aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-07-04 16:02:24 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-07-04 16:02:24 +0000
commit2b4c3fff22d7e9c55289c2fe770e744b7a5f613c (patch)
tree21d1cb9bd91cc2d91a8077ccfe9bdf0ac9d6e69b /theories/Numbers/Integer
parentff03e8dd0de507be82e58ed5e8fd902dfd7caf4b (diff)
Fix bug #1899: no more strange notations for Qge and Qgt
In fact, Qge and Ggt disappear, and we only leave notations for > and >= that map directly to Qlt and Qle. We also adopt the same approach for BigN, BigZ, BigQ. By the way, various clean-up concerning Zeq_bool, Zle_bool and similar functions for Q. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11205 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer')
-rw-r--r--theories/Numbers/Integer/BigZ/BigZ.v14
1 files changed, 8 insertions, 6 deletions
diff --git a/theories/Numbers/Integer/BigZ/BigZ.v b/theories/Numbers/Integer/BigZ/BigZ.v
index bb2c01437..5189a33ef 100644
--- a/theories/Numbers/Integer/BigZ/BigZ.v
+++ b/theories/Numbers/Integer/BigZ/BigZ.v
@@ -42,25 +42,27 @@ Infix "?=" := BigZ.compare : bigZ_scope.
Infix "==" := BigZ.eq (at level 70, no associativity) : bigZ_scope.
Infix "<" := BigZ.lt : bigZ_scope.
Infix "<=" := BigZ.le : bigZ_scope.
+Notation "x > y" := (BigZ.lt y x)(only parsing) : bigZ_scope.
+Notation "x >= y" := (BigZ.le y x)(only parsing) : bigZ_scope.
Notation "[ i ]" := (BigZ.to_Z i) : bigZ_scope.
Open Scope bigZ_scope.
(** Some additional results about [BigZ] *)
-Theorem spec_to_Z: forall n:bigZ,
+Theorem spec_to_Z: forall n:bigZ,
BigN.to_Z (BigZ.to_N n) = ((Zsgn [n]) * [n])%Z.
Proof.
-intros n; case n; simpl; intros p;
+intros n; case n; simpl; intros p;
generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
intros p1 H1; case H1; auto.
intros p1 H1; case H1; auto.
Qed.
-Theorem spec_to_N n:
+Theorem spec_to_N n:
([n] = Zsgn [n] * (BigN.to_Z (BigZ.to_N n)))%Z.
Proof.
-intros n; case n; simpl; intros p;
+intros n; case n; simpl; intros p;
generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
intros p1 H1; case H1; auto.
intros p1 H1; case H1; auto.
@@ -69,7 +71,7 @@ Qed.
Theorem spec_to_Z_pos: forall n, (0 <= [n])%Z ->
BigN.to_Z (BigZ.to_N n) = [n].
Proof.
-intros n; case n; simpl; intros p;
+intros n; case n; simpl; intros p;
generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
intros p1 _ H1; case H1; auto.
intros p1 H1; case H1; auto.
@@ -87,7 +89,7 @@ Qed.
(** [BigZ] is a ring *)
-Lemma BigZring :
+Lemma BigZring :
ring_theory BigZ.zero BigZ.one BigZ.add BigZ.mul BigZ.sub BigZ.opp BigZ.eq.
Proof.
constructor.