y.
+Proof.
+ apply eq_dep_eq_dec.
+ decide equality.
+Qed.
+
+Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
+Proof.
+ intros.
+ induction q as [ | p q IHq ].
+ apply eq_dep_eq_positive.
+ cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
+ destruct p0; intros; discriminate.
+ trivial.
+ apply eq_dep_eq_positive.
+ cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
+ intro. destruct p; discriminate.
+ intro. unfold p0 in H. apply Psucc_inj in H.
+ generalize q'. rewrite H. intro.
+ rewrite (IHq q'0).
+ trivial.
+ trivial.
+Qed.
+
+Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p))
+ (p:positive) :=
+ PeanoView_iter P a f p (peanoView p).
+
+Theorem Prect_succ : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)) (p:positive),
+ Prect P a f (Psucc p) = f _ (Prect P a f p).
+Proof.
+ intros.
+ unfold Prect.
+ rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))).
+ trivial.
+Qed.
+
+Theorem Prect_base : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)), Prect P a f 1 = a.
+Proof.
+ trivial.
+Qed.
+
+Definition Prec (P:positive->Set) := Prect P.
+
+(** Peano induction *)
+
+Definition Pind (P:positive->Prop) := Prect P.
+
+(** Peano case analysis *)
+
+Theorem Pcase :
+ forall P:positive -> Prop,
+ P 1 -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
+Proof.
+ intros; apply Pind; auto.
+Qed.
+
+(**********************************************************************)
+(** Properties of multiplication on binary positive numbers *)
+
+(** One is right neutral for multiplication *)
+
+Lemma Pmult_1_r : forall p:positive, p * 1 = p.
+Proof.
+ induction p; simpl; f_equal; auto.
+Qed.
+
+(** Successor and multiplication *)
+
+Lemma Pmult_Sn_m : forall n m : positive, (Psucc n) * m = m + n * m.
+Proof.
+ induction n as [n IHn | n IHn | ]; simpl; intro m.
+ rewrite IHn, Pplus_assoc, Pplus_diag, <-Pplus_xO; reflexivity.
+ reflexivity.
+ symmetry; apply Pplus_diag.
+Qed.
+
+(** Right reduction properties for multiplication *)
+
+Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0.
+Proof.
+ intros p q; induction p; simpl; do 2 (f_equal; auto).
+Qed.
+
+Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0.
+Proof.
+ intros p q; induction p as [p IHp|p IHp| ]; simpl; f_equal; auto.
+ rewrite IHp, 2 Pplus_assoc, (Pplus_comm p); reflexivity.
+Qed.
+
+(** Commutativity of multiplication *)
+
+Theorem Pmult_comm : forall p q:positive, p * q = q * p.
+Proof.
+ intros p q; induction q as [q IHq|q IHq| ]; simpl; try rewrite <- IHq;
+ auto using Pmult_xI_permute_r, Pmult_xO_permute_r, Pmult_1_r.
+Qed.
+
+(** Distributivity of multiplication over addition *)
+
+Theorem Pmult_plus_distr_l :
+ forall p q r:positive, p * (q + r) = p * q + p * r.
+Proof.
+ intros p q r; induction p as [p IHp|p IHp| ]; simpl.
+ rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0).
+ change ((p*q+p*r)~0) with (m+n).
+ rewrite 2 Pplus_assoc; f_equal.
+ rewrite <- 2 Pplus_assoc; f_equal.
+ apply Pplus_comm.
+ f_equal; auto.
+ reflexivity.
+Qed.
+
+Theorem Pmult_plus_distr_r :
+ forall p q r:positive, (p + q) * r = p * r + q * r.
+Proof.
+ intros p q r; do 3 rewrite Pmult_comm with (q:=r); apply Pmult_plus_distr_l.
+Qed.
+
+(** Associativity of multiplication *)
+
+Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
+Proof.
+ induction p as [p IHp| p IHp | ]; simpl; intros q r.
+ rewrite IHp; rewrite Pmult_plus_distr_r; reflexivity.
+ rewrite IHp; reflexivity.
+ reflexivity.
+Qed.
+
+(** Parity properties of multiplication *)
+
+Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r.
+Proof.
+ intros p q r; induction r; try discriminate.
+ rewrite 2 Pmult_xO_permute_r; intro H; destr_eq H; auto.
+Qed.
+
+Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q.
+Proof.
+ intros p q; induction q; try discriminate.
+ rewrite Pmult_xO_permute_r; injection; assumption.
+Qed.
+
+(** Simplification properties of multiplication *)
+
+Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
+Proof.
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] r H;
+ reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
+ apply IHp with (r~0); simpl in *;
+ rewrite 2 Pmult_xO_permute_r; apply Pplus_reg_l with (1:=H).
+ apply Pmult_xI_mult_xO_discr with (1:=H).
+ simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1:=H).
+ symmetry in H; apply Pmult_xI_mult_xO_discr with (1:=H).
+ apply IHp with (r~0); simpl; rewrite 2 Pmult_xO_permute_r; assumption.
+ apply Pmult_xO_discr with (1:= H).
+ simpl in H; symmetry in H; rewrite Pplus_comm in H;
+ apply Pplus_no_neutral with (1:=H).
+ symmetry in H; apply Pmult_xO_discr with (1:=H).
+Qed.
+
+Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
+Proof.
+ intros p q r H; apply Pmult_reg_r with (r:=r).
+ rewrite (Pmult_comm p), (Pmult_comm q); assumption.
+Qed.
+
+(** Inversion of multiplication *)
+
+Lemma Pmult_1_inversion_l : forall p q:positive, p * q = 1 -> p = 1.
+Proof.
+ intros [p|p| ] [q|q| ] H; destr_eq H; auto.
+Qed.
+
+(** Square *)
+
+Lemma Psquare_xO : forall p, p~0 * p~0 = (p*p)~0~0.
+Proof.
+ intros. simpl. now rewrite Pmult_comm.
+Qed.
+
+Lemma Psquare_xI : forall p, p~1 * p~1 = (p*p+p)~0~1.
+Proof.
+ intros. simpl. rewrite Pmult_comm. simpl. f_equal.
+ rewrite Pplus_assoc, Pplus_diag. simpl. now rewrite Pplus_comm.
+Qed.
+
+(*********************************************************************)
+(** Properties of boolean equality *)
+
+Theorem Peqb_refl : forall x:positive, Peqb x x = true.
+Proof.
+ induction x; auto.
+Qed.
+
+Theorem Peqb_true_eq : forall x y:positive, Peqb x y = true -> x=y.
+Proof.
+ induction x; destruct y; simpl; intros; try discriminate.
+ f_equal; auto.
+ f_equal; auto.
+ reflexivity.
+Qed.
+
+Theorem Peqb_eq : forall x y : positive, Peqb x y = true <-> x=y.
+Proof.
+ split. apply Peqb_true_eq.
+ intros; subst; apply Peqb_refl.
+Qed.
+
+
+(**********************************************************************)
+(** Properties of comparison on binary positive numbers *)
+
+Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
+ induction p; auto.
+Qed.
+
+(* A generalization of Pcompare_refl *)
+
+Theorem Pcompare_refl_id : forall (p : positive) (r : comparison), (p ?= p) r = r.
+ induction p; auto.
+Qed.
+
+Theorem Pcompare_not_Eq :
+ forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
+Proof.
+ induction p as [p IHp| p IHp| ]; intros [q| q| ]; split; simpl; auto;
+ discriminate || (elim (IHp q); auto).
+Qed.
+
+Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
+Proof.
+ induction p; intros [q| q| ] H; simpl in *; auto;
+ try discriminate H; try (f_equal; auto; fail).
+ destruct (Pcompare_not_Eq p q) as (H',_); elim H'; auto.
+ destruct (Pcompare_not_Eq p q) as (_,H'); elim H'; auto.
+Qed.
+
+Lemma Pcompare_eq_iff : forall p q:positive, (p ?= q) Eq = Eq <-> p = q.
+Proof.
+ split.
+ apply Pcompare_Eq_eq.
+ intros; subst; apply Pcompare_refl.
+Qed.
+
+Lemma Pcompare_Gt_Lt :
+ forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
+Proof.
+ induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_eq_Lt :
+ forall p q : positive, (p ?= q) Eq = Lt <-> (p ?= q) Gt = Lt.
+Proof.
+ intros p q; split; [| apply Pcompare_Gt_Lt].
+ revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_Lt_Gt :
+ forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
+Proof.
+ induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_eq_Gt :
+ forall p q : positive, (p ?= q) Eq = Gt <-> (p ?= q) Lt = Gt.
+Proof.
+ intros p q; split; [| apply Pcompare_Lt_Gt].
+ revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_Lt_Lt :
+ forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ destruct (IHp q H); subst; auto.
+Qed.
+
+Lemma Pcompare_Lt_eq_Lt :
+ forall p q:positive, (p ?= q) Lt = Lt <-> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ intros p q; split; [apply Pcompare_Lt_Lt |].
+ intros [H|H]; [|subst; apply Pcompare_refl_id].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; discriminate.
+Qed.
+
+Lemma Pcompare_Gt_Gt :
+ forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ destruct (IHp q H); subst; auto.
+Qed.
+
+Lemma Pcompare_Gt_eq_Gt :
+ forall p q:positive, (p ?= q) Gt = Gt <-> (p ?= q) Eq = Gt \/ p = q.
+Proof.
+ intros p q; split; [apply Pcompare_Gt_Gt |].
+ intros [H|H]; [|subst; apply Pcompare_refl_id].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; discriminate.
+Qed.
+
+Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
+Proof.
+ destruct r; auto.
+Qed.
+
+Ltac ElimPcompare c1 c2 :=
+ elim (Dcompare ((c1 ?= c2) Eq));
+ [ idtac | let x := fresh "H" in (intro x; case x; clear x) ].
+
+Lemma Pcompare_antisym :
+ forall (p q:positive) (r:comparison),
+ CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto;
+ rewrite IHp; auto.
+Qed.
+
+Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
+Proof.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
+Qed.
+
+Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
+Proof.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
+Qed.
+
+Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
+Proof.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
+Qed.
+
+Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
+Proof.
+ intros; change Eq at 1 with (CompOpp Eq).
+ symmetry; apply Pcompare_antisym.
+Qed.
+
+Lemma Pcompare_spec : forall p q, CompSpec eq Plt p q ((p ?= q) Eq).
+Proof.
+ intros. destruct ((p ?= q) Eq) as [ ]_eqn; constructor.
+ apply Pcompare_Eq_eq; auto.
+ auto.
+ apply ZC1; auto.
+Qed.
+
+
+(** Comparison and the successor *)
+
+Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt.
+Proof.
+ induction p; simpl in *;
+ [ elim (Pcompare_eq_Lt p (Psucc p)); auto |
+ apply Pcompare_refl_id | reflexivity].
+Qed.
+
+Theorem Pcompare_p_Sq : forall p q : positive,
+ (p ?= Psucc q) Eq = Lt <-> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ intros p q; split.
+ (* -> *)
+ revert p q; induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *;
+ try (left; reflexivity); try (right; reflexivity).
+ destruct (IHp q (Pcompare_Gt_Lt _ _ H)); subst; auto.
+ destruct (Pcompare_eq_Lt p q); auto.
+ destruct p; discriminate.
+ left; destruct (IHp q H);
+ [ elim (Pcompare_Lt_eq_Lt p q); auto | subst; apply Pcompare_refl_id].
+ destruct (Pcompare_Lt_Lt p q H); subst; auto.
+ destruct p; discriminate.
+ (* <- *)
+ intros [H|H]; [|subst; apply Pcompare_p_Sp].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; try discriminate.
+ destruct (Pcompare_eq_Lt p (Psucc q)); auto.
+ apply Pcompare_Gt_Lt; auto.
+ destruct (Pcompare_Lt_Lt p q H); subst; auto using Pcompare_p_Sp.
+ destruct (Pcompare_Lt_eq_Lt p q); auto.
+Qed.
+
+(** 1 is the least positive number *)
+
+Lemma Pcompare_1 : forall p, ~ (p ?= 1) Eq = Lt.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+(** Properties of the strict order on positive numbers *)
+
+Lemma Plt_1 : forall p, ~ p < 1.
+Proof.
+ exact Pcompare_1.
+Qed.
+
+Lemma Plt_1_succ : forall n, 1 < Psucc n.
+Proof.
+ intros. apply Pcompare_p_Sq. destruct n; auto.
+Qed.
+
+Lemma Plt_lt_succ : forall n m : positive, n < m -> n < Psucc m.
+Proof.
+ unfold Plt; intros n m H; apply <- Pcompare_p_Sq; auto.
+Qed.
+
+Lemma Psucc_lt_compat : forall n m, n < m <-> Psucc n < Psucc m.
+Proof.
+ unfold Plt. induction n; destruct m; simpl; auto; split; try easy; intros.
+ now apply Pcompare_Lt_eq_Lt, Pcompare_p_Sq, IHn, Pcompare_Gt_Lt.
+ now apply Pcompare_eq_Lt, IHn, Pcompare_p_Sq, Pcompare_Lt_eq_Lt.
+ destruct (Psucc n); discriminate.
+ now apply Pcompare_eq_Lt, Pcompare_p_Sq, Pcompare_Lt_eq_Lt.
+ now apply Pcompare_Lt_eq_Lt, Pcompare_p_Sq, Pcompare_Gt_Lt.
+ destruct n; discriminate.
+ apply Plt_1_succ.
+ destruct m; auto.
+Qed.
+
+Lemma Plt_irrefl : forall p : positive, ~ p < p.
+Proof.
+ unfold Plt; intro p; rewrite Pcompare_refl; discriminate.
+Qed.
+
+Lemma Plt_trans : forall n m p : positive, n < m -> m < p -> n < p.
+Proof.
+ intros n m p; induction p using Pind; intros H H0.
+ elim (Plt_1 _ H0).
+ apply Plt_lt_succ.
+ destruct (Pcompare_p_Sq m p) as (H',_); destruct (H' H0); subst; auto.
+Qed.
+
+Theorem Plt_ind : forall (A : positive -> Prop) (n : positive),
+ A (Psucc n) ->
+ (forall m : positive, n < m -> A m -> A (Psucc m)) ->
+ forall m : positive, n < m -> A m.
+Proof.
+ intros A n AB AS m. induction m using Pind; intros H.
+ elim (Plt_1 _ H).
+ destruct (Pcompare_p_Sq n m) as (H',_); destruct (H' H); subst; auto.
+Qed.
+
+Lemma Ple_lteq : forall p q, p <= q <-> p < q \/ p = q.
+Proof.
+ unfold Ple, Plt. intros.
+ generalize (Pcompare_eq_iff p q).
+ destruct ((p ?= q) Eq); intuition; discriminate.
+Qed.
+
+(** Strict order and operations *)
+
+Lemma Pplus_lt_mono_l : forall p q r, q<r <-> p+q < p+r.
+Proof.
+ induction p using Prect.
+ intros q r. rewrite <- 2 Pplus_one_succ_l. apply Psucc_lt_compat.
+ intros q r. rewrite 2 Pplus_succ_permute_l.
+ eapply iff_trans; [ eapply IHp | eapply Psucc_lt_compat ].
+Qed.
+
+Lemma Pplus_lt_mono : forall p q r s, p<q -> r<s -> p+r<q+s.
+Proof.
+ intros. apply Plt_trans with (p+s).
+ now apply Pplus_lt_mono_l.
+ rewrite (Pplus_comm p), (Pplus_comm q). now apply Pplus_lt_mono_l.
+Qed.
+
+Lemma Pmult_lt_mono_l : forall p q r, q<r -> p*q < p*r.
+Proof.
+ induction p using Prect; auto.
+ intros q r H. rewrite 2 Pmult_Sn_m.
+ apply Pplus_lt_mono; auto.
+Qed.
+
+Lemma Pmult_lt_mono : forall p q r s, p<q -> r<s -> p*r < q*s.
+Proof.
+ intros. apply Plt_trans with (p*s).
+ now apply Pmult_lt_mono_l.
+ rewrite (Pmult_comm p), (Pmult_comm q). now apply Pmult_lt_mono_l.
+Qed.
+
+Lemma Plt_plus_r : forall p q, p < p+q.
+Proof.
+ induction q using Prect.
+ rewrite <- Pplus_one_succ_r. apply Pcompare_p_Sp.
+ apply Plt_trans with (p+q); auto.
+ apply Pplus_lt_mono_l, Pcompare_p_Sp.
+Qed.
+
+Lemma Plt_not_plus_l : forall p q, ~ p+q < p.
+Proof.
+ intros p q H. elim (Plt_irrefl p).
+ apply Plt_trans with (p+q); auto using Plt_plus_r.
+Qed.
+
+
+(**********************************************************************)
+(** Properties of subtraction on binary positive numbers *)
+
+Lemma Ppred_minus : forall p, Ppred p = Pminus p 1.
+Proof.
+ destruct p; auto.
+Qed.
+
+Definition Ppred_mask (p : positive_mask) :=
+match p with
+| IsPos 1 => IsNul
+| IsPos q => IsPos (Ppred q)
+| IsNul => IsNeg
+| IsNeg => IsNeg
+end.
+
+Lemma Pminus_mask_succ_r :
+ forall p q : positive, Pminus_mask p (Psucc q) = Pminus_mask_carry p q.
+Proof.
+ induction p ; destruct q; simpl; f_equal; auto; destruct p; auto.
+Qed.
+
+Theorem Pminus_mask_carry_spec :
+ forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q).
+Proof.
+ induction p as [p IHp|p IHp| ]; destruct q; simpl;
+ try reflexivity; try rewrite IHp;
+ destruct (Pminus_mask p q) as [|[r|r| ]|] || destruct p; auto.
+Qed.
+
+Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q).
+Proof.
+ intros p q; unfold Pminus;
+ rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+ destruct (Pminus_mask p q) as [|[r|r| ]|]; auto.
+Qed.
+
+Lemma double_eq_zero_inversion :
+ forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
+Proof.
+ destruct p; simpl; intros; trivial; discriminate.
+Qed.
+
+Lemma double_plus_one_zero_discr :
+ forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+Lemma double_plus_one_eq_one_inversion :
+ forall p:positive_mask, Pdouble_plus_one_mask p = IsPos 1 -> p = IsNul.
+Proof.
+ destruct p; simpl; intros; trivial; discriminate.
+Qed.
+
+Lemma double_eq_one_discr :
+ forall p:positive_mask, Pdouble_mask p <> IsPos 1.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
+Proof.
+ induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
+Qed.
+
+Lemma Pminus_mask_carry_diag : forall p, Pminus_mask_carry p p = IsNeg.
+Proof.
+ induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
+Qed.
+
+Lemma Pminus_mask_IsNeg : forall p q:positive,
+ Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H;
+ specialize IHp with q.
+ destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
+ destruct (Pminus_mask p q); simpl; auto; try discriminate.
+ destruct (Pminus_mask_carry p q); simpl; auto; try discriminate.
+ destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
+Qed.
+
+Lemma ZL10 :
+ forall p q:positive,
+ Pminus_mask p q = IsPos 1 -> Pminus_mask_carry p q = IsNul.
+Proof.
+ induction p; intros [q|q| ] H; simpl in *; try discriminate.
+ elim (double_eq_one_discr _ H).
+ rewrite (double_plus_one_eq_one_inversion _ H); auto.
+ rewrite (double_plus_one_eq_one_inversion _ H); auto.
+ elim (double_eq_one_discr _ H).
+ destruct p; simpl; auto; discriminate.
+Qed.
+
+(** Properties of subtraction valid only for x>y *)
+
+Lemma Pminus_mask_Gt :
+ forall p q:positive,
+ (p ?= q) Eq = Gt ->
+ exists h : positive,
+ Pminus_mask p q = IsPos h /\
+ q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)).
+Proof.
+ induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *;
+ try discriminate H.
+ (* p~1, q~1 *)
+ destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
+ repeat split; auto; right.
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ rewrite ZL10; subst; auto.
+ rewrite W; simpl; destruct r; auto; elim NE; auto.
+ (* p~1, q~0 *)
+ destruct (Pcompare_Gt_Gt _ _ H) as [H'|H']; clear H; rename H' into H.
+ destruct (IHp q H) as (r & U & V & W); exists (r~1); rewrite ?U, ?V; auto.
+ exists 1; subst; rewrite Pminus_mask_diag; auto.
+ (* p~1, 1 *)
+ exists (p~0); auto.
+ (* p~0, q~1 *)
+ destruct (IHp q (Pcompare_Lt_Gt _ _ H)) as (r & U & V & W).
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ exists 1; subst; rewrite ZL10, Pplus_one_succ_r; auto.
+ exists ((Ppred r)~1); rewrite W, Pplus_carry_pred_eq_plus, V; auto.
+ (* p~0, q~0 *)
+ destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
+ repeat split; auto; right.
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ rewrite ZL10; subst; auto.
+ rewrite W; simpl; destruct r; auto; elim NE; auto.
+ (* p~0, 1 *)
+ exists (Pdouble_minus_one p); repeat split; destruct p; simpl; auto.
+ rewrite Psucc_o_double_minus_one_eq_xO; auto.
+Qed.
+
+Theorem Pplus_minus :
+ forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
+Proof.
+ intros p q H; destruct (Pminus_mask_Gt p q H) as (r & U & V & _).
+ unfold Pminus; rewrite U; simpl; auto.
+Qed.
+
+(** When x<y, the substraction of x by y returns 1 *)
+
+Lemma Pminus_mask_Lt : forall p q:positive, p<q -> Pminus_mask p q = IsNeg.
+Proof.
+ unfold Plt; induction p as [p IHp|p IHp| ]; destruct q; simpl; intros;
+ try discriminate; try rewrite IHp; auto.
+ apply Pcompare_Gt_Lt; auto.
+ destruct (Pcompare_Lt_Lt _ _ H).
+ rewrite Pminus_mask_IsNeg; simpl; auto.
+ subst; rewrite Pminus_mask_carry_diag; auto.
+Qed.
+
+Lemma Pminus_Lt : forall p q:positive, p<q -> p-q = 1.
+Proof.
+ intros; unfold Plt, Pminus; rewrite Pminus_mask_Lt; auto.
+Qed.
+
+(** The substraction of x by x returns 1 *)
+
+Lemma Pminus_Eq : forall p:positive, p-p = 1.
+Proof.
+ intros; unfold Pminus; rewrite Pminus_mask_diag; auto.
+Qed.
+
+(** Number of digits in a number *)
+
+Fixpoint Psize (p:positive) : nat :=
+ match p with
+ | 1 => S O
+ | p~1 => S (Psize p)
+ | p~0 => S (Psize p)
+ end.
+
+Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat.
+Proof.
+ assert (le0 : forall n, (0<=n)%nat) by (induction n; auto).
+ assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto).
+ induction p; destruct q; simpl; auto; intros; try discriminate.
+ intros; generalize (Pcompare_Gt_Lt _ _ H); auto.
+ intros; destruct (Pcompare_Lt_Lt _ _ H); auto; subst; auto.
+Qed.