aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Cyclic/Abstract
diff options
context:
space:
mode:
authorGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-06-28 14:53:00 +0000
committerGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2010-06-28 14:53:00 +0000
commitee711f8994d5e2e94cc61292ac6aab125c23df1c (patch)
treeac25d186d1c280327dfa7654ff1dd8929b942d76 /theories/Numbers/Cyclic/Abstract
parent94dc370fac30092d68b4d1aeb91ad9380232dbc2 (diff)
Fix compilation by replacing some "auto with zarith" with "ring"
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13212 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Numbers/Cyclic/Abstract')
-rw-r--r--theories/Numbers/Cyclic/Abstract/CyclicAxioms.v2
-rw-r--r--theories/Numbers/Cyclic/Abstract/NZCyclic.v4
2 files changed, 3 insertions, 3 deletions
diff --git a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
index 0403722cb..1e66d9b9e 100644
--- a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
+++ b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
@@ -269,7 +269,7 @@ Module ZnZ.
case (of_pos p); intros n w1; simpl.
case n; simpl Npos; auto with zarith.
intros p1 Hp1; contradict Hp; apply Zle_not_lt.
- replace (base digits) with (1 * base digits + 0) by auto with zarith.
+ replace (base digits) with (1 * base digits + 0) by ring.
rewrite Hp1.
apply Zplus_le_compat.
apply Zmult_le_compat; auto with zarith.
diff --git a/theories/Numbers/Cyclic/Abstract/NZCyclic.v b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
index 0796d9f49..1149bc2cd 100644
--- a/theories/Numbers/Cyclic/Abstract/NZCyclic.v
+++ b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
@@ -100,7 +100,7 @@ Theorem pred_succ : forall n, P (S n) == n.
Proof.
intro n. zify.
rewrite <- pred_mod_wB.
-replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod.
+replace ([| n |] + 1 - 1)%Z with [| n |] by ring. apply NZ_to_Z_mod.
Qed.
Section Induction.
@@ -170,7 +170,7 @@ Theorem sub_succ_r : forall n m, n - (S m) == P (n - m).
Proof.
intros n m. zify. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l.
now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z
- by auto with zarith.
+ by ring.
Qed.
Theorem mul_0_l : forall n, 0 * n == 0.