aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZDivTrunc.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-10 12:58:38 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-11-10 12:58:38 +0000
commitf1da4e3df5abd1daa5bfee184512f1e363bc9688 (patch)
tree4dc54964cdf6cf05b9d060fb6ed0f5898a2bad41 /theories/Numbers/Integer/Abstract/ZDivTrunc.v
parent51f5f4d37fdc3db1e7da951db11119bdb5a7554b (diff)
Integer division: quot and rem (trunc convention) in addition to div and mod
(floor convention). We follow Haskell naming convention: quot and rem are for Round-Toward-Zero (a.k.a Trunc, what Ocaml, C, Asm do by default, cf. the ex-ZOdiv file), while div and mod are for Round-Toward-Bottom (a.k.a Floor, what Coq does historically in Zdiv). We use unicode ÷ for quot, and infix rem for rem (which is actually remainder in full). This way, both conventions can be used at the same time. Definitions (and proofs of specifications) for div mod quot rem are migrated in a new file Zdiv_def. Ex-ZOdiv file is now Zquot. With this new organisation, no need for functor application in Zdiv and Zquot. On the abstract side, ZAxiomsSig now provides div mod quot rem. Zproperties now contains properties of them. In NZDiv, we stop splitting specifications in Common vs. Specific parts. Instead, the NZ specification is be extended later, even if this leads to a useless mod_bound_pos, subsumed by more precise axioms. A few results in ZDivTrunc and ZDivFloor are improved (sgn stuff). A few proofs in Nnat, Znat, Zabs are reworked (no more dependency to Zmin, Zmax). A lcm (least common multiple) is derived abstractly from gcd and division (and hence available for nat N BigN Z BigZ :-). In these new files NLcm and ZLcm, we also provide some combined properties of div mod quot rem gcd. We also provide a new file Zeuclid implementing a third division convention, where the remainder is always positive. This file instanciate the abstract one ZDivEucl. Operation names are ZEuclid.div and ZEuclid.modulo. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13633 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZDivTrunc.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivTrunc.v573
1 files changed, 328 insertions, 245 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivTrunc.v b/theories/Numbers/Integer/Abstract/ZDivTrunc.v
index 4ca692d00..37a0057ed 100644
--- a/theories/Numbers/Integer/Abstract/ZDivTrunc.v
+++ b/theories/Numbers/Integer/Abstract/ZDivTrunc.v
@@ -6,6 +6,8 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
+
(** * Euclidean Division for integers (Trunc convention)
We use here the convention known as Trunc, or Round-Toward-Zero,
@@ -24,25 +26,23 @@
See files [ZDivFloor] and [ZDivEucl] for others conventions.
*)
-Require Import ZAxioms ZProperties NZDiv.
-
-Module Type ZDivSpecific (Import Z:ZAxiomsSig')(Import DM : DivMod' Z).
- Axiom mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
- Axiom mod_opp_l : forall a b, b ~= 0 -> (-a) mod b == - (a mod b).
- Axiom mod_opp_r : forall a b, b ~= 0 -> a mod (-b) == a mod b.
-End ZDivSpecific.
-
-Module Type ZDiv (Z:ZAxiomsSig)
- := DivMod Z <+ NZDivCommon Z <+ ZDivSpecific Z.
-
-Module Type ZDivSig := ZAxiomsSig <+ ZDiv.
-Module Type ZDivSig' := ZAxiomsSig' <+ ZDiv <+ DivModNotation.
-
-Module ZDivProp (Import Z : ZDivSig')(Import ZP : ZProp Z).
+Module Type ZQuotProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B).
(** We benefit from what already exists for NZ *)
- Module Import NZDivP := Nop <+ NZDivProp Z Z ZP.
+ Module Quot2Div <: NZDiv A.
+ Definition div := quot.
+ Definition modulo := remainder.
+ Definition div_wd := quot_wd.
+ Definition mod_wd := rem_wd.
+ Definition div_mod := quot_rem.
+ Definition mod_bound_pos := rem_bound_pos.
+ End Quot2Div.
+
+ Module NZQuot := Nop <+ NZDivProp A Quot2Div B.
Ltac pos_or_neg a :=
let LT := fresh "LT" in
@@ -51,175 +51,269 @@ Ltac pos_or_neg a :=
(** Another formulation of the main equation *)
-Lemma mod_eq :
- forall a b, b~=0 -> a mod b == a - b*(a/b).
+Lemma rem_eq :
+ forall a b, b~=0 -> a rem b == a - b*(a÷b).
Proof.
intros.
rewrite <- add_move_l.
-symmetry. now apply div_mod.
+symmetry. now apply quot_rem.
Qed.
(** A few sign rules (simple ones) *)
-Lemma mod_opp_opp : forall a b, b ~= 0 -> (-a) mod (-b) == - (a mod b).
-Proof. intros. now rewrite mod_opp_r, mod_opp_l. Qed.
+Lemma rem_opp_opp : forall a b, b ~= 0 -> (-a) rem (-b) == - (a rem b).
+Proof. intros. now rewrite rem_opp_r, rem_opp_l. Qed.
-Lemma div_opp_l : forall a b, b ~= 0 -> (-a)/b == -(a/b).
+Lemma quot_opp_l : forall a b, b ~= 0 -> (-a)÷b == -(a÷b).
Proof.
intros.
rewrite <- (mul_cancel_l _ _ b) by trivial.
-rewrite <- (add_cancel_r _ _ ((-a) mod b)).
-now rewrite <- div_mod, mod_opp_l, mul_opp_r, <- opp_add_distr, <- div_mod.
+rewrite <- (add_cancel_r _ _ ((-a) rem b)).
+now rewrite <- quot_rem, rem_opp_l, mul_opp_r, <- opp_add_distr, <- quot_rem.
Qed.
-Lemma div_opp_r : forall a b, b ~= 0 -> a/(-b) == -(a/b).
+Lemma quot_opp_r : forall a b, b ~= 0 -> a÷(-b) == -(a÷b).
Proof.
intros.
assert (-b ~= 0) by (now rewrite eq_opp_l, opp_0).
rewrite <- (mul_cancel_l _ _ (-b)) by trivial.
-rewrite <- (add_cancel_r _ _ (a mod (-b))).
-now rewrite <- div_mod, mod_opp_r, mul_opp_opp, <- div_mod.
-Qed.
-
-Lemma div_opp_opp : forall a b, b ~= 0 -> (-a)/(-b) == a/b.
-Proof. intros. now rewrite div_opp_r, div_opp_l, opp_involutive. Qed.
-
-(** The sign of [a mod b] is the one of [a] *)
-
-(* TODO: a proper sgn function and theory *)
-
-Lemma mod_sign : forall a b, b~=0 -> 0 <= (a mod b) * a.
-Proof.
-assert (Aux : forall a b, 0<b -> 0 <= (a mod b) * a).
- intros. pos_or_neg a.
- apply mul_nonneg_nonneg; trivial. now destruct (mod_bound a b).
- rewrite <- mul_opp_opp, <- mod_opp_l by order.
- apply mul_nonneg_nonneg; try order. destruct (mod_bound (-a) b); order.
-intros. pos_or_neg b. apply Aux; order.
-rewrite <- mod_opp_r by order. apply Aux; order.
+rewrite <- (add_cancel_r _ _ (a rem (-b))).
+now rewrite <- quot_rem, rem_opp_r, mul_opp_opp, <- quot_rem.
Qed.
+Lemma quot_opp_opp : forall a b, b ~= 0 -> (-a)÷(-b) == a÷b.
+Proof. intros. now rewrite quot_opp_r, quot_opp_l, opp_involutive. Qed.
(** Uniqueness theorems *)
-Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
+Theorem quot_rem_unique : forall b q1 q2 r1 r2 : t,
(0<=r1<b \/ b<r1<=0) -> (0<=r2<b \/ b<r2<=0) ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
destruct Hr1; destruct Hr2; try (intuition; order).
-apply div_mod_unique with b; trivial.
+apply NZQuot.div_mod_unique with b; trivial.
rewrite <- (opp_inj_wd r1 r2).
-apply div_mod_unique with (-b); trivial.
+apply NZQuot.div_mod_unique with (-b); trivial.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd.
Qed.
-Theorem div_unique:
- forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a/b.
-Proof. intros; now apply div_unique with r. Qed.
+Theorem quot_unique:
+ forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a÷b.
+Proof. intros; now apply NZQuot.div_unique with r. Qed.
-Theorem mod_unique:
- forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a mod b.
-Proof. intros; now apply mod_unique with q. Qed.
+Theorem rem_unique:
+ forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a rem b.
+Proof. intros; now apply NZQuot.mod_unique with q. Qed.
(** A division by itself returns 1 *)
-Lemma div_same : forall a, a~=0 -> a/a == 1.
+Lemma quot_same : forall a, a~=0 -> a÷a == 1.
Proof.
-intros. pos_or_neg a. apply div_same; order.
-rewrite <- div_opp_opp by trivial. now apply div_same.
+intros. pos_or_neg a. apply NZQuot.div_same; order.
+rewrite <- quot_opp_opp by trivial. now apply NZQuot.div_same.
Qed.
-Lemma mod_same : forall a, a~=0 -> a mod a == 0.
+Lemma rem_same : forall a, a~=0 -> a rem a == 0.
Proof.
-intros. rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag.
+intros. rewrite rem_eq, quot_same by trivial. nzsimpl. apply sub_diag.
Qed.
(** A division of a small number by a bigger one yields zero. *)
-Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
-Proof. exact div_small. Qed.
+Theorem quot_small: forall a b, 0<=a<b -> a÷b == 0.
+Proof. exact NZQuot.div_small. Qed.
-(** Same situation, in term of modulo: *)
+(** Same situation, in term of remulo: *)
-Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
-Proof. exact mod_small. Qed.
+Theorem rem_small: forall a b, 0<=a<b -> a rem b == a.
+Proof. exact NZQuot.mod_small. Qed.
(** * Basic values of divisions and modulo. *)
-Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
+Lemma quot_0_l: forall a, a~=0 -> 0÷a == 0.
Proof.
-intros. pos_or_neg a. apply div_0_l; order.
-rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l.
+intros. pos_or_neg a. apply NZQuot.div_0_l; order.
+rewrite <- quot_opp_opp, opp_0 by trivial. now apply NZQuot.div_0_l.
Qed.
-Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
+Lemma rem_0_l: forall a, a~=0 -> 0 rem a == 0.
Proof.
-intros; rewrite mod_eq, div_0_l; now nzsimpl.
+intros; rewrite rem_eq, quot_0_l; now nzsimpl.
Qed.
-Lemma div_1_r: forall a, a/1 == a.
+Lemma quot_1_r: forall a, a÷1 == a.
Proof.
-intros. pos_or_neg a. now apply div_1_r.
-apply opp_inj. rewrite <- div_opp_l. apply div_1_r; order.
+intros. pos_or_neg a. now apply NZQuot.div_1_r.
+apply opp_inj. rewrite <- quot_opp_l. apply NZQuot.div_1_r; order.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq, lt_0_1.
Qed.
-Lemma mod_1_r: forall a, a mod 1 == 0.
+Lemma rem_1_r: forall a, a rem 1 == 0.
Proof.
-intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag.
+intros. rewrite rem_eq, quot_1_r; nzsimpl; auto using sub_diag.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1.
Qed.
-Lemma div_1_l: forall a, 1<a -> 1/a == 0.
-Proof. exact div_1_l. Qed.
+Lemma quot_1_l: forall a, 1<a -> 1÷a == 0.
+Proof. exact NZQuot.div_1_l. Qed.
+
+Lemma rem_1_l: forall a, 1<a -> 1 rem a == 1.
+Proof. exact NZQuot.mod_1_l. Qed.
+
+Lemma quot_mul : forall a b, b~=0 -> (a*b)÷b == a.
+Proof.
+intros. pos_or_neg a; pos_or_neg b. apply NZQuot.div_mul; order.
+rewrite <- quot_opp_opp, <- mul_opp_r by order. apply NZQuot.div_mul; order.
+rewrite <- opp_inj_wd, <- quot_opp_l, <- mul_opp_l by order.
+apply NZQuot.div_mul; order.
+rewrite <- opp_inj_wd, <- quot_opp_r, <- mul_opp_opp by order.
+apply NZQuot.div_mul; order.
+Qed.
+
+Lemma rem_mul : forall a b, b~=0 -> (a*b) rem b == 0.
+Proof.
+intros. rewrite rem_eq, quot_mul by trivial. rewrite mul_comm; apply sub_diag.
+Qed.
+
+(** The sign of [a rem b] is the one of [a] (when it's not null) *)
+
+Lemma rem_nonneg : forall a b, b~=0 -> 0 <= a -> 0 <= a rem b.
+Proof.
+ intros. pos_or_neg b. destruct (rem_bound_pos a b); order.
+ rewrite <- rem_opp_r; trivial.
+ destruct (rem_bound_pos a (-b)); trivial.
+Qed.
+
+Lemma rem_nonpos : forall a b, b~=0 -> a <= 0 -> a rem b <= 0.
+Proof.
+ intros a b Hb Ha.
+ apply opp_nonneg_nonpos. apply opp_nonneg_nonpos in Ha.
+ rewrite <- rem_opp_l by trivial. now apply rem_nonneg.
+Qed.
-Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
-Proof. exact mod_1_l. Qed.
+Lemma rem_sign_mul : forall a b, b~=0 -> 0 <= (a rem b) * a.
+Proof.
+intros a b Hb. destruct (le_ge_cases 0 a).
+ apply mul_nonneg_nonneg; trivial. now apply rem_nonneg.
+ apply mul_nonpos_nonpos; trivial. now apply rem_nonpos.
+Qed.
-Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
+Lemma rem_sign_nz : forall a b, b~=0 -> a rem b ~= 0 ->
+ sgn (a rem b) == sgn a.
Proof.
-intros. pos_or_neg a; pos_or_neg b. apply div_mul; order.
-rewrite <- div_opp_opp, <- mul_opp_r by order. apply div_mul; order.
-rewrite <- opp_inj_wd, <- div_opp_l, <- mul_opp_l by order. apply div_mul; order.
-rewrite <- opp_inj_wd, <- div_opp_r, <- mul_opp_opp by order. apply div_mul; order.
+intros a b Hb H. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
+rewrite 2 sgn_pos; try easy.
+ generalize (rem_nonneg a b Hb (lt_le_incl _ _ LT)). order.
+now rewrite <- EQ, rem_0_l, sgn_0.
+rewrite 2 sgn_neg; try easy.
+ generalize (rem_nonpos a b Hb (lt_le_incl _ _ LT)). order.
Qed.
-Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
+Lemma rem_sign : forall a b, a~=0 -> b~=0 -> sgn (a rem b) ~= -sgn a.
Proof.
-intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag.
+intros a b Ha Hb H.
+destruct (eq_decidable (a rem b) 0) as [EQ|NEQ].
+apply Ha, sgn_null_iff, opp_inj. now rewrite <- H, opp_0, EQ, sgn_0.
+apply Ha, sgn_null_iff. apply eq_mul_0_l with 2; try order'. nzsimpl'.
+apply add_move_0_l. rewrite <- H. symmetry. now apply rem_sign_nz.
Qed.
-(** * Order results about mod and div *)
+(** Operations and absolute value *)
+
+Lemma rem_abs_l : forall a b, b ~= 0 -> (abs a) rem b == abs (a rem b).
+Proof.
+intros a b Hb. destruct (le_ge_cases 0 a) as [LE|LE].
+rewrite 2 abs_eq; try easy. now apply rem_nonneg.
+rewrite 2 abs_neq, rem_opp_l; try easy. now apply rem_nonpos.
+Qed.
+
+Lemma rem_abs_r : forall a b, b ~= 0 -> a rem (abs b) == a rem b.
+Proof.
+intros a b Hb. destruct (le_ge_cases 0 b).
+now rewrite abs_eq. now rewrite abs_neq, ?rem_opp_r.
+Qed.
+
+Lemma rem_abs : forall a b, b ~= 0 -> (abs a) rem (abs b) == abs (a rem b).
+Proof.
+intros. now rewrite rem_abs_r, rem_abs_l.
+Qed.
+
+Lemma quot_abs_l : forall a b, b ~= 0 -> (abs a)÷b == (sgn a)*(a÷b).
+Proof.
+intros a b Hb. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
+rewrite abs_eq, sgn_pos by order. now nzsimpl.
+rewrite <- EQ, abs_0, quot_0_l; trivial. now nzsimpl.
+rewrite abs_neq, quot_opp_l, sgn_neg by order.
+ rewrite mul_opp_l. now nzsimpl.
+Qed.
+
+Lemma quot_abs_r : forall a b, b ~= 0 -> a÷(abs b) == (sgn b)*(a÷b).
+Proof.
+intros a b Hb. destruct (lt_trichotomy 0 b) as [LT|[EQ|LT]].
+rewrite abs_eq, sgn_pos by order. now nzsimpl.
+order.
+rewrite abs_neq, quot_opp_r, sgn_neg by order.
+ rewrite mul_opp_l. now nzsimpl.
+Qed.
+
+Lemma quot_abs : forall a b, b ~= 0 -> (abs a)÷(abs b) == abs (a÷b).
+Proof.
+intros a b Hb.
+pos_or_neg a; [rewrite (abs_eq a)|rewrite (abs_neq a)];
+ try apply opp_nonneg_nonpos; try order.
+pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
+ try apply opp_nonneg_nonpos; try order.
+rewrite abs_eq; try easy. apply NZQuot.div_pos; order.
+rewrite <- abs_opp, <- quot_opp_r, abs_eq; try easy.
+ apply NZQuot.div_pos; order.
+pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
+ try apply opp_nonneg_nonpos; try order.
+rewrite <- (abs_opp (_÷_)), <- quot_opp_l, abs_eq; try easy.
+ apply NZQuot.div_pos; order.
+rewrite <- (quot_opp_opp a b), abs_eq; try easy.
+ apply NZQuot.div_pos; order.
+Qed.
+
+(** We have a general bound for absolute values *)
+
+Lemma rem_bound_abs :
+ forall a b, b~=0 -> abs (a rem b) < abs b.
+Proof.
+intros. rewrite <- rem_abs; trivial.
+apply rem_bound_pos. apply abs_nonneg. now apply abs_pos.
+Qed.
+
+(** * Order results about rem and quot *)
(** A modulo cannot grow beyond its starting point. *)
-Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a.
-Proof. exact mod_le. Qed.
+Theorem rem_le: forall a b, 0<=a -> 0<b -> a rem b <= a.
+Proof. exact NZQuot.mod_le. Qed.
-Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
-Proof. exact div_pos. Qed.
+Theorem quot_pos : forall a b, 0<=a -> 0<b -> 0<= a÷b.
+Proof. exact NZQuot.div_pos. Qed.
-Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
-Proof. exact div_str_pos. Qed.
+Lemma quot_str_pos : forall a b, 0<b<=a -> 0 < a÷b.
+Proof. exact NZQuot.div_str_pos. Qed.
-Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> abs a < abs b).
+Lemma quot_small_iff : forall a b, b~=0 -> (a÷b==0 <-> abs a < abs b).
Proof.
intros. pos_or_neg a; pos_or_neg b.
-rewrite div_small_iff; try order. rewrite 2 abs_eq; intuition; order.
-rewrite <- opp_inj_wd, opp_0, <- div_opp_r, div_small_iff by order.
+rewrite NZQuot.div_small_iff; try order. rewrite 2 abs_eq; intuition; order.
+rewrite <- opp_inj_wd, opp_0, <- quot_opp_r, NZQuot.div_small_iff by order.
rewrite (abs_eq a), (abs_neq' b); intuition; order.
-rewrite <- opp_inj_wd, opp_0, <- div_opp_l, div_small_iff by order.
+rewrite <- opp_inj_wd, opp_0, <- quot_opp_l, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_eq b); intuition; order.
-rewrite <- div_opp_opp, div_small_iff by order.
+rewrite <- quot_opp_opp, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_neq' b); intuition; order.
Qed.
-Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> abs a < abs b).
+Lemma rem_small_iff : forall a b, b~=0 -> (a rem b == a <-> abs a < abs b).
Proof.
-intros. rewrite mod_eq, <- div_small_iff by order.
+intros. rewrite rem_eq, <- quot_small_iff by order.
rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
rewrite eq_sym_iff, eq_mul_0. tauto.
Qed.
@@ -227,306 +321,295 @@ Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
-Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
-Proof. exact div_lt. Qed.
+Lemma quot_lt : forall a b, 0<a -> 1<b -> a÷b < a.
+Proof. exact NZQuot.div_lt. Qed.
(** [le] is compatible with a positive division. *)
-Lemma div_le_mono : forall a b c, 0<c -> a<=b -> a/c <= b/c.
+Lemma quot_le_mono : forall a b c, 0<c -> a<=b -> a÷c <= b÷c.
Proof.
-intros. pos_or_neg a. apply div_le_mono; auto.
+intros. pos_or_neg a. apply NZQuot.div_le_mono; auto.
pos_or_neg b. apply le_trans with 0.
- rewrite <- opp_nonneg_nonpos, <- div_opp_l by order.
- apply div_pos; order.
- apply div_pos; order.
-rewrite opp_le_mono in *. rewrite <- 2 div_opp_l by order.
- apply div_le_mono; intuition; order.
+ rewrite <- opp_nonneg_nonpos, <- quot_opp_l by order.
+ apply quot_pos; order.
+ apply quot_pos; order.
+rewrite opp_le_mono in *. rewrite <- 2 quot_opp_l by order.
+ apply NZQuot.div_le_mono; intuition; order.
Qed.
(** With this choice of division,
- rounding of div is always done toward zero: *)
+ rounding of quot is always done toward zero: *)
-Lemma mul_div_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a/b) <= a.
+Lemma mul_quot_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a÷b) <= a.
Proof.
intros. pos_or_neg b.
split.
-apply mul_nonneg_nonneg; [|apply div_pos]; order.
-apply mul_div_le; order.
-rewrite <- mul_opp_opp, <- div_opp_r by order.
+apply mul_nonneg_nonneg; [|apply quot_pos]; order.
+apply NZQuot.mul_div_le; order.
+rewrite <- mul_opp_opp, <- quot_opp_r by order.
split.
-apply mul_nonneg_nonneg; [|apply div_pos]; order.
-apply mul_div_le; order.
+apply mul_nonneg_nonneg; [|apply quot_pos]; order.
+apply NZQuot.mul_div_le; order.
Qed.
-Lemma mul_div_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a/b) <= 0.
+Lemma mul_quot_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a÷b) <= 0.
Proof.
intros.
-rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-div_opp_l by order.
+rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
-destruct (mul_div_le (-a) b); tauto.
+destruct (mul_quot_le (-a) b); tauto.
Qed.
-(** For positive numbers, considering [S (a/b)] leads to an upper bound for [a] *)
+(** For positive numbers, considering [S (a÷b)] leads to an upper bound for [a] *)
-Lemma mul_succ_div_gt: forall a b, 0<=a -> 0<b -> a < b*(S (a/b)).
-Proof. exact mul_succ_div_gt. Qed.
+Lemma mul_succ_quot_gt: forall a b, 0<=a -> 0<b -> a < b*(S (a÷b)).
+Proof. exact NZQuot.mul_succ_div_gt. Qed.
(** Similar results with negative numbers *)
-Lemma mul_pred_div_lt: forall a b, a<=0 -> 0<b -> b*(P (a/b)) < a.
+Lemma mul_pred_quot_lt: forall a b, a<=0 -> 0<b -> b*(P (a÷b)) < a.
Proof.
intros.
-rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- div_opp_l by order.
+rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
-now apply mul_succ_div_gt.
+now apply mul_succ_quot_gt.
Qed.
-Lemma mul_pred_div_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a/b)).
+Lemma mul_pred_quot_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a÷b)).
Proof.
intros.
-rewrite <- mul_opp_opp, opp_pred, <- div_opp_r by order.
+rewrite <- mul_opp_opp, opp_pred, <- quot_opp_r by order.
rewrite <- opp_pos_neg in *.
-now apply mul_succ_div_gt.
+now apply mul_succ_quot_gt.
Qed.
-Lemma mul_succ_div_lt: forall a b, a<=0 -> b<0 -> b*(S (a/b)) < a.
+Lemma mul_succ_quot_lt: forall a b, a<=0 -> b<0 -> b*(S (a÷b)) < a.
Proof.
intros.
-rewrite opp_lt_mono, <- mul_opp_l, <- div_opp_opp by order.
+rewrite opp_lt_mono, <- mul_opp_l, <- quot_opp_opp by order.
rewrite <- opp_nonneg_nonpos, <- opp_pos_neg in *.
-now apply mul_succ_div_gt.
+now apply mul_succ_quot_gt.
Qed.
-(** Inequality [mul_div_le] is exact iff the modulo is zero. *)
+(** Inequality [mul_quot_le] is exact iff the modulo is zero. *)
-Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
+Lemma quot_exact : forall a b, b~=0 -> (a == b*(a÷b) <-> a rem b == 0).
Proof.
-intros. rewrite mod_eq by order. rewrite sub_move_r; nzsimpl; tauto.
+intros. rewrite rem_eq by order. rewrite sub_move_r; nzsimpl; tauto.
Qed.
-(** Some additionnal inequalities about div. *)
+(** Some additionnal inequalities about quot. *)
-Theorem div_lt_upper_bound:
- forall a b q, 0<=a -> 0<b -> a < b*q -> a/b < q.
-Proof. exact div_lt_upper_bound. Qed.
+Theorem quot_lt_upper_bound:
+ forall a b q, 0<=a -> 0<b -> a < b*q -> a÷b < q.
+Proof. exact NZQuot.div_lt_upper_bound. Qed.
-Theorem div_le_upper_bound:
- forall a b q, 0<b -> a <= b*q -> a/b <= q.
+Theorem quot_le_upper_bound:
+ forall a b q, 0<b -> a <= b*q -> a÷b <= q.
Proof.
intros.
-rewrite <- (div_mul q b) by order.
-apply div_le_mono; trivial. now rewrite mul_comm.
+rewrite <- (quot_mul q b) by order.
+apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
-Theorem div_le_lower_bound:
- forall a b q, 0<b -> b*q <= a -> q <= a/b.
+Theorem quot_le_lower_bound:
+ forall a b q, 0<b -> b*q <= a -> q <= a÷b.
Proof.
intros.
-rewrite <- (div_mul q b) by order.
-apply div_le_mono; trivial. now rewrite mul_comm.
+rewrite <- (quot_mul q b) by order.
+apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
(** A division respects opposite monotonicity for the divisor *)
-Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p/r <= p/q.
-Proof. exact div_le_compat_l. Qed.
+Lemma quot_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p÷r <= p÷q.
+Proof. exact NZQuot.div_le_compat_l. Qed.
-(** * Relations between usual operations and mod and div *)
+(** * Relations between usual operations and rem and quot *)
(** Unlike with other division conventions, some results here aren't
always valid, and need to be restricted. For instance
- [(a+b*c) mod c <> a mod c] for [a=9,b=-5,c=2] *)
+ [(a+b*c) rem c <> a rem c] for [a=9,b=-5,c=2] *)
-Lemma mod_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
- (a + b * c) mod c == a mod c.
+Lemma rem_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
+ (a + b * c) rem c == a rem c.
Proof.
-assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) mod c == a mod c).
- intros. pos_or_neg c. apply mod_add; order.
- rewrite <- (mod_opp_r a), <- (mod_opp_r (a+b*c)) by order.
+assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) rem c == a rem c).
+ intros. pos_or_neg c. apply NZQuot.mod_add; order.
+ rewrite <- (rem_opp_r a), <- (rem_opp_r (a+b*c)) by order.
rewrite <- mul_opp_opp in *.
- apply mod_add; order.
+ apply NZQuot.mod_add; order.
intros a b c Hc Habc.
destruct (le_0_mul _ _ Habc) as [(Habc',Ha)|(Habc',Ha)]. auto.
apply opp_inj. revert Ha Habc'.
rewrite <- 2 opp_nonneg_nonpos.
-rewrite <- 2 mod_opp_l, opp_add_distr, <- mul_opp_l by order. auto.
+rewrite <- 2 rem_opp_l, opp_add_distr, <- mul_opp_l by order. auto.
Qed.
-Lemma div_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
- (a + b * c) / c == a / c + b.
+Lemma quot_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
+ (a + b * c) ÷ c == a ÷ c + b.
Proof.
intros.
rewrite <- (mul_cancel_l _ _ c) by trivial.
-rewrite <- (add_cancel_r _ _ ((a+b*c) mod c)).
-rewrite <- div_mod, mod_add by trivial.
-now rewrite mul_add_distr_l, add_shuffle0, <-div_mod, mul_comm.
+rewrite <- (add_cancel_r _ _ ((a+b*c) rem c)).
+rewrite <- quot_rem, rem_add by trivial.
+now rewrite mul_add_distr_l, add_shuffle0, <-quot_rem, mul_comm.
Qed.
-Lemma div_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c ->
- (a * b + c) / b == a + c / b.
+Lemma quot_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c ->
+ (a * b + c) ÷ b == a + c ÷ b.
Proof.
- intros a b c. rewrite add_comm, (add_comm a). now apply div_add.
+ intros a b c. rewrite add_comm, (add_comm a). now apply quot_add.
Qed.
(** Cancellations. *)
-Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
- (a*c)/(b*c) == a/b.
+Lemma quot_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
+ (a*c)÷(b*c) == a÷b.
Proof.
-assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)/(b*c) == a/b).
- intros. pos_or_neg c. apply div_mul_cancel_r; order.
- rewrite <- div_opp_opp, <- 2 mul_opp_r. apply div_mul_cancel_r; order.
+assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)÷(b*c) == a÷b).
+ intros. pos_or_neg c. apply NZQuot.div_mul_cancel_r; order.
+ rewrite <- quot_opp_opp, <- 2 mul_opp_r. apply NZQuot.div_mul_cancel_r; order.
rewrite <- neq_mul_0; intuition order.
-assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)/(b*c) == a/b).
+assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)÷(b*c) == a÷b).
intros. pos_or_neg b. apply Aux1; order.
- apply opp_inj. rewrite <- 2 div_opp_r, <- mul_opp_l; try order. apply Aux1; order.
+ apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_l; try order. apply Aux1; order.
rewrite <- neq_mul_0; intuition order.
intros. pos_or_neg a. apply Aux2; order.
-apply opp_inj. rewrite <- 2 div_opp_l, <- mul_opp_l; try order. apply Aux2; order.
+apply opp_inj. rewrite <- 2 quot_opp_l, <- mul_opp_l; try order. apply Aux2; order.
rewrite <- neq_mul_0; intuition order.
Qed.
-Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
- (c*a)/(c*b) == a/b.
+Lemma quot_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
+ (c*a)÷(c*b) == a÷b.
Proof.
-intros. rewrite !(mul_comm c); now apply div_mul_cancel_r.
+intros. rewrite !(mul_comm c); now apply quot_mul_cancel_r.
Qed.
-Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 ->
- (a*c) mod (b*c) == (a mod b) * c.
+Lemma mul_rem_distr_r: forall a b c, b~=0 -> c~=0 ->
+ (a*c) rem (b*c) == (a rem b) * c.
Proof.
intros.
assert (b*c ~= 0) by (rewrite <- neq_mul_0; tauto).
-rewrite ! mod_eq by trivial.
-rewrite div_mul_cancel_r by order.
-now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a/b) c).
+rewrite ! rem_eq by trivial.
+rewrite quot_mul_cancel_r by order.
+now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a÷b) c).
Qed.
-Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 ->
- (c*a) mod (c*b) == c * (a mod b).
+Lemma mul_rem_distr_l: forall a b c, b~=0 -> c~=0 ->
+ (c*a) rem (c*b) == c * (a rem b).
Proof.
-intros; rewrite !(mul_comm c); now apply mul_mod_distr_r.
+intros; rewrite !(mul_comm c); now apply mul_rem_distr_r.
Qed.
(** Operations modulo. *)
-Theorem mod_mod: forall a n, n~=0 ->
- (a mod n) mod n == a mod n.
+Theorem rem_rem: forall a n, n~=0 ->
+ (a rem n) rem n == a rem n.
Proof.
-intros. pos_or_neg a; pos_or_neg n. apply mod_mod; order.
-rewrite <- ! (mod_opp_r _ n) by trivial. apply mod_mod; order.
-apply opp_inj. rewrite <- !mod_opp_l by order. apply mod_mod; order.
-apply opp_inj. rewrite <- !mod_opp_opp by order. apply mod_mod; order.
+intros. pos_or_neg a; pos_or_neg n. apply NZQuot.mod_mod; order.
+rewrite <- ! (rem_opp_r _ n) by trivial. apply NZQuot.mod_mod; order.
+apply opp_inj. rewrite <- !rem_opp_l by order. apply NZQuot.mod_mod; order.
+apply opp_inj. rewrite <- !rem_opp_opp by order. apply NZQuot.mod_mod; order.
Qed.
-Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
- ((a mod n)*b) mod n == (a*b) mod n.
+Lemma mul_rem_idemp_l : forall a b n, n~=0 ->
+ ((a rem n)*b) rem n == (a*b) rem n.
Proof.
assert (Aux1 : forall a b n, 0<=a -> 0<=b -> n~=0 ->
- ((a mod n)*b) mod n == (a*b) mod n).
- intros. pos_or_neg n. apply mul_mod_idemp_l; order.
- rewrite <- ! (mod_opp_r _ n) by order. apply mul_mod_idemp_l; order.
+ ((a rem n)*b) rem n == (a*b) rem n).
+ intros. pos_or_neg n. apply NZQuot.mul_mod_idemp_l; order.
+ rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.mul_mod_idemp_l; order.
assert (Aux2 : forall a b n, 0<=a -> n~=0 ->
- ((a mod n)*b) mod n == (a*b) mod n).
+ ((a rem n)*b) rem n == (a*b) rem n).
intros. pos_or_neg b. now apply Aux1.
- apply opp_inj. rewrite <-2 mod_opp_l, <-2 mul_opp_r by order.
+ apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_r by order.
apply Aux1; order.
intros a b n Hn. pos_or_neg a. now apply Aux2.
-apply opp_inj. rewrite <-2 mod_opp_l, <-2 mul_opp_l, <-mod_opp_l by order.
+apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_l, <-rem_opp_l by order.
apply Aux2; order.
Qed.
-Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
- (a*(b mod n)) mod n == (a*b) mod n.
+Lemma mul_rem_idemp_r : forall a b n, n~=0 ->
+ (a*(b rem n)) rem n == (a*b) rem n.
Proof.
-intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l.
+intros. rewrite !(mul_comm a). now apply mul_rem_idemp_l.
Qed.
-Theorem mul_mod: forall a b n, n~=0 ->
- (a * b) mod n == ((a mod n) * (b mod n)) mod n.
+Theorem mul_rem: forall a b n, n~=0 ->
+ (a * b) rem n == ((a rem n) * (b rem n)) rem n.
Proof.
-intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r.
+intros. now rewrite mul_rem_idemp_l, mul_rem_idemp_r.
Qed.
(** addition and modulo
Generally speaking, unlike with other conventions, we don't have
- [(a+b) mod n = (a mod n + b mod n) mod n]
+ [(a+b) rem n = (a rem n + b rem n) rem n]
for any a and b.
- For instance, take (8 + (-10)) mod 3 = -2 whereas
- (8 mod 3 + (-10 mod 3)) mod 3 = 1.
+ For instance, take (8 + (-10)) rem 3 = -2 whereas
+ (8 rem 3 + (-10 rem 3)) rem 3 = 1.
*)
-Lemma add_mod_idemp_l : forall a b n, n~=0 -> 0 <= a*b ->
- ((a mod n)+b) mod n == (a+b) mod n.
+Lemma add_rem_idemp_l : forall a b n, n~=0 -> 0 <= a*b ->
+ ((a rem n)+b) rem n == (a+b) rem n.
Proof.
assert (Aux : forall a b n, 0<=a -> 0<=b -> n~=0 ->
- ((a mod n)+b) mod n == (a+b) mod n).
- intros. pos_or_neg n. apply add_mod_idemp_l; order.
- rewrite <- ! (mod_opp_r _ n) by order. apply add_mod_idemp_l; order.
+ ((a rem n)+b) rem n == (a+b) rem n).
+ intros. pos_or_neg n. apply NZQuot.add_mod_idemp_l; order.
+ rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.add_mod_idemp_l; order.
intros a b n Hn Hab. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)].
now apply Aux.
-apply opp_inj. rewrite <-2 mod_opp_l, 2 opp_add_distr, <-mod_opp_l by order.
+apply opp_inj. rewrite <-2 rem_opp_l, 2 opp_add_distr, <-rem_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
now apply Aux.
Qed.
-Lemma add_mod_idemp_r : forall a b n, n~=0 -> 0 <= a*b ->
- (a+(b mod n)) mod n == (a+b) mod n.
+Lemma add_rem_idemp_r : forall a b n, n~=0 -> 0 <= a*b ->
+ (a+(b rem n)) rem n == (a+b) rem n.
Proof.
-intros. rewrite !(add_comm a). apply add_mod_idemp_l; trivial.
+intros. rewrite !(add_comm a). apply add_rem_idemp_l; trivial.
now rewrite mul_comm.
Qed.
-Theorem add_mod: forall a b n, n~=0 -> 0 <= a*b ->
- (a+b) mod n == (a mod n + b mod n) mod n.
+Theorem add_rem: forall a b n, n~=0 -> 0 <= a*b ->
+ (a+b) rem n == (a rem n + b rem n) rem n.
Proof.
-intros a b n Hn Hab. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial.
+intros a b n Hn Hab. rewrite add_rem_idemp_l, add_rem_idemp_r; trivial.
reflexivity.
destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)];
- destruct (le_0_mul _ _ (mod_sign b n Hn)) as [(Hb',Hm)|(Hb',Hm)];
+ destruct (le_0_mul _ _ (rem_sign_mul b n Hn)) as [(Hb',Hm)|(Hb',Hm)];
auto using mul_nonneg_nonneg, mul_nonpos_nonpos.
- setoid_replace b with 0 by order. rewrite mod_0_l by order. nzsimpl; order.
- setoid_replace b with 0 by order. rewrite mod_0_l by order. nzsimpl; order.
+ setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
+ setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
Qed.
(** Conversely, the following result needs less restrictions here. *)
-Lemma div_div : forall a b c, b~=0 -> c~=0 ->
- (a/b)/c == a/(b*c).
+Lemma quot_quot : forall a b c, b~=0 -> c~=0 ->
+ (a÷b)÷c == a÷(b*c).
Proof.
-assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a/b)/c == a/(b*c)).
- intros. pos_or_neg c. apply div_div; order.
- apply opp_inj. rewrite <- 2 div_opp_r, <- mul_opp_r; trivial.
- apply div_div; order.
+assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a÷b)÷c == a÷(b*c)).
+ intros. pos_or_neg c. apply NZQuot.div_div; order.
+ apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_r; trivial.
+ apply NZQuot.div_div; order.
rewrite <- neq_mul_0; intuition order.
-assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a/b)/c == a/(b*c)).
+assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a÷b)÷c == a÷(b*c)).
intros. pos_or_neg b. apply Aux1; order.
- apply opp_inj. rewrite <- div_opp_l, <- 2 div_opp_r, <- mul_opp_l; trivial.
+ apply opp_inj. rewrite <- quot_opp_l, <- 2 quot_opp_r, <- mul_opp_l; trivial.
apply Aux1; trivial.
rewrite <- neq_mul_0; intuition order.
intros. pos_or_neg a. apply Aux2; order.
-apply opp_inj. rewrite <- 3 div_opp_l; try order. apply Aux2; order.
+apply opp_inj. rewrite <- 3 quot_opp_l; try order. apply Aux2; order.
rewrite <- neq_mul_0. tauto.
Qed.
(** A last inequality: *)
-Theorem div_mul_le:
- forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
-Proof. exact div_mul_le. Qed.
-
-(** mod is related to divisibility *)
-
-Lemma mod_divides : forall a b, b~=0 ->
- (a mod b == 0 <-> exists c, a == b*c).
-Proof.
- intros a b Hb. split.
- intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1.
- rewrite Hab; now nzsimpl.
- intros (c,Hc). rewrite Hc, mul_comm. now apply mod_mul.
-Qed.
+Theorem quot_mul_le:
+ forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a÷b) <= (c*a)÷b.
+Proof. exact NZQuot.div_mul_le. Qed.
-End ZDivProp.
+End ZQuotProp.