diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2008-05-22 11:08:13 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2008-05-22 11:08:13 +0000 |
commit | cf73432c0e850242c7918cc348388e5cde379a8f (patch) | |
tree | 07ebc5fa4588f13416caaca476f90816beb867ae /theories/Numbers/Natural | |
parent | 313de91c9cd26e6fee94aa5bb093ae8a436fd43a (diff) |
switch theories/Numbers from Set to Type (both the abstract and the bignum part).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10964 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Natural')
-rw-r--r-- | theories/Numbers/Natural/Abstract/NAxioms.v | 8 | ||||
-rw-r--r-- | theories/Numbers/Natural/BigN/NMake_gen.ml | 6 | ||||
-rw-r--r-- | theories/Numbers/Natural/BigN/Nbasic.v | 20 | ||||
-rw-r--r-- | theories/Numbers/Natural/Binary/NBinDefs.v | 8 | ||||
-rw-r--r-- | theories/Numbers/Natural/Peano/NPeano.v | 10 |
5 files changed, 26 insertions, 26 deletions
diff --git a/theories/Numbers/Natural/Abstract/NAxioms.v b/theories/Numbers/Natural/Abstract/NAxioms.v index 8bd57b988..a4e8c056f 100644 --- a/theories/Numbers/Natural/Abstract/NAxioms.v +++ b/theories/Numbers/Natural/Abstract/NAxioms.v @@ -45,22 +45,22 @@ Notation "x >= y" := (NZle y x) (only parsing) : NatScope. Open Local Scope NatScope. -Parameter Inline recursion : forall A : Set, A -> (N -> A -> A) -> N -> A. +Parameter Inline recursion : forall A : Type, A -> (N -> A -> A) -> N -> A. Implicit Arguments recursion [A]. Axiom pred_0 : P 0 == 0. -Axiom recursion_wd : forall (A : Set) (Aeq : relation A), +Axiom recursion_wd : forall (A : Type) (Aeq : relation A), forall a a' : A, Aeq a a' -> forall f f' : N -> A -> A, fun2_eq Neq Aeq Aeq f f' -> forall x x' : N, x == x' -> Aeq (recursion a f x) (recursion a' f' x'). Axiom recursion_0 : - forall (A : Set) (a : A) (f : N -> A -> A), recursion a f 0 = a. + forall (A : Type) (a : A) (f : N -> A -> A), recursion a f 0 = a. Axiom recursion_succ : - forall (A : Set) (Aeq : relation A) (a : A) (f : N -> A -> A), + forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A), Aeq a a -> fun2_wd Neq Aeq Aeq f -> forall n : N, Aeq (recursion a f (S n)) (f n (recursion a f n)). diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml index d15006cb4..ad0bf445c 100644 --- a/theories/Numbers/Natural/BigN/NMake_gen.ml +++ b/theories/Numbers/Natural/BigN/NMake_gen.ml @@ -130,7 +130,7 @@ let _ = pr " Qed."; pr ""; - pr " Inductive %s_ : Set :=" t; + pr " Inductive %s_ :=" t; for i = 0 to size do pr " | %s%i : w%i -> %s_" c i i t done; @@ -167,7 +167,7 @@ let _ = pp " (* Regular make op (no karatsuba) *)"; - pp " Fixpoint nmake_op (ww:Set) (ww_op: znz_op ww) (n: nat) : "; + pp " Fixpoint nmake_op (ww:Type) (ww_op: znz_op ww) (n: nat) : "; pp " znz_op (word ww n) :="; pp " match n return znz_op (word ww n) with "; pp " O => ww_op"; @@ -519,7 +519,7 @@ let _ = pr " Section LevelAndIter."; pr ""; - pr " Variable res: Set."; + pr " Variable res: Type."; pr " Variable xxx: res."; pr " Variable P: Z -> Z -> res -> Prop."; pr " (* Abstraction function for each level *)"; diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v index ed7a7871f..c3fdd1bf4 100644 --- a/theories/Numbers/Natural/BigN/Nbasic.v +++ b/theories/Numbers/Natural/BigN/Nbasic.v @@ -120,8 +120,8 @@ Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n. reflexivity. Defined. -Fixpoint extend (n:nat) {struct n} : forall w:Set, zn2z w -> word w (S n) := - match n return forall w:Set, zn2z w -> word w (S n) with +Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) := + match n return forall w:Type, zn2z w -> word w (S n) with | O => fun w x => x | S m => let aux := extend m in @@ -193,7 +193,7 @@ Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n := end end. - Variable w: Set. + Variable w: Type. Definition castm (m n: nat) (H: m = n) (x: word w (S m)): (word w (S n)) := @@ -219,8 +219,8 @@ Implicit Arguments castm[w m n]. Section Reduce. - Variable w : Set. - Variable nT : Set. + Variable w : Type. + Variable nT : Type. Variable N0 : nT. Variable eq0 : w -> bool. Variable reduce_n : w -> nT. @@ -238,8 +238,8 @@ End Reduce. Section ReduceRec. - Variable w : Set. - Variable nT : Set. + Variable w : Type. + Variable nT : Type. Variable N0 : nT. Variable reduce_1n : zn2z w -> nT. Variable c : forall n, word w (S n) -> nT. @@ -269,7 +269,7 @@ Definition opp_compare cmp := Section CompareRec. - Variable wm w : Set. + Variable wm w : Type. Variable w_0 : w. Variable compare : w -> w -> comparison. Variable compare0_m : wm -> comparison. @@ -414,7 +414,7 @@ End CompareRec. Section AddS. - Variable w wm: Set. + Variable w wm : Type. Variable incr : wm -> carry wm. Variable addr : w -> wm -> carry wm. Variable injr : w -> zn2z wm. @@ -479,7 +479,7 @@ End AddS. Section SimplOp. - Variable w: Set. + Variable w: Type. Theorem digits_zop: forall w (x: znz_op w), znz_digits (mk_zn2z_op x) = xO (znz_digits x). diff --git a/theories/Numbers/Natural/Binary/NBinDefs.v b/theories/Numbers/Natural/Binary/NBinDefs.v index c2af66724..170dfa42f 100644 --- a/theories/Numbers/Natural/Binary/NBinDefs.v +++ b/theories/Numbers/Natural/Binary/NBinDefs.v @@ -197,7 +197,7 @@ Qed. End NZOrdAxiomsMod. -Definition recursion (A : Set) (a : A) (f : N -> A -> A) (n : N) := +Definition recursion (A : Type) (a : A) (f : N -> A -> A) (n : N) := Nrect (fun _ => A) a f n. Implicit Arguments recursion [A]. @@ -207,7 +207,7 @@ reflexivity. Qed. Theorem recursion_wd : -forall (A : Set) (Aeq : relation A), +forall (A : Type) (Aeq : relation A), forall a a' : A, Aeq a a' -> forall f f' : N -> A -> A, fun2_eq NZeq Aeq Aeq f f' -> forall x x' : N, x = x' -> @@ -224,13 +224,13 @@ now apply Eff'; [| apply IH]. Qed. Theorem recursion_0 : - forall (A : Set) (a : A) (f : N -> A -> A), recursion a f N0 = a. + forall (A : Type) (a : A) (f : N -> A -> A), recursion a f N0 = a. Proof. intros A a f; unfold recursion; now rewrite Nrect_base. Qed. Theorem recursion_succ : - forall (A : Set) (Aeq : relation A) (a : A) (f : N -> A -> A), + forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A), Aeq a a -> fun2_wd NZeq Aeq Aeq f -> forall n : N, Aeq (recursion a f (Nsucc n)) (f n (recursion a f n)). Proof. diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v index 506cf1df0..64f597af0 100644 --- a/theories/Numbers/Natural/Peano/NPeano.v +++ b/theories/Numbers/Natural/Peano/NPeano.v @@ -175,8 +175,8 @@ Qed. End NZOrdAxiomsMod. -Definition recursion : forall A : Set, A -> (nat -> A -> A) -> nat -> A := - fun A : Set => nat_rec (fun _ => A). +Definition recursion : forall A : Type, A -> (nat -> A -> A) -> nat -> A := + fun A : Type => nat_rect (fun _ => A). Implicit Arguments recursion [A]. Theorem succ_neq_0 : forall n : nat, S n <> 0. @@ -189,7 +189,7 @@ Proof. reflexivity. Qed. -Theorem recursion_wd : forall (A : Set) (Aeq : relation A), +Theorem recursion_wd : forall (A : Type) (Aeq : relation A), forall a a' : A, Aeq a a' -> forall f f' : nat -> A -> A, fun2_eq (@eq nat) Aeq Aeq f f' -> forall n n' : nat, n = n' -> @@ -199,13 +199,13 @@ unfold fun2_eq; induction n; intros n' Enn'; rewrite <- Enn' in *; simpl; auto. Qed. Theorem recursion_0 : - forall (A : Set) (a : A) (f : nat -> A -> A), recursion a f 0 = a. + forall (A : Type) (a : A) (f : nat -> A -> A), recursion a f 0 = a. Proof. reflexivity. Qed. Theorem recursion_succ : - forall (A : Set) (Aeq : relation A) (a : A) (f : nat -> A -> A), + forall (A : Type) (Aeq : relation A) (a : A) (f : nat -> A -> A), Aeq a a -> fun2_wd (@eq nat) Aeq Aeq f -> forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)). Proof. |