aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZDivEucl.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-12-06 15:47:32 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-12-06 15:47:32 +0000
commit9764ebbb67edf73a147c536a3c4f4ed0f1a7ce9e (patch)
tree881218364deec8873c06ca90c00134ae4cac724c /theories/Numbers/Integer/Abstract/ZDivEucl.v
parentcb74dea69e7de85f427719019bc23ed3c974c8f3 (diff)
Numbers and bitwise functions.
See NatInt/NZBits.v for the common axiomatization of bitwise functions over naturals / integers. Some specs aren't pretty, but easier to prove, see alternate statements in property functors {N,Z}Bits. Negative numbers are considered via the two's complement convention. We provide implementations for N (in Ndigits.v), for nat (quite dummy, just for completeness), for Z (new file Zdigits_def), for BigN (for the moment partly by converting to N, to be improved soon) and for BigZ. NOTA: For BigN.shiftl and BigN.shiftr, the two arguments are now in the reversed order (for consistency with the rest of the world): for instance BigN.shiftl 1 10 is 2^10. NOTA2: Zeven.Zdiv2 is _not_ doing (Zdiv _ 2), but rather (Zquot _ 2) on negative numbers. For the moment I've kept it intact, and have just added a Zdiv2' which is truly equivalent to (Zdiv _ 2). To reorganize someday ? git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13689 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZDivEucl.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivEucl.v17
1 files changed, 17 insertions, 0 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v
index 070003972..c8fd29a54 100644
--- a/theories/Numbers/Integer/Abstract/ZDivEucl.v
+++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v
@@ -575,6 +575,23 @@ Proof.
apply div_mod; order.
Qed.
+(** Similarly, the following result doesn't always hold for negative
+ [b] and [c]. For instance [3 mod (-2*-2)) = 3] while
+ [3 mod (-2) + (-2)*((3/-2) mod -2) = -1].
+*)
+
+Lemma mod_mul_r : forall a b c, 0<b -> 0<c ->
+ a mod (b*c) == a mod b + b*((a/b) mod c).
+Proof.
+ intros a b c Hb Hc.
+ apply add_cancel_l with (b*c*(a/(b*c))).
+ rewrite <- div_mod by (apply neq_mul_0; split; order).
+ rewrite <- div_div by trivial.
+ rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
+ rewrite <- div_mod by order.
+ apply div_mod; order.
+Qed.
+
(** A last inequality: *)
Theorem div_mul_le: