aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/NatInt
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-18 14:40:08 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-18 14:40:08 +0000
commit503d92f75b520e88864649306f5a70058ff73990 (patch)
tree8cf391e333965511a76fbf3fb123d165ae38fab1 /theories/Numbers/NatInt
parent8d3a8edab6377823e620f7a22ccfcdcd869bb5a7 (diff)
NZLog: we define log2_up, a base-2 logarithm that rounds up instead of down as log2
Some more results about log2. Similar results for log2_up. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13648 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/NatInt')
-rw-r--r--theories/Numbers/NatInt/NZLog.v617
-rw-r--r--theories/Numbers/NatInt/NZMulOrder.v14
2 files changed, 607 insertions, 24 deletions
diff --git a/theories/Numbers/NatInt/NZLog.v b/theories/Numbers/NatInt/NZLog.v
index 4c8dcc8f3..db7c1fa53 100644
--- a/theories/Numbers/NatInt/NZLog.v
+++ b/theories/Numbers/NatInt/NZLog.v
@@ -26,7 +26,7 @@ Module Type NZLog2 (A : NZOrdAxiomsSig)(B : Pow A) := Log2 A <+ NZLog2Spec A B.
(** Derived properties of logarithm *)
-Module NZLog2Prop
+Module Type NZLog2Prop
(Import A : NZOrdAxiomsSig')
(Import B : NZPow' A)
(Import C : NZLog2 A B)
@@ -122,6 +122,21 @@ Proof.
split; order_pos. now nzsimpl.
Qed.
+(** log2 and predecessors of powers of 2 *)
+
+Lemma log2_pred_pow2 : forall a, 0<a -> log2 (P (2^a)) == P a.
+Proof.
+ intros a Ha.
+ assert (Ha' : S (P a) == a) by (now rewrite lt_succ_pred with 0).
+ apply log2_unique.
+ apply lt_succ_r; order.
+ rewrite <-le_succ_l, <-lt_succ_r, Ha'.
+ rewrite lt_succ_pred with 0.
+ split; try easy. apply pow_lt_mono_r_iff; try order'.
+ rewrite succ_lt_mono, Ha'. apply lt_succ_diag_r.
+ apply pow_pos_nonneg; order'.
+Qed.
+
(** log2 and basic constants *)
Lemma log2_1 : log2 1 == 0.
@@ -188,10 +203,12 @@ Qed.
(** When left side is a power of 2, we have an equivalence for <= *)
-Lemma log2_le_pow2 : forall a b, 0<a -> 0<=b -> (2^b<=a <-> b <= log2 a).
+Lemma log2_le_pow2 : forall a b, 0<a -> (2^b<=a <-> b <= log2 a).
Proof.
- intros a b Ha Hb.
+ intros a b Ha.
split; intros H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ generalize (log2_nonneg a); order.
rewrite <- (log2_pow2 b); trivial. now apply log2_le_mono.
transitivity (2^(log2 a)).
apply pow_le_mono_r; order'.
@@ -200,13 +217,17 @@ Qed.
(** When right side is a square, we have an equivalence for < *)
-Lemma log2_lt_pow2 : forall a b, 0<a -> 0<=b -> (a<2^b <-> log2 a < b).
+Lemma log2_lt_pow2 : forall a b, 0<a -> (a<2^b <-> log2 a < b).
Proof.
- intros a b Ha Hb.
+ intros a b Ha.
split; intros H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite pow_neg_r in H; order.
apply (pow_lt_mono_r_iff 2); try order_pos.
apply le_lt_trans with a; trivial.
now destruct (log2_spec a Ha).
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ generalize (log2_nonneg a); order.
apply log2_lt_cancel; try order.
now rewrite log2_pow2.
Qed.
@@ -261,10 +282,113 @@ Qed.
(** And we can't find better approximations in general.
- The lower bound is exact for powers of 2.
- - Concerning the upper bound, for any c>0, take a=b=2^c-1,
+ - Concerning the upper bound, for any c>1, take a=b=2^c-1,
then log2 (a*b) = c+c -1 while (log2 a) = (log2 b) = c-1
*)
+(** At least, we get back the usual equation when we multiply by 2 (or 2^k) *)
+
+Lemma log2_mul_pow2 : forall a b, 0<a -> 0<=b -> log2 (a*2^b) == b + log2 a.
+Proof.
+ intros a b Ha Hb.
+ apply log2_unique; try order_pos. split.
+ rewrite pow_add_r, mul_comm; try order_pos.
+ apply mul_le_mono_nonneg_r. order_pos. now apply log2_spec.
+ rewrite <-add_succ_r, pow_add_r, mul_comm; try order_pos.
+ apply mul_lt_mono_pos_l. order_pos. now apply log2_spec.
+Qed.
+
+Lemma log2_double : forall a, 0<a -> log2 (2*a) == S (log2 a).
+Proof.
+ intros a Ha. generalize (log2_mul_pow2 a 1 Ha le_0_1). now nzsimpl'.
+Qed.
+
+(** Two numbers with same log2 cannot be far away. *)
+
+Lemma log2_same : forall a b, 0<a -> 0<b -> log2 a == log2 b -> a < 2*b.
+Proof.
+ intros a b Ha Hb H.
+ apply log2_lt_cancel. rewrite log2_double, H by trivial.
+ apply lt_succ_diag_r.
+Qed.
+
+(** Log2 and successor :
+ - the log2 function climbs by at most 1 at a time
+ - otherwise it stays at the same value
+ - the +1 steps occur for powers of two
+*)
+
+Lemma log2_succ_le : forall a, log2 (S a) <= S (log2 a).
+Proof.
+ intros a.
+ destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
+ apply (pow_le_mono_r_iff 2); try order_pos.
+ transitivity (S a).
+ apply log2_spec.
+ apply lt_succ_r; order.
+ now apply le_succ_l, log2_spec.
+ rewrite <- EQ, <- one_succ, log2_1; order_pos.
+ rewrite 2 log2_nonpos. order_pos. order'. now rewrite le_succ_l.
+Qed.
+
+Lemma log2_succ_or : forall a,
+ log2 (S a) == S (log2 a) \/ log2 (S a) == log2 a.
+Proof.
+ intros.
+ destruct (le_gt_cases (log2 (S a)) (log2 a)).
+ right. generalize (log2_le_mono _ _ (le_succ_diag_r a)); order.
+ left. apply le_succ_l in H. generalize (log2_succ_le a); order.
+Qed.
+
+Lemma log2_eq_succ_is_pow2 : forall a,
+ log2 (S a) == S (log2 a) -> exists b, S a == 2^b.
+Proof.
+ intros a H.
+ destruct (le_gt_cases a 0) as [Ha|Ha].
+ rewrite 2 (proj2 (log2_null _)) in H. generalize (lt_succ_diag_r 0); order.
+ order'. apply le_succ_l. order'.
+ assert (Ha' : 0 < S a) by (apply lt_succ_r; order).
+ exists (log2 (S a)).
+ generalize (proj1 (log2_spec (S a) Ha')) (proj2 (log2_spec a Ha)).
+ rewrite <- le_succ_l, <- H. order.
+Qed.
+
+Lemma log2_eq_succ_iff_pow2 : forall a, 0<a ->
+ (log2 (S a) == S (log2 a) <-> exists b, S a == 2^b).
+Proof.
+ intros a Ha.
+ split. apply log2_eq_succ_is_pow2.
+ intros (b,Hb).
+ assert (Hb' : 0 < b).
+ apply (pow_gt_1 2); try order'; now rewrite <- Hb, one_succ, <- succ_lt_mono.
+ rewrite Hb, log2_pow2; try order'.
+ setoid_replace a with (P (2^b)). rewrite log2_pred_pow2; trivial.
+ symmetry; now apply lt_succ_pred with 0.
+ apply succ_inj. rewrite Hb. symmetry. apply lt_succ_pred with 0.
+ rewrite <- Hb, lt_succ_r; order.
+Qed.
+
+Lemma log2_succ_double : forall a, 0<a -> log2 (2*a+1) == S (log2 a).
+Proof.
+ intros a Ha.
+ rewrite add_1_r.
+ destruct (log2_succ_or (2*a)) as [H|H]; [exfalso|now rewrite H, log2_double].
+ apply log2_eq_succ_is_pow2 in H. destruct H as (b,H).
+ destruct (lt_trichotomy b 0) as [LT|[EQ|LT]].
+ rewrite pow_neg_r in H; trivial.
+ apply (mul_pos_pos 2), succ_lt_mono in Ha; try order'.
+ rewrite <- one_succ in Ha. order'.
+ rewrite EQ, pow_0_r in H.
+ apply (mul_pos_pos 2), succ_lt_mono in Ha; try order'.
+ rewrite <- one_succ in Ha. order'.
+ assert (EQ:=lt_succ_pred 0 b LT).
+ rewrite <- EQ, pow_succ_r in H; [|now rewrite <- lt_succ_r, EQ].
+ destruct (lt_ge_cases a (2^(P b))) as [LT'|LE'].
+ generalize (mul_2_mono_l _ _ LT'). rewrite add_1_l. order.
+ rewrite (mul_le_mono_pos_l _ _ 2) in LE'; try order'.
+ rewrite <- H in LE'. apply le_succ_l in LE'. order.
+Qed.
+
(** Log2 and addition *)
Lemma log2_add_le : forall a b, a~=1 -> b~=1 -> log2 (a+b) <= log2 a + log2 b.
@@ -293,29 +417,474 @@ Proof.
Qed.
(** The sum of two log2 is less than twice the log2 of the sum.
- This can almost be seen as a convexity inequality. *)
+ The large inequality is obvious thanks to monotonicity.
+ The strict one requires some more work. This is almost
+ a convexity inequality for points [2a], [2b] and their middle [a+b] :
+ ideally, we would have [2*log(a+b) >= log(2a)+log(2b) = 2+log a+log b].
+ Here, we cannot do better: consider for instance a=2 b=4, then 1+2<2*2
+*)
Lemma add_log2_lt : forall a b, 0<a -> 0<b ->
log2 a + log2 b < 2 * log2 (a+b).
Proof.
+ intros a b Ha Hb. nzsimpl'.
+ assert (H : log2 a <= log2 (a+b)).
+ apply log2_le_mono. rewrite <- (add_0_r a) at 1. apply add_le_mono; order.
+ assert (H' : log2 b <= log2 (a+b)).
+ apply log2_le_mono. rewrite <- (add_0_l b) at 1. apply add_le_mono; order.
+ apply le_lteq in H. destruct H as [H|H].
+ apply lt_le_trans with (log2 (a+b) + log2 b).
+ now apply add_lt_mono_r. now apply add_le_mono_l.
+ rewrite <- H at 1. apply add_lt_mono_l.
+ apply le_lteq in H'. destruct H' as [H'|H']. trivial.
+ symmetry in H. apply log2_same in H; try order_pos.
+ symmetry in H'. apply log2_same in H'; try order_pos.
+ revert H H'. nzsimpl'. rewrite <- add_lt_mono_l, <- add_lt_mono_r; order.
+Qed.
+
+End NZLog2Prop.
+
+Module NZLog2UpProp
+ (Import A : NZDecOrdAxiomsSig')
+ (Import B : NZPow' A)
+ (Import C : NZLog2 A B)
+ (Import D : NZMulOrderProp A)
+ (Import E : NZPowProp A B D)
+ (Import F : NZLog2Prop A B C D E).
+
+(** * [log2_up] : a binary logarithm that rounds up instead of down *)
+
+(** For once, we define instead of axiomatizing, thanks to log2 *)
+
+Definition log2_up a :=
+ match compare 1 a with
+ | Lt => S (log2 (P a))
+ | _ => 0
+ end.
+
+Lemma log2_up_eqn0 : forall a, a<=1 -> log2_up a == 0.
+Proof.
+ intros a Ha. unfold log2_up. case compare_spec; try order.
+Qed.
+
+Lemma log2_up_eqn : forall a, 1<a -> log2_up a == S (log2 (P a)).
+Proof.
+ intros a Ha. unfold log2_up. case compare_spec; try order.
+Qed.
+
+Lemma log2_up_spec : forall a, 1<a ->
+ 2^(P (log2_up a)) < a <= 2^(log2_up a).
+Proof.
+ intros a Ha.
+ rewrite log2_up_eqn; trivial.
+ rewrite pred_succ.
+ rewrite <- (lt_succ_pred 1 a Ha) at 2 3.
+ rewrite lt_succ_r, le_succ_l.
+ apply log2_spec.
+ apply succ_lt_mono. now rewrite (lt_succ_pred 1 a Ha), <- one_succ.
+Qed.
+
+Lemma log2_up_nonpos : forall a, a<=0 -> log2_up a == 0.
+Proof.
+ intros. apply log2_up_eqn0. order'.
+Qed.
+
+Instance log2_up_wd : Proper (eq==>eq) log2_up.
+Proof.
+ assert (Proper (eq==>eq==>Logic.eq) compare).
+ repeat red; intros; do 2 case compare_spec; trivial; order.
+ intros a a' Ha. unfold log2_up. rewrite Ha at 1.
+ case compare; now rewrite ?Ha.
+Qed.
+
+(** [log2_up] is always non-negative *)
+
+Lemma log2_up_nonneg : forall a, 0 <= log2_up a.
+Proof.
+ intros a. unfold log2_up. case compare_spec; try order.
+ intros. apply le_le_succ_r, log2_nonneg.
+Qed.
+
+(** The spec of [log2_up] indeed determines it *)
+
+Lemma log2_up_unique : forall a b, 0<b -> 2^(P b)<a<=2^b -> log2_up a == b.
+Proof.
+ intros a b Hb (LEb,LTb).
+ assert (Ha : 1 < a).
+ apply le_lt_trans with (2^(P b)); trivial.
+ rewrite one_succ. apply le_succ_l.
+ apply pow_pos_nonneg. order'. apply lt_succ_r.
+ now rewrite (lt_succ_pred 0 b Hb).
+ assert (Hc := log2_up_nonneg a).
+ destruct (log2_up_spec a Ha) as (LTc,LEc).
+ assert (b <= log2_up a).
+ apply lt_succ_r. rewrite <- (lt_succ_pred 0 b Hb).
+ rewrite <- succ_lt_mono.
+ apply (pow_lt_mono_r_iff 2); try order'.
+ assert (Hc' : 0 < log2_up a) by order.
+ assert (log2_up a <= b).
+ apply lt_succ_r. rewrite <- (lt_succ_pred 0 _ Hc').
+ rewrite <- succ_lt_mono.
+ apply (pow_lt_mono_r_iff 2); try order'.
+ order.
+Qed.
+
+(** [log2_up] is exact on powers of 2 *)
+
+Lemma log2_up_pow2 : forall a, 0<=a -> log2_up (2^a) == a.
+Proof.
+ intros a Ha.
+ apply le_lteq in Ha. destruct Ha as [Ha|Ha].
+ apply log2_up_unique; trivial.
+ split; try order.
+ apply pow_lt_mono_r; try order'.
+ rewrite <- (lt_succ_pred 0 a Ha) at 2.
+ now apply lt_succ_r.
+ now rewrite <- Ha, pow_0_r, log2_up_eqn0.
+Qed.
+
+(** [log2_up] and successors of powers of 2 *)
+
+Lemma log2_up_succ_pow2 : forall a, 0<=a -> log2_up (S (2^a)) == S a.
+Proof.
+ intros a Ha.
+ rewrite log2_up_eqn, pred_succ, log2_pow2; try easy.
+ rewrite one_succ, <- succ_lt_mono. apply pow_pos_nonneg; order'.
+Qed.
+
+(** Basic constants *)
+
+Lemma log2_up_1 : log2_up 1 == 0.
+Proof.
+ now apply log2_up_eqn0.
+Qed.
+
+Lemma log2_up_2 : log2_up 2 == 1.
+Proof.
+ rewrite <- (pow_1_r 2). apply log2_up_pow2; order'.
+Qed.
+
+(** Links between log2 and [log2_up] *)
+
+Lemma le_log2_log2_up : forall a, log2 a <= log2_up a.
+Proof.
+ intros a. unfold log2_up. case compare_spec; intros H.
+ rewrite <- H, log2_1. order.
+ rewrite <- (lt_succ_pred 1 a H) at 1. apply log2_succ_le.
+ rewrite log2_nonpos. order. now rewrite <-lt_succ_r, <-one_succ.
+Qed.
+
+Lemma le_log2_up_succ_log2 : forall a, log2_up a <= S (log2 a).
+Proof.
+ intros a. unfold log2_up. case compare_spec; intros H; try order_pos.
+ rewrite <- succ_le_mono. apply log2_le_mono.
+ rewrite <- (lt_succ_pred 1 a H) at 2. apply le_succ_diag_r.
+Qed.
+
+Lemma log2_log2_up_spec : forall a, 0<a ->
+ 2^log2 a <= a <= 2^log2_up a.
+Proof.
+ intros a H. split.
+ now apply log2_spec.
+ rewrite <-le_succ_l, <-one_succ, le_lteq in H. destruct H as [H|H].
+ now apply log2_up_spec.
+ now rewrite <-H, log2_up_1, pow_0_r.
+Qed.
+
+Lemma log2_log2_up_exact :
+ forall a, 0<a -> (log2 a == log2_up a <-> exists b, a == 2^b).
+Proof.
+ intros a Ha.
+ split. intros. exists (log2 a).
+ generalize (log2_log2_up_spec a Ha). rewrite <-H.
+ destruct 1; order.
+ intros (b,Hb). rewrite Hb.
+ destruct (le_gt_cases 0 b).
+ now rewrite log2_pow2, log2_up_pow2.
+ rewrite pow_neg_r; trivial. now rewrite log2_nonpos, log2_up_nonpos.
+Qed.
+
+(** [log2_up] n is strictly positive for 1<n *)
+
+Lemma log2_up_pos : forall a, 1<a -> 0 < log2_up a.
+Proof.
+ intros. rewrite log2_up_eqn; trivial. apply lt_succ_r; order_pos.
+Qed.
+
+(** Said otherwise, [log2_up] is null only below 1 *)
+
+Lemma log2_up_null : forall a, log2_up a == 0 <-> a <= 1.
+Proof.
+ intros a. split; intros H.
+ destruct (le_gt_cases a 1) as [Ha|Ha]; trivial.
+ generalize (log2_up_pos a Ha); order.
+ now apply log2_up_eqn0.
+Qed.
+
+(** [log2_up] is a monotone function (but not a strict one) *)
+
+Lemma log2_up_le_mono : forall a b, a<=b -> log2_up a <= log2_up b.
+Proof.
+ intros a b H.
+ destruct (le_gt_cases a 1) as [Ha|Ha].
+ rewrite log2_up_eqn0; trivial. apply log2_up_nonneg.
+ rewrite 2 log2_up_eqn; try order.
+ rewrite <- succ_le_mono. apply log2_le_mono, succ_le_mono.
+ rewrite 2 lt_succ_pred with 1; order.
+Qed.
+
+(** No reverse result for <=, consider for instance log2_up 4 <= log2_up 3 *)
+
+Lemma log2_up_lt_cancel : forall a b, log2_up a < log2_up b -> a < b.
+Proof.
+ intros a b H.
+ destruct (le_gt_cases b 1) as [Hb|Hb].
+ rewrite (log2_up_eqn0 b) in H; trivial.
+ generalize (log2_up_nonneg a); order.
+ destruct (le_gt_cases a 1) as [Ha|Ha]. order.
+ rewrite 2 log2_up_eqn in H; try order.
+ rewrite <- succ_lt_mono in H. apply log2_lt_cancel, succ_lt_mono in H.
+ rewrite 2 lt_succ_pred with 1 in H; order.
+Qed.
+
+(** When left side is a power of 2, we have an equivalence for < *)
+
+Lemma log2_up_lt_pow2 : forall a b, 0<a -> (2^b<a <-> b < log2_up a).
+Proof.
+ intros a b Ha.
+ split; intros H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ generalize (log2_up_nonneg a); order.
+ apply (pow_lt_mono_r_iff 2). order'. apply log2_up_nonneg.
+ apply lt_le_trans with a; trivial.
+ apply (log2_up_spec a).
+ apply le_lt_trans with (2^b); trivial.
+ rewrite one_succ, le_succ_l. apply pow_pos_nonneg; order'.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ now rewrite pow_neg_r.
+ rewrite <- (log2_up_pow2 b) in H; trivial. now apply log2_up_lt_cancel.
+Qed.
+
+(** When right side is a square, we have an equivalence for <= *)
+
+Lemma log2_up_le_pow2 : forall a b, 0<a -> (a<=2^b <-> log2_up a <= b).
+Proof.
+ intros a b Ha.
+ split; intros H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite pow_neg_r in H; order.
+ rewrite <- (log2_up_pow2 b); trivial. now apply log2_up_le_mono.
+ transitivity (2^(log2_up a)).
+ now apply log2_log2_up_spec.
+ apply pow_le_mono_r; order'.
+Qed.
+
+(** Comparing [log2_up] and identity *)
+
+Lemma log2_up_lt_lin : forall a, 0<a -> log2_up a < a.
+Proof.
+ intros a Ha.
+ assert (H : S (P a) == a) by (now apply lt_succ_pred with 0).
+ rewrite <- H at 2. apply lt_succ_r. apply log2_up_le_pow2; trivial.
+ rewrite <- H at 1. apply le_succ_l.
+ apply pow_gt_lin_r. order'. apply lt_succ_r; order.
+Qed.
+
+Lemma log2_up_le_lin : forall a, 0<=a -> log2_up a <= a.
+Proof.
+ intros a Ha.
+ apply le_lteq in Ha; destruct Ha as [Ha|Ha].
+ now apply lt_le_incl, log2_up_lt_lin.
+ rewrite <- Ha, log2_up_nonpos; order.
+Qed.
+
+(** [log2_up] and multiplication. *)
+
+(** Due to rounding error, we don't have the usual
+ [log2_up (a*b) = log2_up a + log2_up b] but we may be off by 1 at most *)
+
+Lemma log2_up_mul_above : forall a b, 0<=a -> 0<=b ->
+ log2_up (a*b) <= log2_up a + log2_up b.
+Proof.
intros a b Ha Hb.
- apply (pow_lt_mono_r_iff 2); try order_pos.
- rewrite !pow_add_r by order_pos.
- apply le_lt_trans with (a*b).
- apply mul_le_mono_nonneg; try order_pos; now apply log2_spec.
- apply (mul_lt_mono_pos_r (2^2)).
- apply pow_pos_nonneg; order'.
- rewrite (mul_comm 2).
- rewrite <- pow_add_r by order_pos.
- rewrite <- mul_succ_l.
- rewrite pow_mul_r by order_pos.
- apply le_lt_trans with ((a+b)^2).
- rewrite !pow_2_r, (mul_comm (a*b)), mul_assoc.
- apply quadmul_le_squareadd; order.
- apply pow_lt_mono_l. order'. split. order_pos.
- apply log2_spec; order_pos.
+ assert (Ha':=log2_up_nonneg a).
+ assert (Hb':=log2_up_nonneg b).
+ apply le_lteq in Ha. destruct Ha as [Ha|Ha].
+ apply le_lteq in Hb. destruct Hb as [Hb|Hb].
+ apply log2_up_le_pow2; try order_pos.
+ rewrite pow_add_r; trivial.
+ apply mul_le_mono_nonneg; try apply log2_log2_up_spec; order'.
+ rewrite <- Hb. nzsimpl. rewrite log2_up_nonpos; order_pos.
+ rewrite <- Ha. nzsimpl. rewrite log2_up_nonpos; order_pos.
Qed.
-(** We can't be more precise : consider for instance a=2 b=4, then 1+2<2*2 *)
+Lemma log2_up_mul_below : forall a b, 0<a -> 0<b ->
+ log2_up a + log2_up b <= S (log2_up (a*b)).
+Proof.
+ intros a b Ha Hb.
+ rewrite <-le_succ_l, <-one_succ, le_lteq in Ha. destruct Ha as [Ha|Ha].
+ rewrite <-le_succ_l, <-one_succ, le_lteq in Hb. destruct Hb as [Hb|Hb].
+ assert (Ha' : 0 < log2_up a) by (apply log2_up_pos; trivial).
+ assert (Hb' : 0 < log2_up b) by (apply log2_up_pos; trivial).
+ rewrite <- (lt_succ_pred 0 (log2_up a)); trivial.
+ rewrite <- (lt_succ_pred 0 (log2_up b)); trivial.
+ nzsimpl. rewrite <- succ_le_mono, le_succ_l.
+ apply (pow_lt_mono_r_iff 2). order'. apply log2_up_nonneg.
+ rewrite pow_add_r; try (apply lt_succ_r; rewrite (lt_succ_pred 0); trivial).
+ apply lt_le_trans with (a*b).
+ apply mul_lt_mono_nonneg; try order_pos; try now apply log2_up_spec.
+ apply log2_up_spec.
+ setoid_replace 1 with (1*1) by now nzsimpl.
+ apply mul_lt_mono_nonneg; order'.
+ rewrite <- Hb, log2_up_1; nzsimpl. apply le_succ_diag_r.
+ rewrite <- Ha, log2_up_1; nzsimpl. apply le_succ_diag_r.
+Qed.
+
+(** And we can't find better approximations in general.
+ - The upper bound is exact for powers of 2.
+ - Concerning the lower bound, for any c>1, take a=b=2^c+1,
+ then [log2_up (a*b) = c+c +1] while [(log2_up a) = (log2_up b) = c+1]
+*)
+
+(** At least, we get back the usual equation when we multiply by 2 (or 2^k) *)
+
+Lemma log2_up_mul_pow2 : forall a b, 0<a -> 0<=b ->
+ log2_up (a*2^b) == b + log2_up a.
+Proof.
+ intros a b Ha Hb.
+ rewrite <- le_succ_l, <- one_succ, le_lteq in Ha. destruct Ha as [Ha|Ha].
+ apply log2_up_unique. apply add_nonneg_pos; trivial. now apply log2_up_pos.
+ split.
+ assert (EQ := lt_succ_pred 0 _ (log2_up_pos _ Ha)).
+ rewrite <- EQ. nzsimpl. rewrite pow_add_r, mul_comm; trivial.
+ apply mul_lt_mono_pos_r. order_pos. now apply log2_up_spec.
+ rewrite <- lt_succ_r, EQ. now apply log2_up_pos.
+ rewrite pow_add_r, mul_comm; trivial.
+ apply mul_le_mono_nonneg_l. order_pos. now apply log2_up_spec.
+ apply log2_up_nonneg.
+ now rewrite <- Ha, mul_1_l, log2_up_1, add_0_r, log2_up_pow2.
+Qed.
+
+Lemma log2_up_double : forall a, 0<a -> log2_up (2*a) == S (log2_up a).
+Proof.
+ intros a Ha. generalize (log2_up_mul_pow2 a 1 Ha le_0_1). now nzsimpl'.
+Qed.
+
+(** Two numbers with same [log2_up] cannot be far away. *)
+
+Lemma log2_up_same : forall a b, 0<a -> 0<b -> log2_up a == log2_up b -> a < 2*b.
+Proof.
+ intros a b Ha Hb H.
+ apply log2_up_lt_cancel. rewrite log2_up_double, H by trivial.
+ apply lt_succ_diag_r.
+Qed.
+
+(** [log2_up] and successor :
+ - the [log2_up] function climbs by at most 1 at a time
+ - otherwise it stays at the same value
+ - the +1 steps occur after powers of two
+*)
+
+Lemma log2_up_succ_le : forall a, log2_up (S a) <= S (log2_up a).
+Proof.
+ intros a.
+ destruct (lt_trichotomy 1 a) as [LT|[EQ|LT]].
+ rewrite 2 log2_up_eqn; trivial.
+ rewrite pred_succ, <- succ_le_mono. rewrite <-(lt_succ_pred 1 a LT) at 1.
+ apply log2_succ_le.
+ apply lt_succ_r; order.
+ rewrite <- EQ, <- two_succ, log2_up_1, log2_up_2. now nzsimpl'.
+ rewrite 2 log2_up_eqn0. order_pos. order'. now rewrite le_succ_l.
+Qed.
+
+Lemma log2_up_succ_or : forall a,
+ log2_up (S a) == S (log2_up a) \/ log2_up (S a) == log2_up a.
+Proof.
+ intros.
+ destruct (le_gt_cases (log2_up (S a)) (log2_up a)).
+ right. generalize (log2_up_le_mono _ _ (le_succ_diag_r a)); order.
+ left. apply le_succ_l in H. generalize (log2_up_succ_le a); order.
+Qed.
+
+Lemma log2_up_eq_succ_is_pow2 : forall a,
+ log2_up (S a) == S (log2_up a) -> exists b, a == 2^b.
+Proof.
+ intros a H.
+ destruct (le_gt_cases a 0) as [Ha|Ha].
+ rewrite 2 (proj2 (log2_up_null _)) in H. generalize (lt_succ_diag_r 0); order.
+ order'. apply le_succ_l. order'.
+ assert (Ha' : 1 < S a) by (now rewrite one_succ, <- succ_lt_mono).
+ exists (log2_up a).
+ generalize (proj1 (log2_up_spec (S a) Ha')) (proj2 (log2_log2_up_spec a Ha)).
+ rewrite H, pred_succ, lt_succ_r. order.
+Qed.
+
+Lemma log2_up_eq_succ_iff_pow2 : forall a, 0<a ->
+ (log2_up (S a) == S (log2_up a) <-> exists b, a == 2^b).
+Proof.
+ intros a Ha.
+ split. apply log2_up_eq_succ_is_pow2.
+ intros (b,Hb).
+ destruct (lt_ge_cases b 0) as [Hb'|Hb'].
+ rewrite pow_neg_r in Hb; order.
+ rewrite Hb, log2_up_pow2; try order'.
+ now rewrite log2_up_succ_pow2.
+Qed.
+
+Lemma log2_up_succ_double : forall a, 0<a ->
+ log2_up (2*a+1) == 2 + log2 a.
+Proof.
+ intros a Ha.
+ rewrite log2_up_eqn. rewrite add_1_r, pred_succ, log2_double; now nzsimpl'.
+ apply le_lt_trans with (0+1). now nzsimpl'.
+ apply add_lt_mono_r. order_pos.
+Qed.
+
+(** [log2_up] and addition *)
+
+Lemma log2_up_add_le : forall a b, a~=1 -> b~=1 ->
+ log2_up (a+b) <= log2_up a + log2_up b.
+Proof.
+ intros a b Ha Hb.
+ destruct (lt_trichotomy a 1) as [Ha'|[Ha'|Ha']]; [|order|].
+ rewrite (log2_up_eqn0 a) by order. nzsimpl. apply log2_up_le_mono.
+ rewrite one_succ, lt_succ_r in Ha'.
+ rewrite <- (add_0_l b) at 2. now apply add_le_mono.
+ destruct (lt_trichotomy b 1) as [Hb'|[Hb'|Hb']]; [|order|].
+ rewrite (log2_up_eqn0 b) by order. nzsimpl. apply log2_up_le_mono.
+ rewrite one_succ, lt_succ_r in Hb'.
+ rewrite <- (add_0_r a) at 2. now apply add_le_mono.
+ clear Ha Hb.
+ transitivity (log2_up (a*b)).
+ now apply log2_up_le_mono, add_le_mul.
+ apply log2_up_mul_above; order'.
+Qed.
+
+(** The sum of two [log2_up] is less than twice the [log2_up] of the sum.
+ The large inequality is obvious thanks to monotonicity.
+ The strict one requires some more work. This is almost
+ a convexity inequality for points [2a], [2b] and their middle [a+b] :
+ ideally, we would have [2*log(a+b) >= log(2a)+log(2b) = 2+log a+log b].
+ Here, we cannot do better: consider for instance a=3 b=5, then 2+3<2*3
+*)
+
+Lemma add_log2_up_lt : forall a b, 0<a -> 0<b ->
+ log2_up a + log2_up b < 2 * log2_up (a+b).
+Proof.
+ intros a b Ha Hb. nzsimpl'.
+ assert (H : log2_up a <= log2_up (a+b)).
+ apply log2_up_le_mono. rewrite <- (add_0_r a) at 1. apply add_le_mono; order.
+ assert (H' : log2_up b <= log2_up (a+b)).
+ apply log2_up_le_mono. rewrite <- (add_0_l b) at 1. apply add_le_mono; order.
+ apply le_lteq in H. destruct H as [H|H].
+ apply lt_le_trans with (log2_up (a+b) + log2_up b).
+ now apply add_lt_mono_r. now apply add_le_mono_l.
+ rewrite <- H at 1. apply add_lt_mono_l.
+ apply le_lteq in H'. destruct H' as [H'|H']. trivial.
+ symmetry in H. apply log2_up_same in H; try order_pos.
+ symmetry in H'. apply log2_up_same in H'; try order_pos.
+ revert H H'. nzsimpl'. rewrite <- add_lt_mono_l, <- add_lt_mono_r; order.
+Qed.
+
+End NZLog2UpProp.
-End NZLog2Prop.
diff --git a/theories/Numbers/NatInt/NZMulOrder.v b/theories/Numbers/NatInt/NZMulOrder.v
index 3eb9b4870..323ecef1b 100644
--- a/theories/Numbers/NatInt/NZMulOrder.v
+++ b/theories/Numbers/NatInt/NZMulOrder.v
@@ -302,6 +302,20 @@ rewrite two_succ. nzsimpl. now rewrite le_succ_l.
order'.
Qed.
+Lemma add_le_mul : forall a b, 1<a -> 1<b -> a+b <= a*b.
+Proof.
+ assert (AUX : forall a b, 0<a -> 0<b -> (S a)+(S b) <= (S a)*(S b)).
+ intros a b Ha Hb.
+ nzsimpl. rewrite <- succ_le_mono. apply le_succ_l.
+ rewrite <- add_assoc, <- (add_0_l (a+b)), (add_comm b).
+ apply add_lt_mono_r.
+ now apply mul_pos_pos.
+ intros a b Ha Hb.
+ assert (Ha' := lt_succ_pred 1 a Ha).
+ assert (Hb' := lt_succ_pred 1 b Hb).
+ rewrite <- Ha', <- Hb'. apply AUX; rewrite succ_lt_mono, <- one_succ; order.
+Qed.
+
(** A few results about squares *)
Lemma square_nonneg : forall a, 0 <= a * a.