diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-06-28 23:30:32 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-06-28 23:30:32 +0000 |
commit | e97cd3c0cab1eb022b15d65bb33483055ce4cc28 (patch) | |
tree | e1fb56c8f3d5d83f68d55e6abdbb3486d137f9e2 /theories/Numbers/Integer | |
parent | 00353bc0b970605ae092af594417a51a0cdf903f (diff) |
Deletion of useless Zdigits_def
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14247 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer')
-rw-r--r-- | theories/Numbers/Integer/BigZ/ZMake.v | 20 | ||||
-rw-r--r-- | theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v | 26 |
2 files changed, 23 insertions, 23 deletions
diff --git a/theories/Numbers/Integer/BigZ/ZMake.v b/theories/Numbers/Integer/BigZ/ZMake.v index cb16e1291..0142b36be 100644 --- a/theories/Numbers/Integer/BigZ/ZMake.v +++ b/theories/Numbers/Integer/BigZ/ZMake.v @@ -678,17 +678,17 @@ Module Make (N:NType) <: ZType. destruct (norm_pos x) as [x'|x']; specialize (H x' (eq_refl _)) || clear H. - Lemma spec_testbit: forall x p, testbit x p = Ztestbit (to_Z x) (to_Z p). + Lemma spec_testbit: forall x p, testbit x p = Z.testbit (to_Z x) (to_Z p). Proof. intros x p. unfold testbit. destr_norm_pos p; simpl. destr_norm_pos x; simpl. apply N.spec_testbit. rewrite N.spec_testbit, N.spec_pred, Zmax_r by auto with zarith. symmetry. apply Z.bits_opp. apply N.spec_pos. - symmetry. apply Ztestbit_neg_r; auto with zarith. + symmetry. apply Z.testbit_neg_r; auto with zarith. Qed. - Lemma spec_shiftl: forall x p, to_Z (shiftl x p) = Zshiftl (to_Z x) (to_Z p). + Lemma spec_shiftl: forall x p, to_Z (shiftl x p) = Z.shiftl (to_Z x) (to_Z p). Proof. intros x p. unfold shiftl. destr_norm_pos x; destruct p as [p|p]; simpl; @@ -703,13 +703,13 @@ Module Make (N:NType) <: ZType. now rewrite Zlnot_alt1, Z.lnot_shiftr, Zlnot_alt2. Qed. - Lemma spec_shiftr: forall x p, to_Z (shiftr x p) = Zshiftr (to_Z x) (to_Z p). + Lemma spec_shiftr: forall x p, to_Z (shiftr x p) = Z.shiftr (to_Z x) (to_Z p). Proof. intros. unfold shiftr. rewrite spec_shiftl, spec_opp. apply Z.shiftl_opp_r. Qed. - Lemma spec_land: forall x y, to_Z (land x y) = Zand (to_Z x) (to_Z y). + Lemma spec_land: forall x y, to_Z (land x y) = Z.land (to_Z x) (to_Z y). Proof. intros x y. unfold land. destr_norm_pos x; destr_norm_pos y; simpl; @@ -720,7 +720,7 @@ Module Make (N:NType) <: ZType. now rewrite Z.lnot_lor, !Zlnot_alt2. Qed. - Lemma spec_lor: forall x y, to_Z (lor x y) = Zor (to_Z x) (to_Z y). + Lemma spec_lor: forall x y, to_Z (lor x y) = Z.lor (to_Z x) (to_Z y). Proof. intros x y. unfold lor. destr_norm_pos x; destr_norm_pos y; simpl; @@ -731,7 +731,7 @@ Module Make (N:NType) <: ZType. now rewrite Z.lnot_land, !Zlnot_alt2. Qed. - Lemma spec_ldiff: forall x y, to_Z (ldiff x y) = Zdiff (to_Z x) (to_Z y). + Lemma spec_ldiff: forall x y, to_Z (ldiff x y) = Z.ldiff (to_Z x) (to_Z y). Proof. intros x y. unfold ldiff. destr_norm_pos x; destr_norm_pos y; simpl; @@ -742,7 +742,7 @@ Module Make (N:NType) <: ZType. now rewrite 2 Z.ldiff_land, Zlnot_alt2, Z.land_comm, Zlnot_alt3. Qed. - Lemma spec_lxor: forall x y, to_Z (lxor x y) = Zxor (to_Z x) (to_Z y). + Lemma spec_lxor: forall x y, to_Z (lxor x y) = Z.lxor (to_Z x) (to_Z y). Proof. intros x y. unfold lxor. destr_norm_pos x; destr_norm_pos y; simpl; @@ -753,9 +753,9 @@ Module Make (N:NType) <: ZType. now rewrite <- Z.lxor_lnot_lnot, !Zlnot_alt2. Qed. - Lemma spec_div2: forall x, to_Z (div2 x) = Zdiv2 (to_Z x). + Lemma spec_div2: forall x, to_Z (div2 x) = Z.div2 (to_Z x). Proof. - intros x. unfold div2. now rewrite spec_shiftr, Zdiv2_spec, spec_1. + intros x. unfold div2. now rewrite spec_shiftr, Z.div2_spec, spec_1. Qed. End Make. diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v index f40928566..eaab13c2a 100644 --- a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v +++ b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v @@ -445,77 +445,77 @@ Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit. Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true. Proof. - intros. zify. apply Ztestbit_odd_0. + intros. zify. apply Z.testbit_odd_0. Qed. Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false. Proof. - intros. zify. apply Ztestbit_even_0. + intros. zify. apply Z.testbit_even_0. Qed. Lemma testbit_odd_succ : forall a n, 0<=n -> testbit (2*a+1) (succ n) = testbit a n. Proof. - intros a n. zify. apply Ztestbit_odd_succ. + intros a n. zify. apply Z.testbit_odd_succ. Qed. Lemma testbit_even_succ : forall a n, 0<=n -> testbit (2*a) (succ n) = testbit a n. Proof. - intros a n. zify. apply Ztestbit_even_succ. + intros a n. zify. apply Z.testbit_even_succ. Qed. Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false. Proof. - intros a n. zify. apply Ztestbit_neg_r. + intros a n. zify. apply Z.testbit_neg_r. Qed. Lemma shiftr_spec : forall a n m, 0<=m -> testbit (shiftr a n) m = testbit a (m+n). Proof. - intros a n m. zify. apply Zshiftr_spec. + intros a n m. zify. apply Z.shiftr_spec. Qed. Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m -> testbit (shiftl a n) m = testbit a (m-n). Proof. intros a n m. zify. intros Hn H. - now apply Zshiftl_spec_high. + now apply Z.shiftl_spec_high. Qed. Lemma shiftl_spec_low : forall a n m, m<n -> testbit (shiftl a n) m = false. Proof. - intros a n m. zify. intros H. now apply Zshiftl_spec_low. + intros a n m. zify. intros H. now apply Z.shiftl_spec_low. Qed. Lemma land_spec : forall a b n, testbit (land a b) n = testbit a n && testbit b n. Proof. - intros a n m. zify. now apply Zand_spec. + intros a n m. zify. now apply Z.land_spec. Qed. Lemma lor_spec : forall a b n, testbit (lor a b) n = testbit a n || testbit b n. Proof. - intros a n m. zify. now apply Zor_spec. + intros a n m. zify. now apply Z.lor_spec. Qed. Lemma ldiff_spec : forall a b n, testbit (ldiff a b) n = testbit a n && negb (testbit b n). Proof. - intros a n m. zify. now apply Zdiff_spec. + intros a n m. zify. now apply Z.ldiff_spec. Qed. Lemma lxor_spec : forall a b n, testbit (lxor a b) n = xorb (testbit a n) (testbit b n). Proof. - intros a n m. zify. now apply Zxor_spec. + intros a n m. zify. now apply Z.lxor_spec. Qed. Lemma div2_spec : forall a, div2 a == shiftr a 1. Proof. - intros a. zify. now apply Zdiv2_spec. + intros a. zify. now apply Z.div2_spec. Qed. End ZTypeIsZAxioms. |