aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Peano
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-10-14 11:37:33 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-10-14 11:37:33 +0000
commit888c41d2bf95bb84fee28a8737515c9ff66aa94e (patch)
tree80c67a7a2aa22cabc94335bc14dcd33bed981417 /theories/Numbers/Natural/Peano
parentd7a3d9b4fbfdd0df8ab4d0475fc7afa1ed5f5bcb (diff)
Numbers: new functions pow, even, odd + many reorganisations
- Simplification of functor names, e.g. ZFooProp instead of ZFooPropFunct - The axiomatisations of the different fonctions are now in {N,Z}Axioms.v apart for Z division (three separate flavours in there own files). Content of {N,Z}AxiomsSig is extended, old version is {N,Z}AxiomsMiniSig. - In NAxioms, the recursion field isn't that useful, since we axiomatize other functions and not define them (apart in the toy NDefOps.v). We leave recursion there, but in a separate NAxiomsFullSig. - On Z, the pow function is specified to behave as Zpower : a^(-1)=0 - In BigN/BigZ, (power:t->N->t) is now pow_N, while pow is t->t->t These pow could be more clever (we convert 2nd arg to N and use pow_N). Default "^" is now (pow:t->t->t). BigN/BigZ ring is adapted accordingly - In BigN, is_even is now even, its spec is changed to use Zeven_bool. We add an odd. In BigZ, we add even and odd. - In ZBinary (implem of ZAxioms by ZArith), we create an efficient Zpow to implement pow. This Zpow should replace the current linear Zpower someday. - In NPeano (implem of NAxioms by Arith), we create pow, even, odd functions, and we modify the div and mod functions for them to be linear, structural, tail-recursive. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13546 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Natural/Peano')
-rw-r--r--theories/Numbers/Natural/Peano/NPeano.v200
1 files changed, 140 insertions, 60 deletions
diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v
index 182b9b8dd..5bb26d04f 100644
--- a/theories/Numbers/Natural/Peano/NPeano.v
+++ b/theories/Numbers/Natural/Peano/NPeano.v
@@ -8,25 +8,131 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-Require Import Peano Peano_dec Compare_dec EqNat NAxioms NProperties NDiv.
+Require Import
+ Bool Peano Peano_dec Compare_dec Plus Minus Le EqNat NAxioms NProperties.
-(** Functions not already defined: div mod *)
+(** Functions not already defined *)
-Definition divF div x y := if leb y x then S (div (x-y) y) else 0.
-Definition modF mod x y := if leb y x then mod (x-y) y else x.
-Definition initF (_ _ : nat) := 0.
+Fixpoint pow n m :=
+ match m with
+ | O => 1
+ | S m => n * (pow n m)
+ end.
-Fixpoint loop {A} (F:A->A)(i:A) (n:nat) : A :=
- match n with
- | 0 => i
- | S n => F (loop F i n)
- end.
+Infix "^" := pow : nat_scope.
+
+Lemma pow_0_r : forall a, a^0 = 1.
+Proof. reflexivity. Qed.
+
+Lemma pow_succ_r : forall a b, 0<=b -> a^(S b) = a * a^b.
+Proof. reflexivity. Qed.
+
+Definition Even n := exists m, n = 2*m.
+Definition Odd n := exists m, n = 2*m+1.
+
+Fixpoint even n :=
+ match n with
+ | O => true
+ | 1 => false
+ | S (S n') => even n'
+ end.
+
+Definition odd n := negb (even n).
+
+Lemma even_spec : forall n, even n = true <-> Even n.
+Proof.
+ fix 1.
+ destruct n as [|[|n]]; simpl; try rewrite even_spec; split.
+ now exists 0.
+ trivial.
+ discriminate.
+ intros (m,H). destruct m. discriminate.
+ simpl in H. rewrite <- plus_n_Sm in H. discriminate.
+ intros (m,H). exists (S m). rewrite H. simpl. now rewrite plus_n_Sm.
+ intros (m,H). destruct m. discriminate. exists m.
+ simpl in H. rewrite <- plus_n_Sm in H. inversion H. reflexivity.
+Qed.
+
+Lemma odd_spec : forall n, odd n = true <-> Odd n.
+Proof.
+ unfold odd.
+ fix 1.
+ destruct n as [|[|n]]; simpl; try rewrite odd_spec; split.
+ discriminate.
+ intros (m,H). rewrite <- plus_n_Sm in H; discriminate.
+ now exists 0.
+ trivial.
+ intros (m,H). exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m).
+ intros (m,H). destruct m. discriminate. exists m.
+ simpl in H. rewrite <- plus_n_Sm in H. inversion H. simpl.
+ now rewrite <- !plus_n_Sm, <- !plus_n_O.
+Qed.
+
+(* A linear, tail-recursive, division for nat.
+
+ In [divmod], [y] is the predecessor of the actual divisor,
+ and [u] is [y] minus the real remainder
+*)
+
+Fixpoint divmod x y q u :=
+ match x with
+ | 0 => (q,u)
+ | S x' => match u with
+ | 0 => divmod x' y (S q) y
+ | S u' => divmod x' y q u'
+ end
+ end.
+
+Definition div x y :=
+ match y with
+ | 0 => 0
+ | S y' => fst (divmod x y' 0 y')
+ end.
+
+Definition modulo x y :=
+ match y with
+ | 0 => 0
+ | S y' => y' - snd (divmod x y' 0 y')
+ end.
-Definition div x y := loop divF initF x x y.
-Definition modulo x y := loop modF initF x x y.
Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.
+Lemma divmod_spec : forall x y q u, u <= y ->
+ let (q',u') := divmod x y q u in
+ x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y.
+Proof.
+ induction x. simpl. intuition.
+ intros y q u H. destruct u; simpl divmod.
+ generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u').
+ intros (EQ,LE); split; trivial.
+ rewrite <- EQ, <- minus_n_O, minus_diag, <- plus_n_O.
+ now rewrite !plus_Sn_m, plus_n_Sm, <- plus_assoc, mult_n_Sm.
+ generalize (IHx y q u (le_Sn_le _ _ H)). destruct divmod as (q',u').
+ intros (EQ,LE); split; trivial.
+ rewrite <- EQ.
+ rewrite !plus_Sn_m, plus_n_Sm. f_equal. now apply minus_Sn_m.
+Qed.
+
+Lemma div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
+Proof.
+ intros x y Hy.
+ destruct y; [ now elim Hy | clear Hy ].
+ unfold div, modulo.
+ generalize (divmod_spec x y 0 y (le_n y)).
+ destruct divmod as (q,u).
+ intros (U,V).
+ simpl in *.
+ now rewrite <- mult_n_O, minus_diag, <- !plus_n_O in U.
+Qed.
+
+Lemma mod_upper_bound : forall x y, y<>0 -> x mod y < y.
+Proof.
+ intros x y Hy.
+ destruct y; [ now elim Hy | clear Hy ].
+ unfold modulo.
+ apply le_n_S, le_minus.
+Qed.
(** * Implementation of [NAxiomsSig] by [nat] *)
@@ -119,25 +225,26 @@ Proof.
reflexivity.
Qed.
-Definition recursion (A : Type) : A -> (nat -> A -> A) -> nat -> A :=
+(** Recursion fonction *)
+
+Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A :=
nat_rect (fun _ => A).
-Implicit Arguments recursion [A].
-Instance recursion_wd (A : Type) (Aeq : relation A) :
- Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A).
+Instance recursion_wd {A} (Aeq : relation A) :
+ Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
Proof.
intros a a' Ha f f' Hf n n' Hn. subst n'.
induction n; simpl; auto. apply Hf; auto.
Qed.
Theorem recursion_0 :
- forall (A : Type) (a : A) (f : nat -> A -> A), recursion a f 0 = a.
+ forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a.
Proof.
reflexivity.
Qed.
Theorem recursion_succ :
- forall (A : Type) (Aeq : relation A) (a : A) (f : nat -> A -> A),
+ forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A),
Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
@@ -171,56 +278,29 @@ Definition eqb_eq := beq_nat_true_iff.
Definition compare_spec := nat_compare_spec.
Definition eq_dec := eq_nat_dec.
-(** Generic Properties *)
-
-Include NPropFunct
- <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
-
-(** Proofs of specification for [div] and [mod]. *)
+Definition Even := Even.
+Definition Odd := Odd.
+Definition even := even.
+Definition odd := odd.
+Definition even_spec := even_spec.
+Definition odd_spec := odd_spec.
-Lemma div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
-Proof.
- cut (forall n x y, y<>0 -> x<=n ->
- x = y*(loop divF initF n x y) + (loop modF initF n x y)).
- intros H x y Hy. apply H; auto.
- induction n.
- simpl; unfold initF; simpl. intros. nzsimpl. auto with arith.
- simpl; unfold divF at 1, modF at 1.
- intros.
- destruct (leb y x) as [ ]_eqn:L;
- [apply leb_complete in L | apply leb_complete_conv in L; now nzsimpl].
- rewrite mul_succ_r, <- add_assoc, (add_comm y), add_assoc.
- rewrite <- IHn; auto.
- symmetry; apply sub_add; auto.
- rewrite <- lt_succ_r.
- apply lt_le_trans with x; auto.
- apply sub_lt; auto. rewrite <- neq_0_lt_0; auto.
-Qed.
-
-Lemma mod_upper_bound : forall x y, y<>0 -> x mod y < y.
-Proof.
- cut (forall n x y, y<>0 -> x<=n -> loop modF initF n x y < y).
- intros H x y Hy. apply H; auto.
- induction n.
- simpl; unfold initF. intros. rewrite <- neq_0_lt_0; auto.
- simpl; unfold modF at 1.
- intros.
- destruct (leb y x) as [ ]_eqn:L;
- [apply leb_complete in L | apply leb_complete_conv in L]; auto.
- apply IHn; auto.
- rewrite <- lt_succ_r.
- apply lt_le_trans with x; auto.
- apply sub_lt; auto. rewrite <- neq_0_lt_0; auto.
-Qed.
+Definition pow := pow.
+Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
+Definition pow_0_r := pow_0_r.
+Definition pow_succ_r := pow_succ_r.
Definition div := div.
Definition modulo := modulo.
Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
+Definition div_mod := div_mod.
+Definition mod_upper_bound := mod_upper_bound.
-(** Generic properties of [div] and [mod] *)
+(** Generic Properties *)
-Include NDivPropFunct.
+Include NProp
+ <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
End Nat.