aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-01-20 11:53:58 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-01-20 11:53:58 +0000
commitddcbe6e926666cdc4bd5cd4a88d637efc338290c (patch)
tree75ebb40b14683b18bf454eed439deb60ef171d7b /theories/Numbers
parentc7c3fd68b065bcdee45585b2241c91360223b249 (diff)
Numbers: simplier spec for testbit
We now specify testbit by some initial and recursive equations. The previous spec (via a complex split of the number in low and high parts) is now a derived property in {N,Z}Bits.v This way, proofs of implementations are quite simplier. Note that these new specs doesn't imply anymore that testbit is a morphism, we have to add this as a extra spec (but this lead to trivial proofs when implementing). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13792 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers')
-rw-r--r--theories/Numbers/Integer/Abstract/ZBits.v92
-rw-r--r--theories/Numbers/Integer/Binary/ZBinary.v6
-rw-r--r--theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v30
-rw-r--r--theories/Numbers/NatInt/NZBits.v28
-rw-r--r--theories/Numbers/Natural/Abstract/NBits.v89
-rw-r--r--theories/Numbers/Natural/Binary/NBinary.v6
-rw-r--r--theories/Numbers/Natural/Peano/NPeano.v59
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v41
8 files changed, 221 insertions, 130 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZBits.v b/theories/Numbers/Integer/Abstract/ZBits.v
index de6619598..bf03cf020 100644
--- a/theories/Numbers/Integer/Abstract/ZBits.v
+++ b/theories/Numbers/Integer/Abstract/ZBits.v
@@ -51,15 +51,68 @@ Qed.
Definition b2z (b:bool) := if b then 1 else 0.
Local Coercion b2z : bool >-> t.
+Lemma exists_div2 a : exists a' (b:bool), a == 2*a' + b.
+Proof.
+ elim (Even_or_Odd a); [intros (a',H)| intros (a',H)].
+ exists a'. exists false. now nzsimpl.
+ exists a'. exists true. now simpl.
+Qed.
+
+(** We can compact [testbit_odd_0] [testbit_even_0]
+ [testbit_even_succ] [testbit_odd_succ] in only two lemmas. *)
+
+Lemma testbit_0_r a (b:bool) : testbit (2*a+b) 0 = b.
+Proof.
+ destruct b; simpl; rewrite ?add_0_r.
+ apply testbit_odd_0.
+ apply testbit_even_0.
+Qed.
+
+Lemma testbit_succ_r a (b:bool) n : 0<=n ->
+ testbit (2*a+b) (succ n) = testbit a n.
+Proof.
+ destruct b; simpl; rewrite ?add_0_r.
+ now apply testbit_odd_succ.
+ now apply testbit_even_succ.
+Qed.
+
(** Alternative caracterisations of [testbit] *)
-Lemma testbit_spec' : forall a n, 0<=n -> a.[n] == (a / 2^n) mod 2.
+(** This concise equation could have been taken as specification
+ for testbit in the interface, but it would have been hard to
+ implement with little initial knowledge about div and mod *)
+
+Lemma testbit_spec' a n : 0<=n -> a.[n] == (a / 2^n) mod 2.
Proof.
- intros a n Hn.
- destruct (testbit_spec a n Hn) as (l & h & H & EQ). fold (b2z a.[n]) in EQ.
- apply mod_unique with h. left. destruct a.[n]; split; simpl; order'.
- symmetry. apply div_unique with l. now left.
- now rewrite add_comm, mul_comm, (add_comm (2*h)).
+ intro Hn. revert a. apply le_ind with (4:=Hn).
+ solve_proper.
+ intros a. nzsimpl.
+ destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
+ rewrite testbit_0_r. apply mod_unique with a'; trivial.
+ left. destruct b; split; simpl; order'.
+ clear n Hn. intros n Hn IH a.
+ destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
+ rewrite testbit_succ_r, IH by trivial. f_equiv.
+ rewrite pow_succ_r, <- div_div by order_pos. f_equiv.
+ apply div_unique with b; trivial.
+ left. destruct b; split; simpl; order'.
+Qed.
+
+(** This caracterisation that uses only basic operations and
+ power was initially taken as specification for testbit.
+ We describe [a] as having a low part and a high part, with
+ the corresponding bit in the middle. This caracterisation
+ is moderatly complex to implement, but also moderately
+ usable... *)
+
+Lemma testbit_spec a n : 0<=n ->
+ exists l h, 0<=l<2^n /\ a == l + (a.[n] + 2*h)*2^n.
+Proof.
+ intro Hn. exists (a mod 2^n). exists (a / 2^n / 2). split.
+ apply mod_pos_bound; order_pos.
+ rewrite add_comm, mul_comm, (add_comm a.[n]).
+ rewrite (div_mod a (2^n)) at 1 by order_nz. do 2 f_equiv.
+ rewrite testbit_spec' by trivial. apply div_mod. order'.
Qed.
Lemma testbit_true : forall a n, 0<=n ->
@@ -85,16 +138,6 @@ Proof.
apply eq_true_iff_eq. now rewrite testbit_true, eqb_eq.
Qed.
-(** testbit is hence a morphism *)
-
-Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
-Proof.
- intros a a' Ha n n' Hn.
- destruct (le_gt_cases 0 n), (le_gt_cases 0 n'); try order.
- now rewrite 2 testbit_eqb, Ha, Hn by trivial.
- now rewrite 2 testbit_neg_r by trivial.
-Qed.
-
(** Results about the injection [b2z] *)
Lemma b2z_inj : forall (a0 b0:bool), a0 == b0 -> a0 = b0.
@@ -126,7 +169,7 @@ Proof.
intros a0. rewrite <- (add_b2z_double_bit0 a0 0) at 2. now nzsimpl.
Qed.
-(** The initial specification of testbit is complete *)
+(** The specification of testbit by low and high parts is complete *)
Lemma testbit_unique : forall a n (a0:bool) l h,
0<=l<2^n -> a == l + (a0 + 2*h)*2^n -> a.[n] = a0.
@@ -195,9 +238,12 @@ Qed.
(** Various ways to refer to the lowest bit of a number *)
-Lemma bit0_mod : forall a, a.[0] == a mod 2.
+Lemma bit0_odd : forall a, a.[0] = odd a.
Proof.
- intros a. rewrite testbit_spec' by order. now nzsimpl.
+ intros. symmetry.
+ destruct (exists_div2 a) as (a' & b & EQ).
+ rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2.
+ destruct b; simpl; apply odd_1 || apply odd_0.
Qed.
Lemma bit0_eqb : forall a, a.[0] = eqb (a mod 2) 1.
@@ -205,13 +251,9 @@ Proof.
intros a. rewrite testbit_eqb by order. now nzsimpl.
Qed.
-Lemma bit0_odd : forall a, a.[0] = odd a.
+Lemma bit0_mod : forall a, a.[0] == a mod 2.
Proof.
- intros. rewrite bit0_eqb by order.
- apply eq_true_iff_eq. rewrite eqb_eq, odd_spec. split.
- intros H. exists (a/2). rewrite <- H. apply div_mod. order'.
- intros (b,H).
- rewrite H, add_comm, mul_comm, mod_add, mod_small; try split; order'.
+ intros a. rewrite testbit_spec' by order. now nzsimpl.
Qed.
(** Hence testing a bit is equivalent to shifting and testing parity *)
diff --git a/theories/Numbers/Integer/Binary/ZBinary.v b/theories/Numbers/Integer/Binary/ZBinary.v
index cad5152d7..366418035 100644
--- a/theories/Numbers/Integer/Binary/ZBinary.v
+++ b/theories/Numbers/Integer/Binary/ZBinary.v
@@ -193,7 +193,11 @@ Definition rem := Zrem.
(** Bitwise operations *)
-Definition testbit_spec := Ztestbit_spec.
+Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) Ztestbit.
+Definition testbit_odd_0 := Ztestbit_odd_0.
+Definition testbit_even_0 := Ztestbit_even_0.
+Definition testbit_odd_succ := Ztestbit_odd_succ.
+Definition testbit_even_succ := Ztestbit_even_succ.
Definition testbit_neg_r := Ztestbit_neg_r.
Definition shiftr_spec := Zshiftr_spec.
Definition shiftl_spec_low := Zshiftl_spec_low.
diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
index 2c46be4c7..cf38adf3a 100644
--- a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
+++ b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
@@ -411,14 +411,28 @@ Qed.
(** Bitwise operations *)
-Lemma testbit_spec : forall a n, 0<=n ->
- exists l h, (0<=l /\ l<2^n) /\
- a == l + ((if testbit a n then 1 else 0) + 2*h)*2^n.
-Proof.
- intros a n. zify. intros H.
- destruct (Ztestbit_spec [a] [n] H) as (l & h & Hl & EQ).
- exists (of_Z l), (of_Z h).
- destruct Ztestbit; zify; now split.
+Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
+
+Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true.
+Proof.
+ intros. zify. apply Ztestbit_odd_0.
+Qed.
+
+Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false.
+Proof.
+ intros. zify. apply Ztestbit_even_0.
+Qed.
+
+Lemma testbit_odd_succ : forall a n, 0<=n ->
+ testbit (2*a+1) (succ n) = testbit a n.
+Proof.
+ intros a n. zify. apply Ztestbit_odd_succ.
+Qed.
+
+Lemma testbit_even_succ : forall a n, 0<=n ->
+ testbit (2*a) (succ n) = testbit a n.
+Proof.
+ intros a n. zify. apply Ztestbit_even_succ.
Qed.
Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false.
diff --git a/theories/Numbers/NatInt/NZBits.v b/theories/Numbers/NatInt/NZBits.v
index a7539bc99..dc97eeb1a 100644
--- a/theories/Numbers/NatInt/NZBits.v
+++ b/theories/Numbers/NatInt/NZBits.v
@@ -24,26 +24,14 @@ End BitsNotation.
Module Type Bits' (A:Typ) := Bits A <+ BitsNotation A.
-(** For specifying [testbit], we do not rely on division and modulo,
- since such a specification won't be easy to prove for particular
- implementations: advanced properties of / and mod won't be
- available at that moment. Instead, we decompose the number in
- low and high part, with the considered bit in the middle.
-
- Interestingly, this specification also holds for negative numbers,
- (with a positive low part and a negative high part), and this will
- correspond to a two's complement representation.
-
- Moreover, we arbitrary choose false as result of [testbit] at
- negative bit indexes (if they exist).
-*)
-
Module Type NZBitsSpec
- (Import A : NZOrdAxiomsSig')(Import B : Pow' A)(Import C : Bits' A).
+ (Import A : NZOrdAxiomsSig')(Import B : Bits' A).
- Axiom testbit_spec : forall a n, 0<=n ->
- exists l h, 0<=l<2^n /\
- a == l + ((if a.[n] then 1 else 0) + 2*h)*2^n.
+ Declare Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
+ Axiom testbit_odd_0 : forall a, (2*a+1).[0] = true.
+ Axiom testbit_even_0 : forall a, (2*a).[0] = false.
+ Axiom testbit_odd_succ : forall a n, 0<=n -> (2*a+1).[S n] = a.[n].
+ Axiom testbit_even_succ : forall a n, 0<=n -> (2*a).[S n] = a.[n].
Axiom testbit_neg_r : forall a n, n<0 -> a.[n] = false.
Axiom shiftr_spec : forall a n m, 0<=m -> (a >> n).[m] = a.[m+n].
@@ -58,8 +46,8 @@ Module Type NZBitsSpec
End NZBitsSpec.
-Module Type NZBits (A:NZOrdAxiomsSig)(B:Pow A) := Bits A <+ NZBitsSpec A B.
-Module Type NZBits' (A:NZOrdAxiomsSig)(B:Pow A) := Bits' A <+ NZBitsSpec A B.
+Module Type NZBits (A:NZOrdAxiomsSig) := Bits A <+ NZBitsSpec A.
+Module Type NZBits' (A:NZOrdAxiomsSig) := Bits' A <+ NZBitsSpec A.
(** In the functor of properties will also be defined:
- [setbit : t -> t -> t ] defined as [lor a (1<<n)].
diff --git a/theories/Numbers/Natural/Abstract/NBits.v b/theories/Numbers/Natural/Abstract/NBits.v
index f5b900532..ce720c38c 100644
--- a/theories/Numbers/Natural/Abstract/NBits.v
+++ b/theories/Numbers/Natural/Abstract/NBits.v
@@ -48,17 +48,67 @@ Qed.
Definition b2n (b:bool) := if b then 1 else 0.
Local Coercion b2n : bool >-> t.
+Lemma exists_div2 a : exists a' (b:bool), a == 2*a' + b.
+Proof.
+ elim (Even_or_Odd a); [intros (a',H)| intros (a',H)].
+ exists a'. exists false. now nzsimpl.
+ exists a'. exists true. now simpl.
+Qed.
+
+(** We can compact [testbit_odd_0] [testbit_even_0]
+ [testbit_even_succ] [testbit_odd_succ] in only two lemmas. *)
+
+Lemma testbit_0_r a (b:bool) : testbit (2*a+b) 0 = b.
+Proof.
+ destruct b; simpl; rewrite ?add_0_r.
+ apply testbit_odd_0.
+ apply testbit_even_0.
+Qed.
+
+Lemma testbit_succ_r a (b:bool) n :
+ testbit (2*a+b) (succ n) = testbit a n.
+Proof.
+ destruct b; simpl; rewrite ?add_0_r.
+ apply testbit_odd_succ, le_0_l.
+ apply testbit_even_succ, le_0_l.
+Qed.
+
(** Alternative caracterisations of [testbit] *)
-Lemma testbit_spec' : forall a n, a.[n] == (a / 2^n) mod 2.
+(** This concise equation could have been taken as specification
+ for testbit in the interface, but it would have been hard to
+ implement with little initial knowledge about div and mod *)
+
+Lemma testbit_spec' a n : a.[n] == (a / 2^n) mod 2.
Proof.
- intros a n.
- destruct (testbit_spec a n) as (l & h & (_,H) & EQ).
- apply le_0_l.
- fold (b2n a.[n]) in EQ.
- apply mod_unique with h. destruct a.[n]; order'.
- symmetry. apply div_unique with l; trivial.
- now rewrite add_comm, mul_comm, (add_comm (2*h)).
+ revert a. induct n.
+ intros a. nzsimpl.
+ destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
+ rewrite testbit_0_r. apply mod_unique with a'; trivial.
+ destruct b; order'.
+ intros n IH a.
+ destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
+ rewrite testbit_succ_r, IH. f_equiv.
+ rewrite pow_succ_r', <- div_div by order_nz. f_equiv.
+ apply div_unique with b; trivial.
+ destruct b; order'.
+Qed.
+
+(** This caracterisation that uses only basic operations and
+ power was initially taken as specification for testbit.
+ We describe [a] as having a low part and a high part, with
+ the corresponding bit in the middle. This caracterisation
+ is moderatly complex to implement, but also moderately
+ usable... *)
+
+Lemma testbit_spec a n :
+ exists l h, 0<=l<2^n /\ a == l + (a.[n] + 2*h)*2^n.
+Proof.
+ exists (a mod 2^n). exists (a / 2^n / 2). split.
+ split; [apply le_0_l | apply mod_upper_bound; order_nz].
+ rewrite add_comm, mul_comm, (add_comm a.[n]).
+ rewrite (div_mod a (2^n)) at 1 by order_nz. do 2 f_equiv.
+ rewrite testbit_spec'. apply div_mod. order'.
Qed.
Lemma testbit_true : forall a n,
@@ -82,13 +132,6 @@ Proof.
apply eq_true_iff_eq. now rewrite testbit_true, eqb_eq.
Qed.
-(** testbit is hence a morphism *)
-
-Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
-Proof.
- intros a a' Ha n n' Hn. now rewrite 2 testbit_eqb, Ha, Hn.
-Qed.
-
(** Results about the injection [b2n] *)
Lemma b2n_inj : forall (a0 b0:bool), a0 == b0 -> a0 = b0.
@@ -119,7 +162,7 @@ Proof.
intros a0. rewrite <- (add_b2n_double_bit0 a0 0) at 2. now nzsimpl.
Qed.
-(** The initial specification of testbit is complete *)
+(** The specification of testbit by low and high parts is complete *)
Lemma testbit_unique : forall a n (a0:bool) l h,
l<2^n -> a == l + (a0 + 2*h)*2^n -> a.[n] = a0.
@@ -140,9 +183,12 @@ Qed.
(** Various ways to refer to the lowest bit of a number *)
-Lemma bit0_mod : forall a, a.[0] == a mod 2.
+Lemma bit0_odd : forall a, a.[0] = odd a.
Proof.
- intros a. rewrite testbit_spec'. now nzsimpl.
+ intros. symmetry.
+ destruct (exists_div2 a) as (a' & b & EQ).
+ rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2.
+ destruct b; simpl; apply odd_1 || apply odd_0.
Qed.
Lemma bit0_eqb : forall a, a.[0] = eqb (a mod 2) 1.
@@ -150,12 +196,9 @@ Proof.
intros a. rewrite testbit_eqb. now nzsimpl.
Qed.
-Lemma bit0_odd : forall a, a.[0] = odd a.
+Lemma bit0_mod : forall a, a.[0] == a mod 2.
Proof.
- intros. rewrite bit0_eqb.
- apply eq_true_iff_eq. rewrite eqb_eq, odd_spec. split.
- intros H. exists (a/2). rewrite <- H. apply div_mod. order'.
- intros (b,H). rewrite H, add_comm, mul_comm, mod_add, mod_small; order'.
+ intros a. rewrite testbit_spec'. now nzsimpl.
Qed.
(** Hence testing a bit is equivalent to shifting and testing parity *)
diff --git a/theories/Numbers/Natural/Binary/NBinary.v b/theories/Numbers/Natural/Binary/NBinary.v
index 82380e9b4..bd59ef494 100644
--- a/theories/Numbers/Natural/Binary/NBinary.v
+++ b/theories/Numbers/Natural/Binary/NBinary.v
@@ -180,7 +180,11 @@ Proof. intros. now destruct (Ngcd a b). Qed.
(** Bitwise Operations *)
-Definition testbit_spec a n (_:0<=n) := Ntestbit_spec a n.
+Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) Ntestbit.
+Definition testbit_odd_0 := Ntestbit_odd_0.
+Definition testbit_even_0 := Ntestbit_even_0.
+Definition testbit_odd_succ a n (_:0<=n) := Ntestbit_odd_succ a n.
+Definition testbit_even_succ a n (_:0<=n) := Ntestbit_even_succ a n.
Lemma testbit_neg_r a n (H:n<0) : Ntestbit a n = false.
Proof. now destruct n. Qed.
Definition shiftl_spec_low := Nshiftl_spec_low.
diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v
index 98809fbf8..0cf9ae441 100644
--- a/theories/Numbers/Natural/Peano/NPeano.v
+++ b/theories/Numbers/Natural/Peano/NPeano.v
@@ -403,38 +403,27 @@ Proof.
now induction n.
Qed.
-Lemma testbit_spec : forall a n,
- exists l h, 0<=l<2^n /\
- a = l + ((if testbit a n then 1 else 0) + 2*h)*2^n.
-Proof.
- intros a n. revert a. induction n; intros a; simpl testbit.
- exists 0. exists (div2 a).
- split. simpl. unfold lt. now split.
- case_eq (odd a); intros EQ; simpl.
- rewrite mult_1_r, <- plus_n_O.
- now apply odd_double, Odd_equiv, odd_spec.
- rewrite mult_1_r, <- plus_n_O. apply even_double.
- destruct (Even.even_or_odd a) as [H|H]; trivial.
- apply Odd_equiv, odd_spec in H. rewrite H in EQ; discriminate.
- destruct (IHn (div2 a)) as (l & h & (_,H) & EQ).
- destruct (Even.even_or_odd a) as [EV|OD].
- exists (double l). exists h.
- split. split. apply le_O_n.
- unfold double; simpl. rewrite <- plus_n_O. now apply plus_lt_compat.
- pattern a at 1. rewrite (even_double a EV).
- pattern (div2 a) at 1. rewrite EQ.
- rewrite !double_twice, mult_plus_distr_l. f_equal.
- rewrite mult_assoc, (mult_comm 2), <- mult_assoc. f_equal.
- exists (S (double l)). exists h.
- split. split. apply le_O_n.
- red. red in H.
- unfold double; simpl. rewrite <- plus_n_O, plus_n_Sm, <- plus_Sn_m.
- now apply plus_le_compat.
- rewrite plus_Sn_m.
- pattern a at 1. rewrite (odd_double a OD). f_equal.
- pattern (div2 a) at 1. rewrite EQ.
- rewrite !double_twice, mult_plus_distr_l. f_equal.
- rewrite mult_assoc, (mult_comm 2), <- mult_assoc. f_equal.
+Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
+Proof.
+ unfold testbit. rewrite odd_spec. now exists a.
+Qed.
+
+Lemma testbit_even_0 a : testbit (2*a) 0 = false.
+Proof.
+ unfold testbit, odd. rewrite (proj2 (even_spec _)); trivial.
+ now exists a.
+Qed.
+
+Lemma testbit_odd_succ a n : testbit (2*a+1) (S n) = testbit a n.
+Proof.
+ unfold testbit; fold testbit.
+ rewrite <- plus_n_Sm, <- plus_n_O. f_equal.
+ apply div2_double_plus_one.
+Qed.
+
+Lemma testbit_even_succ a n : testbit (2*a) (S n) = testbit a n.
+Proof.
+ unfold testbit; fold testbit. f_equal. apply div2_double.
Qed.
Lemma shiftr_spec : forall a n m,
@@ -749,7 +738,11 @@ Definition lor := lor.
Definition ldiff := ldiff.
Definition div2 := div2.
-Definition testbit_spec a n (_:0<=n) := testbit_spec a n.
+Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
+Definition testbit_odd_0 := testbit_odd_0.
+Definition testbit_even_0 := testbit_even_0.
+Definition testbit_odd_succ a n (_:0<=n) := testbit_odd_succ a n.
+Definition testbit_even_succ a n (_:0<=n) := testbit_even_succ a n.
Lemma testbit_neg_r a n (H:n<0) : testbit a n = false.
Proof. inversion H. Qed.
Definition shiftl_spec_low := shiftl_spec_low.
diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
index 8ee48ba55..cef8c3819 100644
--- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
+++ b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
@@ -337,25 +337,28 @@ Qed.
(** Bitwise operations *)
-Lemma testbit_spec : forall a n, 0<=n ->
- exists l h, (0<=l /\ l<2^n) /\
- a == l + ((if testbit a n then 1 else 0) + 2*h)*2^n.
-Proof.
- intros a n _. zify.
- assert (Ha := spec_pos a).
- assert (Hn := spec_pos n).
- destruct (Ntestbit_spec (Zabs_N [a]) (Zabs_N [n])) as (l & h & (_,Hl) & EQ).
- exists (of_N l), (of_N h).
- zify.
- apply Z_of_N_lt in Hl.
- apply Z_of_N_eq in EQ.
- revert Hl EQ.
- rewrite <- Ztestbit_of_N.
- rewrite Z_of_N_plus, Z_of_N_mult, <- !Zpower_Npow, Z_of_N_plus,
- Z_of_N_mult, !Z_of_N_abs, !Zabs_eq by trivial.
- simpl (Z_of_N 2).
- repeat split; trivial using Z_of_N_le_0.
- destruct Ztestbit; now zify.
+Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
+
+Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true.
+Proof.
+ intros. zify. apply Ztestbit_odd_0.
+Qed.
+
+Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false.
+Proof.
+ intros. zify. apply Ztestbit_even_0.
+Qed.
+
+Lemma testbit_odd_succ : forall a n, 0<=n ->
+ testbit (2*a+1) (succ n) = testbit a n.
+Proof.
+ intros a n. zify. apply Ztestbit_odd_succ.
+Qed.
+
+Lemma testbit_even_succ : forall a n, 0<=n ->
+ testbit (2*a) (succ n) = testbit a n.
+Proof.
+ intros a n. zify. apply Ztestbit_even_succ.
Qed.
Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false.