aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/NArith
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:16 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:16 +0000
commitfc2613e871dffffa788d90044a81598f671d0a3b (patch)
treef6f308b3d6b02e1235446b2eb4a2d04b135a0462 /theories/NArith
parentf93f073df630bb46ddd07802026c0326dc72dafd (diff)
ZArith + other : favor the use of modern names instead of compat notations
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/NArith')
-rw-r--r--theories/NArith/BinNat.v42
-rw-r--r--theories/NArith/BinNatDef.v88
-rw-r--r--theories/NArith/Ndec.v441
-rw-r--r--theories/NArith/Ndigits.v181
-rw-r--r--theories/NArith/Ndist.v54
5 files changed, 338 insertions, 468 deletions
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v
index 6128b9740..046670f7b 100644
--- a/theories/NArith/BinNat.v
+++ b/theories/NArith/BinNat.v
@@ -76,7 +76,7 @@ Defined.
(** Discrimination principle *)
-Definition discr n : { p:positive | n = Npos p } + { n = N0 }.
+Definition discr n : { p:positive | n = pos p } + { n = 0 }.
Proof.
destruct n; auto.
left; exists p; auto.
@@ -87,12 +87,12 @@ Defined.
Definition binary_rect (P:N -> Type) (f0 : P 0)
(f2 : forall n, P n -> P (double n))
(fS2 : forall n, P n -> P (succ_double n)) (n : N) : P n :=
- let P' p := P (Npos p) in
- let f2' p := f2 (Npos p) in
- let fS2' p := fS2 (Npos p) in
+ let P' p := P (pos p) in
+ let f2' p := f2 (pos p) in
+ let fS2' p := fS2 (pos p) in
match n with
| 0 => f0
- | Npos p => positive_rect P' fS2' f2' (fS2 0 f0) p
+ | pos p => positive_rect P' fS2' f2' (fS2 0 f0) p
end.
Definition binary_rec (P:N -> Set) := binary_rect P.
@@ -103,11 +103,11 @@ Definition binary_ind (P:N -> Prop) := binary_rect P.
Definition peano_rect
(P : N -> Type) (f0 : P 0)
(f : forall n : N, P n -> P (succ n)) (n : N) : P n :=
-let P' p := P (Npos p) in
-let f' p := f (Npos p) in
+let P' p := P (pos p) in
+let f' p := f (pos p) in
match n with
| 0 => f0
-| Npos p => Pos.peano_rect P' (f 0 f0) f' p
+| pos p => Pos.peano_rect P' (f 0 f0) f' p
end.
Theorem peano_rect_base P a f : peano_rect P a f 0 = a.
@@ -140,12 +140,12 @@ Qed.
(** Properties of mixed successor and predecessor. *)
-Lemma pos_pred_spec p : Pos.pred_N p = pred (Npos p).
+Lemma pos_pred_spec p : Pos.pred_N p = pred (pos p).
Proof.
now destruct p.
Qed.
-Lemma succ_pos_spec n : Npos (succ_pos n) = succ n.
+Lemma succ_pos_spec n : pos (succ_pos n) = succ n.
Proof.
now destruct n.
Qed.
@@ -155,7 +155,7 @@ Proof.
destruct n. trivial. apply Pos.pred_N_succ.
Qed.
-Lemma succ_pos_pred p : succ (Pos.pred_N p) = Npos p.
+Lemma succ_pos_pred p : succ (Pos.pred_N p) = pos p.
Proof.
destruct p; simpl; trivial. f_equal. apply Pos.succ_pred_double.
Qed.
@@ -472,7 +472,7 @@ Lemma log2_spec n : 0 < n ->
2^(log2 n) <= n < 2^(succ (log2 n)).
Proof.
destruct n as [|[p|p|]]; discriminate || intros _; simpl; split.
- apply (size_le (Npos p)).
+ apply (size_le (pos p)).
apply Pos.size_gt.
apply Pos.size_le.
apply Pos.size_gt.
@@ -494,7 +494,7 @@ Proof.
trivial.
destruct p; simpl; split; try easy.
intros (m,H). now destruct m.
- now exists (Npos p).
+ now exists (pos p).
intros (m,H). now destruct m.
Qed.
@@ -504,7 +504,7 @@ Proof.
split. discriminate.
intros (m,H). now destruct m.
destruct p; simpl; split; try easy.
- now exists (Npos p).
+ now exists (pos p).
intros (m,H). now destruct m.
now exists 0.
Qed.
@@ -512,19 +512,19 @@ Qed.
(** Specification of the euclidean division *)
Theorem pos_div_eucl_spec (a:positive)(b:N) :
- let (q,r) := pos_div_eucl a b in Npos a = q * b + r.
+ let (q,r) := pos_div_eucl a b in pos a = q * b + r.
Proof.
induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta.
(* a~1 *)
destruct pos_div_eucl as (q,r).
- change (Npos a~1) with (succ_double (Npos a)).
+ change (pos a~1) with (succ_double (pos a)).
rewrite IHa, succ_double_add, double_mul.
case leb_spec; intros H; trivial.
rewrite succ_double_mul, <- add_assoc. f_equal.
now rewrite (add_comm b), sub_add.
(* a~0 *)
destruct pos_div_eucl as (q,r).
- change (Npos a~0) with (double (Npos a)).
+ change (pos a~0) with (double (pos a)).
rewrite IHa, double_add, double_mul.
case leb_spec; intros H; trivial.
rewrite succ_double_mul, <- add_assoc. f_equal.
@@ -537,7 +537,7 @@ Theorem div_eucl_spec a b :
let (q,r) := div_eucl a b in a = b * q + r.
Proof.
destruct a as [|a], b as [|b]; unfold div_eucl; trivial.
- generalize (pos_div_eucl_spec a (Npos b)).
+ generalize (pos_div_eucl_spec a (pos b)).
destruct pos_div_eucl. now rewrite mul_comm.
Qed.
@@ -664,7 +664,7 @@ Proof.
destruct (Pos.gcd_greatest p q r) as (u,H).
exists s. now inversion Hs.
exists t. now inversion Ht.
- exists (Npos u). simpl; now f_equal.
+ exists (pos u). simpl; now f_equal.
Qed.
Lemma gcd_nonneg a b : 0 <= gcd a b.
@@ -862,7 +862,7 @@ Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _.
Theorem bi_induction :
forall A : N -> Prop, Proper (Logic.eq==>iff) A ->
- A N0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n.
+ A 0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n.
Proof.
intros A A_wd A0 AS. apply peano_rect. assumption. intros; now apply -> AS.
Qed.
@@ -1018,7 +1018,7 @@ Notation N_rect := N_rect (only parsing).
Notation N_rec := N_rec (only parsing).
Notation N_ind := N_ind (only parsing).
Notation N0 := N0 (only parsing).
-Notation Npos := Npos (only parsing).
+Notation Npos := N.pos (only parsing).
Notation Ndiscr := N.discr (compat "8.3").
Notation Ndouble_plus_one := N.succ_double (compat "8.3").
diff --git a/theories/NArith/BinNatDef.v b/theories/NArith/BinNatDef.v
index b95c9b4bc..76526a5ce 100644
--- a/theories/NArith/BinNatDef.v
+++ b/theories/NArith/BinNatDef.v
@@ -19,6 +19,10 @@ Module N.
Definition t := N.
+(** ** Nicer name [N.pos] for contructor [Npos] *)
+
+Notation pos := Npos.
+
(** ** Constants *)
Definition zero := 0.
@@ -30,7 +34,7 @@ Definition two := 2.
Definition succ_double x :=
match x with
| 0 => 1
- | Npos p => Npos p~1
+ | pos p => pos p~1
end.
(** ** Operation [x -> 2*x] *)
@@ -38,7 +42,7 @@ Definition succ_double x :=
Definition double n :=
match n with
| 0 => 0
- | Npos p => Npos p~0
+ | pos p => pos p~0
end.
(** ** Successor *)
@@ -46,7 +50,7 @@ Definition double n :=
Definition succ n :=
match n with
| 0 => 1
- | Npos p => Npos (Pos.succ p)
+ | pos p => pos (Pos.succ p)
end.
(** ** Predecessor *)
@@ -54,15 +58,15 @@ Definition succ n :=
Definition pred n :=
match n with
| 0 => 0
- | Npos p => Pos.pred_N p
+ | pos p => Pos.pred_N p
end.
(** ** The successor of a [N] can be seen as a [positive] *)
Definition succ_pos (n : N) : positive :=
match n with
- | N0 => 1%positive
- | Npos p => Pos.succ p
+ | 0 => 1%positive
+ | pos p => Pos.succ p
end.
(** ** Addition *)
@@ -71,7 +75,7 @@ Definition add n m :=
match n, m with
| 0, _ => m
| _, 0 => n
- | Npos p, Npos q => Npos (p + q)
+ | pos p, pos q => pos (p + q)
end.
Infix "+" := add : N_scope.
@@ -82,9 +86,9 @@ Definition sub n m :=
match n, m with
| 0, _ => 0
| n, 0 => n
-| Npos n', Npos m' =>
+| pos n', pos m' =>
match Pos.sub_mask n' m' with
- | IsPos p => Npos p
+ | IsPos p => pos p
| _ => 0
end
end.
@@ -97,7 +101,7 @@ Definition mul n m :=
match n, m with
| 0, _ => 0
| _, 0 => 0
- | Npos p, Npos q => Npos (p * q)
+ | pos p, pos q => pos (p * q)
end.
Infix "*" := mul : N_scope.
@@ -107,9 +111,9 @@ Infix "*" := mul : N_scope.
Definition compare n m :=
match n, m with
| 0, 0 => Eq
- | 0, Npos m' => Lt
- | Npos n', 0 => Gt
- | Npos n', Npos m' => (n' ?= m')%positive
+ | 0, pos m' => Lt
+ | pos n', 0 => Gt
+ | pos n', pos m' => (n' ?= m')%positive
end.
Infix "?=" := compare (at level 70, no associativity) : N_scope.
@@ -119,7 +123,7 @@ Infix "?=" := compare (at level 70, no associativity) : N_scope.
Fixpoint eqb n m :=
match n, m with
| 0, 0 => true
- | Npos p, Npos q => Pos.eqb p q
+ | pos p, pos q => Pos.eqb p q
| _, _ => false
end.
@@ -151,8 +155,8 @@ Definition div2 n :=
match n with
| 0 => 0
| 1 => 0
- | Npos (p~0) => Npos p
- | Npos (p~1) => Npos p
+ | pos (p~0) => pos p
+ | pos (p~1) => pos p
end.
(** Parity *)
@@ -160,7 +164,7 @@ Definition div2 n :=
Definition even n :=
match n with
| 0 => true
- | Npos (xO _) => true
+ | pos (xO _) => true
| _ => false
end.
@@ -172,7 +176,7 @@ Definition pow n p :=
match p, n with
| 0, _ => 1
| _, 0 => 0
- | Npos p, Npos q => Npos (q^p)
+ | pos p, pos q => pos (q^p)
end.
Infix "^" := pow : N_scope.
@@ -182,7 +186,7 @@ Infix "^" := pow : N_scope.
Definition square n :=
match n with
| 0 => 0
- | Npos p => Npos (Pos.square p)
+ | pos p => pos (Pos.square p)
end.
(** Base-2 logarithm *)
@@ -191,8 +195,8 @@ Definition log2 n :=
match n with
| 0 => 0
| 1 => 0
- | Npos (p~0) => Npos (Pos.size p)
- | Npos (p~1) => Npos (Pos.size p)
+ | pos (p~0) => pos (Pos.size p)
+ | pos (p~1) => pos (Pos.size p)
end.
(** How many digits in a number ?
@@ -202,13 +206,13 @@ Definition log2 n :=
Definition size n :=
match n with
| 0 => 0
- | Npos p => Npos (Pos.size p)
+ | pos p => pos (Pos.size p)
end.
Definition size_nat n :=
match n with
| 0 => O
- | Npos p => Pos.size_nat p
+ | pos p => Pos.size_nat p
end.
(** Euclidean division *)
@@ -233,7 +237,7 @@ Definition div_eucl (a b:N) : N * N :=
match a, b with
| 0, _ => (0, 0)
| _, 0 => (0, a)
- | Npos na, _ => pos_div_eucl na b
+ | pos na, _ => pos_div_eucl na b
end.
Definition div a b := fst (div_eucl a b).
@@ -248,7 +252,7 @@ Definition gcd a b :=
match a, b with
| 0, _ => b
| _, 0 => a
- | Npos p, Npos q => Npos (Pos.gcd p q)
+ | pos p, pos q => pos (Pos.gcd p q)
end.
(** Generalized Gcd, also computing rests of [a] and [b] after
@@ -258,9 +262,9 @@ Definition ggcd a b :=
match a, b with
| 0, _ => (b,(0,1))
| _, 0 => (a,(1,0))
- | Npos p, Npos q =>
+ | pos p, pos q =>
let '(g,(aa,bb)) := Pos.ggcd p q in
- (Npos g, (Npos aa, Npos bb))
+ (pos g, (pos aa, pos bb))
end.
(** Square root *)
@@ -268,17 +272,17 @@ Definition ggcd a b :=
Definition sqrtrem n :=
match n with
| 0 => (0, 0)
- | Npos p =>
+ | pos p =>
match Pos.sqrtrem p with
- | (s, IsPos r) => (Npos s, Npos r)
- | (s, _) => (Npos s, 0)
+ | (s, IsPos r) => (pos s, pos r)
+ | (s, _) => (pos s, 0)
end
end.
Definition sqrt n :=
match n with
| 0 => 0
- | Npos p => Npos (Pos.sqrt p)
+ | pos p => pos (Pos.sqrt p)
end.
(** Operation over bits of a [N] number. *)
@@ -289,7 +293,7 @@ Definition lor n m :=
match n, m with
| 0, _ => m
| _, 0 => n
- | Npos p, Npos q => Npos (Pos.lor p q)
+ | pos p, pos q => pos (Pos.lor p q)
end.
(** Logical [and] *)
@@ -298,7 +302,7 @@ Definition land n m :=
match n, m with
| 0, _ => 0
| _, 0 => 0
- | Npos p, Npos q => Pos.land p q
+ | pos p, pos q => Pos.land p q
end.
(** Logical [diff] *)
@@ -307,7 +311,7 @@ Fixpoint ldiff n m :=
match n, m with
| 0, _ => 0
| _, 0 => n
- | Npos p, Npos q => Pos.ldiff p q
+ | pos p, pos q => Pos.ldiff p q
end.
(** [xor] *)
@@ -316,7 +320,7 @@ Definition lxor n m :=
match n, m with
| 0, _ => m
| _, 0 => n
- | Npos p, Npos q => Pos.lxor p q
+ | pos p, pos q => Pos.lxor p q
end.
(** Shifts *)
@@ -327,13 +331,13 @@ Definition shiftr_nat (a:N)(n:nat) := nat_iter n div2 a.
Definition shiftl a n :=
match a with
| 0 => 0
- | Npos a => Npos (Pos.shiftl a n)
+ | pos a => pos (Pos.shiftl a n)
end.
Definition shiftr a n :=
match n with
| 0 => a
- | Npos p => Pos.iter p div2 a
+ | pos p => Pos.iter p div2 a
end.
(** Checking whether a particular bit is set or not *)
@@ -341,7 +345,7 @@ Definition shiftr a n :=
Definition testbit_nat (a:N) :=
match a with
| 0 => fun _ => false
- | Npos p => Pos.testbit_nat p
+ | pos p => Pos.testbit_nat p
end.
(** Same, but with index in N *)
@@ -349,7 +353,7 @@ Definition testbit_nat (a:N) :=
Definition testbit a n :=
match a with
| 0 => false
- | Npos p => Pos.testbit p n
+ | pos p => Pos.testbit p n
end.
(** Translation from [N] to [nat] and back. *)
@@ -357,13 +361,13 @@ Definition testbit a n :=
Definition to_nat (a:N) :=
match a with
| 0 => O
- | Npos p => Pos.to_nat p
+ | pos p => Pos.to_nat p
end.
Definition of_nat (n:nat) :=
match n with
| O => 0
- | S n' => Npos (Pos.of_succ_nat n')
+ | S n' => pos (Pos.of_succ_nat n')
end.
(** Iteration of a function *)
@@ -371,7 +375,7 @@ Definition of_nat (n:nat) :=
Definition iter (n:N) {A} (f:A->A) (x:A) : A :=
match n with
| 0 => x
- | Npos p => Pos.iter p f x
+ | pos p => Pos.iter p f x
end.
End N. \ No newline at end of file
diff --git a/theories/NArith/Ndec.v b/theories/NArith/Ndec.v
index f2ee29cc0..ee0b2ebc4 100644
--- a/theories/NArith/Ndec.v
+++ b/theories/NArith/Ndec.v
@@ -15,315 +15,238 @@ Require Import Pnat.
Require Import Nnat.
Require Import Ndigits.
-(** A boolean equality over [N] *)
+Local Open Scope N_scope.
-Notation Peqb := Peqb (only parsing). (* Now in [BinPos] *)
-Notation Neqb := Neqb (only parsing). (* Now in [BinNat] *)
+(** Obsolete results about boolean comparisons over [N],
+ kept for compatibility with IntMap and SMC. *)
-Notation Peqb_correct := Peqb_refl (only parsing).
+Notation Peqb := Pos.eqb (compat "8.3").
+Notation Neqb := N.eqb (compat "8.3").
+Notation Peqb_correct := Pos.eqb_refl (compat "8.3").
+Notation Neqb_correct := N.eqb_refl (compat "8.3").
+Notation Neqb_comm := N.eqb_sym (compat "8.3").
-Lemma Peqb_complete : forall p p', Peqb p p' = true -> p = p'.
-Proof.
- intros. now apply (Peqb_eq p p').
-Qed.
+Lemma Peqb_complete p p' : Pos.eqb p p' = true -> p = p'.
+Proof. now apply Pos.eqb_eq. Qed.
-Lemma Peqb_Pcompare : forall p p', Peqb p p' = true -> Pos.compare p p' = Eq.
-Proof.
- intros. now rewrite Pos.compare_eq_iff, <- Peqb_eq.
-Qed.
-
-Lemma Pcompare_Peqb : forall p p', Pos.compare p p' = Eq -> Peqb p p' = true.
-Proof.
- intros; now rewrite Peqb_eq, <- Pos.compare_eq_iff.
-Qed.
+Lemma Peqb_Pcompare p p' : Pos.eqb p p' = true -> Pos.compare p p' = Eq.
+Proof. now rewrite Pos.compare_eq_iff, <- Pos.eqb_eq. Qed.
-Lemma Neqb_correct : forall n, Neqb n n = true.
-Proof.
- intros; now rewrite Neqb_eq.
-Qed.
+Lemma Pcompare_Peqb p p' : Pos.compare p p' = Eq -> Pos.eqb p p' = true.
+Proof. now rewrite Pos.eqb_eq, <- Pos.compare_eq_iff. Qed.
-Lemma Neqb_Ncompare : forall n n', Neqb n n' = true -> Ncompare n n' = Eq.
-Proof.
- intros; now rewrite Ncompare_eq_correct, <- Neqb_eq.
-Qed.
+Lemma Neqb_Ncompare n n' : N.eqb n n' = true -> N.compare n n' = Eq.
+Proof. now rewrite N.compare_eq_iff, <- N.eqb_eq. Qed.
-Lemma Ncompare_Neqb : forall n n', Ncompare n n' = Eq -> Neqb n n' = true.
-Proof.
- intros; now rewrite Neqb_eq, <- Ncompare_eq_correct.
-Qed.
+Lemma Ncompare_Neqb n n' : N.compare n n' = Eq -> N.eqb n n' = true.
+Proof. now rewrite N.eqb_eq, <- N.compare_eq_iff. Qed.
-Lemma Neqb_complete : forall a a', Neqb a a' = true -> a = a'.
-Proof.
- intros; now rewrite <- Neqb_eq.
-Qed.
+Lemma Neqb_complete n n' : N.eqb n n' = true -> n = n'.
+Proof. now apply N.eqb_eq. Qed.
-Lemma Neqb_comm : forall a a', Neqb a a' = Neqb a' a.
+Lemma Nxor_eq_true n n' : N.lxor n n' = 0 -> N.eqb n n' = true.
Proof.
- intros; apply eq_true_iff_eq. rewrite 2 Neqb_eq; auto with *.
+ intro H. apply N.lxor_eq in H. subst. apply N.eqb_refl.
Qed.
-Lemma Nxor_eq_true :
- forall a a', Nxor a a' = N0 -> Neqb a a' = true.
-Proof.
- intros. rewrite (Nxor_eq a a' H). apply Neqb_correct.
-Qed.
+Ltac eqb2eq := rewrite <- ?not_true_iff_false in *; rewrite ?N.eqb_eq in *.
-Lemma Nxor_eq_false :
- forall a a' p, Nxor a a' = Npos p -> Neqb a a' = false.
+Lemma Nxor_eq_false n n' p :
+ N.lxor n n' = N.pos p -> N.eqb n n' = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb a a')). intro H0.
- rewrite (Neqb_complete a a' H0) in H.
- rewrite (Nxor_nilpotent a') in H. discriminate H.
- trivial.
+ intros. eqb2eq. intro. subst. now rewrite N.lxor_nilpotent in *.
Qed.
-Lemma Nodd_not_double :
- forall a,
- Nodd a -> forall a0, Neqb (Ndouble a0) a = false.
+Lemma Nodd_not_double a :
+ Nodd a -> forall a0, N.eqb (N.double a0) a = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0.
- rewrite <- (Neqb_complete _ _ H0) in H.
- unfold Nodd in H.
- rewrite (Ndouble_bit0 a0) in H. discriminate H.
- trivial.
+ intros. eqb2eq. intros <-.
+ unfold Nodd in *. now rewrite Ndouble_bit0 in *.
Qed.
-Lemma Nnot_div2_not_double :
- forall a a0,
- Neqb (Ndiv2 a) a0 = false -> Neqb a (Ndouble a0) = false.
+Lemma Nnot_div2_not_double a a0 :
+ N.eqb (N.div2 a) a0 = false -> N.eqb a (N.double a0) = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0.
- rewrite <- (Neqb_complete _ _ H0) in H. rewrite (Ndouble_div2 a0) in H.
- rewrite (Neqb_correct a0) in H. discriminate H.
- intro. rewrite Neqb_comm. assumption.
+ intros H. eqb2eq. contradict H. subst. apply N.div2_double.
Qed.
-Lemma Neven_not_double_plus_one :
- forall a,
- Neven a -> forall a0, Neqb (Ndouble_plus_one a0) a = false.
+Lemma Neven_not_double_plus_one a :
+ Neven a -> forall a0, N.eqb (N.succ_double a0) a = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb (Ndouble_plus_one a0) a)). intro H0.
- rewrite <- (Neqb_complete _ _ H0) in H.
- unfold Neven in H.
- rewrite (Ndouble_plus_one_bit0 a0) in H.
- discriminate H.
- trivial.
+ intros. eqb2eq. intros <-.
+ unfold Neven in *. now rewrite Ndouble_plus_one_bit0 in *.
Qed.
-Lemma Nnot_div2_not_double_plus_one :
- forall a a0,
- Neqb (Ndiv2 a) a0 = false -> Neqb (Ndouble_plus_one a0) a = false.
+Lemma Nnot_div2_not_double_plus_one a a0 :
+ N.eqb (N.div2 a) a0 = false -> N.eqb (N.succ_double a0) a = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb a (Ndouble_plus_one a0))). intro H0.
- rewrite (Neqb_complete _ _ H0) in H. rewrite (Ndouble_plus_one_div2 a0) in H.
- rewrite (Neqb_correct a0) in H. discriminate H.
- intro H0. rewrite Neqb_comm. assumption.
+ intros H. eqb2eq. contradict H. subst. apply N.div2_succ_double.
Qed.
-Lemma Nbit0_neq :
- forall a a',
- Nbit0 a = false -> Nbit0 a' = true -> Neqb a a' = false.
+Lemma Nbit0_neq a a' :
+ N.odd a = false -> N.odd a' = true -> N.eqb a a' = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb a a')). intro H1.
- rewrite (Neqb_complete _ _ H1) in H.
- rewrite H in H0. discriminate H0.
- trivial.
+ intros. eqb2eq. now intros <-.
Qed.
-Lemma Ndiv2_eq :
- forall a a', Neqb a a' = true -> Neqb (Ndiv2 a) (Ndiv2 a') = true.
+Lemma Ndiv2_eq a a' :
+ N.eqb a a' = true -> N.eqb (N.div2 a) (N.div2 a') = true.
Proof.
- intros. cut (a = a'). intros. rewrite H0. apply Neqb_correct.
- apply Neqb_complete. exact H.
+ intros. eqb2eq. now subst.
Qed.
-Lemma Ndiv2_neq :
- forall a a',
- Neqb (Ndiv2 a) (Ndiv2 a') = false -> Neqb a a' = false.
+Lemma Ndiv2_neq a a' :
+ N.eqb (N.div2 a) (N.div2 a') = false -> N.eqb a a' = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb a a')). intro H0.
- rewrite (Neqb_complete _ _ H0) in H.
- rewrite (Neqb_correct (Ndiv2 a')) in H. discriminate H.
- trivial.
+ intros H. eqb2eq. contradict H. now subst.
Qed.
-Lemma Ndiv2_bit_eq :
- forall a a',
- Nbit0 a = Nbit0 a' -> Ndiv2 a = Ndiv2 a' -> a = a'.
+Lemma Ndiv2_bit_eq a a' :
+ N.odd a = N.odd a' -> N.div2 a = N.div2 a' -> a = a'.
Proof.
- intros. apply Nbit_faithful. unfold eqf in |- *. destruct n.
- rewrite Nbit0_correct. rewrite Nbit0_correct. assumption.
- rewrite <- Ndiv2_correct. rewrite <- Ndiv2_correct.
- rewrite H0. reflexivity.
+ intros H H'; now rewrite (N.div2_odd a), (N.div2_odd a'), H, H'.
Qed.
-Lemma Ndiv2_bit_neq :
- forall a a',
- Neqb a a' = false ->
- Nbit0 a = Nbit0 a' -> Neqb (Ndiv2 a) (Ndiv2 a') = false.
+Lemma Ndiv2_bit_neq a a' :
+ N.eqb a a' = false ->
+ N.odd a = N.odd a' -> N.eqb (N.div2 a) (N.div2 a') = false.
Proof.
- intros. elim (sumbool_of_bool (Neqb (Ndiv2 a) (Ndiv2 a'))). intro H1.
- rewrite (Ndiv2_bit_eq _ _ H0 (Neqb_complete _ _ H1)) in H.
- rewrite (Neqb_correct a') in H. discriminate H.
- trivial.
+ intros H H'. eqb2eq. contradict H. now apply Ndiv2_bit_eq.
Qed.
-Lemma Nneq_elim :
- forall a a',
- Neqb a a' = false ->
- Nbit0 a = negb (Nbit0 a') \/
- Neqb (Ndiv2 a) (Ndiv2 a') = false.
+Lemma Nneq_elim a a' :
+ N.eqb a a' = false ->
+ N.odd a = negb (N.odd a') \/
+ N.eqb (N.div2 a) (N.div2 a') = false.
Proof.
- intros. cut (Nbit0 a = Nbit0 a' \/ Nbit0 a = negb (Nbit0 a')).
+ intros. cut (N.odd a = N.odd a' \/ N.odd a = negb (N.odd a')).
intros. elim H0. intro. right. apply Ndiv2_bit_neq. assumption.
assumption.
intro. left. assumption.
- case (Nbit0 a); case (Nbit0 a'); auto.
+ case (N.odd a), (N.odd a'); auto.
Qed.
-Lemma Ndouble_or_double_plus_un :
- forall a,
- {a0 : N | a = Ndouble a0} + {a1 : N | a = Ndouble_plus_one a1}.
+Lemma Ndouble_or_double_plus_un a :
+ {a0 : N | a = N.double a0} + {a1 : N | a = N.succ_double a1}.
Proof.
- intro. elim (sumbool_of_bool (Nbit0 a)). intro H. right. split with (Ndiv2 a).
- rewrite (Ndiv2_double_plus_one a H). reflexivity.
- intro H. left. split with (Ndiv2 a). rewrite (Ndiv2_double a H). reflexivity.
+ elim (sumbool_of_bool (N.odd a)); intros H; [right|left];
+ exists (N.div2 a); symmetry;
+ apply Ndiv2_double_plus_one || apply Ndiv2_double; auto.
Qed.
-(** A boolean order on [N] *)
+(** An inefficient boolean order on [N]. Please use [N.leb] instead now. *)
-Definition Nleb (a b:N) := leb (nat_of_N a) (nat_of_N b).
+Definition Nleb (a b:N) := leb (N.to_nat a) (N.to_nat b).
-Lemma Nleb_Nle : forall a b, Nleb a b = true <-> Nle a b.
+Lemma Nleb_alt a b : Nleb a b = N.leb a b.
Proof.
- intros; unfold Nle; rewrite nat_of_Ncompare.
- unfold Nleb; apply leb_compare.
+ unfold Nleb.
+ now rewrite eq_iff_eq_true, N.leb_le, leb_compare, <- N2Nat.inj_compare.
Qed.
-Lemma Nleb_refl : forall a, Nleb a a = true.
-Proof.
- intro. unfold Nleb in |- *. apply leb_correct. apply le_n.
-Qed.
+Lemma Nleb_Nle a b : Nleb a b = true <-> a <= b.
+Proof. now rewrite Nleb_alt, N.leb_le. Qed.
-Lemma Nleb_antisym :
- forall a b, Nleb a b = true -> Nleb b a = true -> a = b.
-Proof.
- unfold Nleb in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b).
- rewrite (le_antisym _ _ (leb_complete _ _ H) (leb_complete _ _ H0)). reflexivity.
-Qed.
+Lemma Nleb_refl a : Nleb a a = true.
+Proof. rewrite Nleb_Nle; apply N.le_refl. Qed.
-Lemma Nleb_trans :
- forall a b c, Nleb a b = true -> Nleb b c = true -> Nleb a c = true.
-Proof.
- unfold Nleb in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b).
- apply leb_complete. assumption.
- apply leb_complete. assumption.
-Qed.
+Lemma Nleb_antisym a b : Nleb a b = true -> Nleb b a = true -> a = b.
+Proof. rewrite !Nleb_Nle. apply N.le_antisymm. Qed.
+
+Lemma Nleb_trans a b c : Nleb a b = true -> Nleb b c = true -> Nleb a c = true.
+Proof. rewrite !Nleb_Nle. apply N.le_trans. Qed.
-Lemma Nleb_ltb_trans :
- forall a b c,
- Nleb a b = true -> Nleb c b = false -> Nleb c a = false.
+Lemma Nleb_ltb_trans a b c :
+ Nleb a b = true -> Nleb c b = false -> Nleb c a = false.
Proof.
- unfold Nleb in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b).
+ unfold Nleb. intros. apply leb_correct_conv.
+ apply le_lt_trans with (m := N.to_nat b).
apply leb_complete. assumption.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nltb_leb_trans :
- forall a b c,
- Nleb b a = false -> Nleb b c = true -> Nleb c a = false.
+Lemma Nltb_leb_trans a b c :
+ Nleb b a = false -> Nleb b c = true -> Nleb c a = false.
Proof.
- unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b).
+ unfold Nleb. intros. apply leb_correct_conv.
+ apply lt_le_trans with (m := N.to_nat b).
apply leb_complete_conv. assumption.
apply leb_complete. assumption.
Qed.
-Lemma Nltb_trans :
- forall a b c,
- Nleb b a = false -> Nleb c b = false -> Nleb c a = false.
+Lemma Nltb_trans a b c :
+ Nleb b a = false -> Nleb c b = false -> Nleb c a = false.
Proof.
- unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b).
+ unfold Nleb. intros. apply leb_correct_conv.
+ apply lt_trans with (m := N.to_nat b).
apply leb_complete_conv. assumption.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nltb_leb_weak : forall a b:N, Nleb b a = false -> Nleb a b = true.
+Lemma Nltb_leb_weak a b : Nleb b a = false -> Nleb a b = true.
Proof.
- unfold Nleb in |- *. intros. apply leb_correct. apply lt_le_weak.
+ unfold Nleb. intros. apply leb_correct. apply lt_le_weak.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nleb_double_mono :
- forall a b,
- Nleb a b = true -> Nleb (Ndouble a) (Ndouble b) = true.
+Lemma Nleb_double_mono a b :
+ Nleb a b = true -> Nleb (N.double a) (N.double b) = true.
Proof.
- unfold Nleb in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct.
- simpl in |- *. apply plus_le_compat. apply leb_complete. assumption.
- apply plus_le_compat. apply leb_complete. assumption.
- apply le_n.
+ unfold Nleb. intros. rewrite !N2Nat.inj_double. apply leb_correct.
+ apply mult_le_compat_l. now apply leb_complete.
Qed.
-Lemma Nleb_double_plus_one_mono :
- forall a b,
- Nleb a b = true ->
- Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true.
+Lemma Nleb_double_plus_one_mono a b :
+ Nleb a b = true ->
+ Nleb (N.succ_double a) (N.succ_double b) = true.
Proof.
- unfold Nleb in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
- apply leb_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply leb_complete.
- assumption.
- apply plus_le_compat. apply leb_complete. assumption.
- apply le_n.
+ unfold Nleb. intros. rewrite !N2Nat.inj_succ_double. apply leb_correct.
+ apply le_n_S, mult_le_compat_l. now apply leb_complete.
Qed.
-Lemma Nleb_double_mono_conv :
- forall a b,
- Nleb (Ndouble a) (Ndouble b) = true -> Nleb a b = true.
+Lemma Nleb_double_mono_conv a b :
+ Nleb (N.double a) (N.double b) = true -> Nleb a b = true.
Proof.
- unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro.
- apply leb_correct. apply (mult_S_le_reg_l 1). apply leb_complete. assumption.
+ unfold Nleb. rewrite !N2Nat.inj_double. intro. apply leb_correct.
+ apply (mult_S_le_reg_l 1). now apply leb_complete.
Qed.
-Lemma Nleb_double_plus_one_mono_conv :
- forall a b,
- Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true ->
+Lemma Nleb_double_plus_one_mono_conv a b :
+ Nleb (N.succ_double a) (N.succ_double b) = true ->
Nleb a b = true.
Proof.
- unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
- intro. apply leb_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply leb_complete.
- assumption.
+ unfold Nleb. rewrite !N2Nat.inj_succ_double. intro. apply leb_correct.
+ apply (mult_S_le_reg_l 1). apply le_S_n. now apply leb_complete.
Qed.
-Lemma Nltb_double_mono :
- forall a b,
- Nleb a b = false -> Nleb (Ndouble a) (Ndouble b) = false.
+Lemma Nltb_double_mono a b :
+ Nleb a b = false -> Nleb (N.double a) (N.double b) = false.
Proof.
- intros. elim (sumbool_of_bool (Nleb (Ndouble a) (Ndouble b))). intro H0.
+ intros. elim (sumbool_of_bool (Nleb (N.double a) (N.double b))). intro H0.
rewrite (Nleb_double_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nltb_double_plus_one_mono :
- forall a b,
- Nleb a b = false ->
- Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false.
+Lemma Nltb_double_plus_one_mono a b :
+ Nleb a b = false ->
+ Nleb (N.succ_double a) (N.succ_double b) = false.
Proof.
- intros. elim (sumbool_of_bool (Nleb (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0.
+ intros. elim (sumbool_of_bool (Nleb (N.succ_double a) (N.succ_double b))).
+ intro H0.
rewrite (Nleb_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nltb_double_mono_conv :
- forall a b,
- Nleb (Ndouble a) (Ndouble b) = false -> Nleb a b = false.
+Lemma Nltb_double_mono_conv a b :
+ Nleb (N.double a) (N.double b) = false -> Nleb a b = false.
Proof.
- intros. elim (sumbool_of_bool (Nleb a b)). intro H0. rewrite (Nleb_double_mono _ _ H0) in H.
- discriminate H.
+ intros. elim (sumbool_of_bool (Nleb a b)). intro H0.
+ rewrite (Nleb_double_mono _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nltb_double_plus_one_mono_conv :
- forall a b,
- Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false ->
+Lemma Nltb_double_plus_one_mono_conv a b :
+ Nleb (N.succ_double a) (N.succ_double b) = false ->
Nleb a b = false.
Proof.
intros. elim (sumbool_of_bool (Nleb a b)). intro H0.
@@ -331,110 +254,52 @@ Proof.
trivial.
Qed.
-(* Nleb and Ncompare *)
+(* Nleb and N.compare *)
-(* NB: No need to prove that Nleb a b = true <-> Ncompare a b <> Gt,
+(* NB: No need to prove that Nleb a b = true <-> N.compare a b <> Gt,
this statement is in fact Nleb_Nle! *)
-Lemma Nltb_Ncompare : forall a b,
- Nleb a b = false <-> Ncompare a b = Gt.
+Lemma Nltb_Ncompare a b : Nleb a b = false <-> N.compare a b = Gt.
Proof.
- intros.
- assert (IFF : forall x:bool, x = false <-> ~ x = true)
- by (destruct x; intuition).
- rewrite IFF, Nleb_Nle; unfold Nle.
- destruct (Ncompare a b); split; intro H; auto;
- elim H; discriminate.
+ now rewrite N.compare_nle_iff, <- Nleb_Nle, not_true_iff_false.
Qed.
-Lemma Ncompare_Gt_Nltb : forall a b,
- Ncompare a b = Gt -> Nleb a b = false.
-Proof.
- intros; apply <- Nltb_Ncompare; auto.
-Qed.
+Lemma Ncompare_Gt_Nltb a b : N.compare a b = Gt -> Nleb a b = false.
+Proof. apply <- Nltb_Ncompare; auto. Qed.
-Lemma Ncompare_Lt_Nltb : forall a b,
- Ncompare a b = Lt -> Nleb b a = false.
+Lemma Ncompare_Lt_Nltb a b : N.compare a b = Lt -> Nleb b a = false.
Proof.
- intros a b H.
- rewrite Nltb_Ncompare, <- Ncompare_antisym, H; auto.
+ intros H. rewrite Nltb_Ncompare, N.compare_antisym, H; auto.
Qed.
-(* An alternate [min] function over [N] *)
+(* Old results about [N.min] *)
-Definition Nmin' (a b:N) := if Nleb a b then a else b.
+Notation Nmin_choice := N.min_dec (compat "8.3").
-Lemma Nmin_Nmin' : forall a b, Nmin a b = Nmin' a b.
-Proof.
- unfold Nmin, Nmin', Nleb; intros.
- rewrite nat_of_Ncompare.
- generalize (leb_compare (nat_of_N a) (nat_of_N b));
- destruct (nat_compare (nat_of_N a) (nat_of_N b));
- destruct (leb (nat_of_N a) (nat_of_N b)); intuition.
- lapply H1; intros; discriminate.
- lapply H1; intros; discriminate.
-Qed.
+Lemma Nmin_le_1 a b : Nleb (N.min a b) a = true.
+Proof. rewrite Nleb_Nle. apply N.le_min_l. Qed.
-Lemma Nmin_choice : forall a b, {Nmin a b = a} + {Nmin a b = b}.
-Proof.
- unfold Nmin in *; intros; destruct (Ncompare a b); auto.
-Qed.
+Lemma Nmin_le_2 a b : Nleb (N.min a b) b = true.
+Proof. rewrite Nleb_Nle. apply N.le_min_r. Qed.
-Lemma Nmin_le_1 : forall a b, Nleb (Nmin a b) a = true.
-Proof.
- intros; rewrite Nmin_Nmin'.
- unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H.
- apply Nleb_refl.
- intro H. rewrite H. apply Nltb_leb_weak. assumption.
-Qed.
+Lemma Nmin_le_3 a b c : Nleb a (N.min b c) = true -> Nleb a b = true.
+Proof. rewrite !Nleb_Nle. apply N.min_glb_l. Qed.
-Lemma Nmin_le_2 : forall a b, Nleb (Nmin a b) b = true.
-Proof.
- intros; rewrite Nmin_Nmin'.
- unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H. assumption.
- intro H. rewrite H. apply Nleb_refl.
-Qed.
+Lemma Nmin_le_4 a b c : Nleb a (N.min b c) = true -> Nleb a c = true.
+Proof. rewrite !Nleb_Nle. apply N.min_glb_r. Qed.
-Lemma Nmin_le_3 :
- forall a b c, Nleb a (Nmin b c) = true -> Nleb a b = true.
-Proof.
- intros; rewrite Nmin_Nmin' in *.
- unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
- assumption.
- intro H0. rewrite H0 in H. apply Nltb_leb_weak. apply Nleb_ltb_trans with (b := c); assumption.
-Qed.
+Lemma Nmin_le_5 a b c :
+ Nleb a b = true -> Nleb a c = true -> Nleb a (N.min b c) = true.
+Proof. rewrite !Nleb_Nle. apply N.min_glb. Qed.
-Lemma Nmin_le_4 :
- forall a b c, Nleb a (Nmin b c) = true -> Nleb a c = true.
+Lemma Nmin_lt_3 a b c : Nleb (N.min b c) a = false -> Nleb b a = false.
Proof.
- intros; rewrite Nmin_Nmin' in *.
- unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
- apply Nleb_trans with (b := b); assumption.
- intro H0. rewrite H0 in H. assumption.
-Qed.
-
-Lemma Nmin_le_5 :
- forall a b c,
- Nleb a b = true -> Nleb a c = true -> Nleb a (Nmin b c) = true.
-Proof.
- intros. elim (Nmin_choice b c). intro H1. rewrite H1. assumption.
- intro H1. rewrite H1. assumption.
-Qed.
-
-Lemma Nmin_lt_3 :
- forall a b c, Nleb (Nmin b c) a = false -> Nleb b a = false.
-Proof.
- intros; rewrite Nmin_Nmin' in *.
- unfold Nmin' in *. intros. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
- assumption.
- intro H0. rewrite H0 in H. apply Nltb_trans with (b := c); assumption.
+ rewrite <- !not_true_iff_false, !Nleb_Nle.
+ rewrite N.min_le_iff; auto.
Qed.
-Lemma Nmin_lt_4 :
- forall a b c, Nleb (Nmin b c) a = false -> Nleb c a = false.
+Lemma Nmin_lt_4 a b c : Nleb (N.min b c) a = false -> Nleb c a = false.
Proof.
- intros; rewrite Nmin_Nmin' in *.
- unfold Nmin' in *. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
- apply Nltb_leb_trans with (b := b); assumption.
- intro H0. rewrite H0 in H. assumption.
+ rewrite <- !not_true_iff_false, !Nleb_Nle.
+ rewrite N.min_le_iff; auto.
Qed.
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
index 06f47d719..77364e5ea 100644
--- a/theories/NArith/Ndigits.v
+++ b/theories/NArith/Ndigits.v
@@ -31,25 +31,25 @@ Notation Nxor_nilpotent := N.lxor_nilpotent (compat "8.3").
either with index in [N] or in [nat]. *)
Lemma Ptestbit_Pbit :
- forall p n, Pos.testbit p (N.of_nat n) = Pbit p n.
+ forall p n, Pos.testbit p (N.of_nat n) = Pos.testbit_nat p n.
Proof.
induction p as [p IH|p IH| ]; intros [|n]; simpl; trivial;
- rewrite <- IH; f_equal; rewrite (pred_Sn n) at 2; now rewrite N_of_pred.
+ rewrite <- IH; f_equal; rewrite (pred_Sn n) at 2; now rewrite Nat2N.inj_pred.
Qed.
-Lemma Ntestbit_Nbit : forall a n, N.testbit a (N.of_nat n) = Nbit a n.
+Lemma Ntestbit_Nbit : forall a n, N.testbit a (N.of_nat n) = N.testbit_nat a n.
Proof.
destruct a. trivial. apply Ptestbit_Pbit.
Qed.
Lemma Pbit_Ptestbit :
- forall p n, Pbit p (N.to_nat n) = Pos.testbit p n.
+ forall p n, Pos.testbit_nat p (N.to_nat n) = Pos.testbit p n.
Proof.
intros; now rewrite <- Ptestbit_Pbit, N2Nat.id.
Qed.
Lemma Nbit_Ntestbit :
- forall a n, Nbit a (N.to_nat n) = N.testbit a n.
+ forall a n, N.testbit_nat a (N.to_nat n) = N.testbit a n.
Proof.
destruct a. trivial. apply Pbit_Ptestbit.
Qed.
@@ -73,7 +73,7 @@ Lemma Nshiftr_nat_equiv :
Proof.
intros a [|n]; simpl. unfold N.shiftr_nat.
trivial.
- symmetry. apply iter_nat_of_P.
+ symmetry. apply Pos2Nat.inj_iter.
Qed.
Lemma Nshiftr_equiv_nat :
@@ -99,7 +99,7 @@ Qed.
(** Correctness proofs for shifts, nat version *)
Lemma Nshiftr_nat_spec : forall a n m,
- Nbit (N.shiftr_nat a n) m = Nbit a (m+n).
+ N.testbit_nat (N.shiftr_nat a n) m = N.testbit_nat a (m+n).
Proof.
induction n; intros m.
now rewrite <- plus_n_O.
@@ -108,7 +108,7 @@ Proof.
Qed.
Lemma Nshiftl_nat_spec_high : forall a n m, (n<=m)%nat ->
- Nbit (N.shiftl_nat a n) m = Nbit a (m-n).
+ N.testbit_nat (N.shiftl_nat a n) m = N.testbit_nat a (m-n).
Proof.
induction n; intros m H.
now rewrite <- minus_n_O.
@@ -118,7 +118,7 @@ Proof.
Qed.
Lemma Nshiftl_nat_spec_low : forall a n m, (m<n)%nat ->
- Nbit (N.shiftl_nat a n) m = false.
+ N.testbit_nat (N.shiftl_nat a n) m = false.
Proof.
induction n; intros m H. inversion H.
rewrite Nshiftl_nat_S.
@@ -151,52 +151,52 @@ Proof.
rewrite 2 Pshiftl_nat_S. now f_equal.
Qed.
-(** Semantics of bitwise operations with respect to [Nbit] *)
+(** Semantics of bitwise operations with respect to [N.testbit_nat] *)
Lemma Pxor_semantics p p' n :
- Nbit (Pos.lxor p p') n = xorb (Pbit p n) (Pbit p' n).
+ N.testbit_nat (Pos.lxor p p') n = xorb (Pos.testbit_nat p n) (Pos.testbit_nat p' n).
Proof.
rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_lxor_spec.
Qed.
Lemma Nxor_semantics a a' n :
- Nbit (N.lxor a a') n = xorb (Nbit a n) (Nbit a' n).
+ N.testbit_nat (N.lxor a a') n = xorb (N.testbit_nat a n) (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.lxor_spec.
Qed.
Lemma Por_semantics p p' n :
- Pbit (Pos.lor p p') n = (Pbit p n) || (Pbit p' n).
+ Pos.testbit_nat (Pos.lor p p') n = (Pos.testbit_nat p n) || (Pos.testbit_nat p' n).
Proof.
rewrite <- !Ptestbit_Pbit. apply N.pos_lor_spec.
Qed.
Lemma Nor_semantics a a' n :
- Nbit (N.lor a a') n = (Nbit a n) || (Nbit a' n).
+ N.testbit_nat (N.lor a a') n = (N.testbit_nat a n) || (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.lor_spec.
Qed.
Lemma Pand_semantics p p' n :
- Nbit (Pos.land p p') n = (Pbit p n) && (Pbit p' n).
+ N.testbit_nat (Pos.land p p') n = (Pos.testbit_nat p n) && (Pos.testbit_nat p' n).
Proof.
rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_land_spec.
Qed.
Lemma Nand_semantics a a' n :
- Nbit (N.land a a') n = (Nbit a n) && (Nbit a' n).
+ N.testbit_nat (N.land a a') n = (N.testbit_nat a n) && (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.land_spec.
Qed.
Lemma Pdiff_semantics p p' n :
- Nbit (Pos.ldiff p p') n = (Pbit p n) && negb (Pbit p' n).
+ N.testbit_nat (Pos.ldiff p p') n = (Pos.testbit_nat p n) && negb (Pos.testbit_nat p' n).
Proof.
rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_ldiff_spec.
Qed.
Lemma Ndiff_semantics a a' n :
- Nbit (N.ldiff a a') n = (Nbit a n) && negb (Nbit a' n).
+ N.testbit_nat (N.ldiff a a') n = (N.testbit_nat a n) && negb (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.ldiff_spec.
Qed.
@@ -213,13 +213,13 @@ Local Infix "==" := eqf (at level 70, no associativity).
Local Notation Step H := (fun n => H (S n)).
-Lemma Pbit_faithful_0 : forall p, ~(Pbit p == (fun _ => false)).
+Lemma Pbit_faithful_0 : forall p, ~(Pos.testbit_nat p == (fun _ => false)).
Proof.
induction p as [p IHp|p IHp| ]; intros H; try discriminate (H O).
apply (IHp (Step H)).
Qed.
-Lemma Pbit_faithful : forall p p', Pbit p == Pbit p' -> p = p'.
+Lemma Pbit_faithful : forall p p', Pos.testbit_nat p == Pos.testbit_nat p' -> p = p'.
Proof.
induction p as [p IHp|p IHp| ]; intros [p'|p'|] H; trivial;
try discriminate (H O).
@@ -229,7 +229,7 @@ Proof.
symmetry in H. destruct (Pbit_faithful_0 _ (Step H)).
Qed.
-Lemma Nbit_faithful : forall n n', Nbit n == Nbit n' -> n = n'.
+Lemma Nbit_faithful : forall n n', N.testbit_nat n == N.testbit_nat n' -> n = n'.
Proof.
intros [|p] [|p'] H; trivial.
symmetry in H. destruct (Pbit_faithful_0 _ H).
@@ -237,7 +237,7 @@ Proof.
f_equal. apply Pbit_faithful, H.
Qed.
-Lemma Nbit_faithful_iff : forall n n', Nbit n == Nbit n' <-> n = n'.
+Lemma Nbit_faithful_iff : forall n n', N.testbit_nat n == N.testbit_nat n' <-> n = n'.
Proof.
split. apply Nbit_faithful. intros; now subst.
Qed.
@@ -249,28 +249,28 @@ Local Close Scope N_scope.
Notation Nbit0 := N.odd (compat "8.3").
-Definition Nodd (n:N) := Nbit0 n = true.
-Definition Neven (n:N) := Nbit0 n = false.
+Definition Nodd (n:N) := N.odd n = true.
+Definition Neven (n:N) := N.odd n = false.
-Lemma Nbit0_correct : forall n:N, Nbit n 0 = Nbit0 n.
+Lemma Nbit0_correct : forall n:N, N.testbit_nat n 0 = N.odd n.
Proof.
destruct n; trivial.
destruct p; trivial.
Qed.
-Lemma Ndouble_bit0 : forall n:N, Nbit0 (Ndouble n) = false.
+Lemma Ndouble_bit0 : forall n:N, N.odd (N.double n) = false.
Proof.
destruct n; trivial.
Qed.
Lemma Ndouble_plus_one_bit0 :
- forall n:N, Nbit0 (Ndouble_plus_one n) = true.
+ forall n:N, N.odd (N.succ_double n) = true.
Proof.
destruct n; trivial.
Qed.
Lemma Ndiv2_double :
- forall n:N, Neven n -> Ndouble (Ndiv2 n) = n.
+ forall n:N, Neven n -> N.double (N.div2 n) = n.
Proof.
destruct n. trivial. destruct p. intro H. discriminate H.
intros. reflexivity.
@@ -278,7 +278,7 @@ Proof.
Qed.
Lemma Ndiv2_double_plus_one :
- forall n:N, Nodd n -> Ndouble_plus_one (Ndiv2 n) = n.
+ forall n:N, Nodd n -> N.succ_double (N.div2 n) = n.
Proof.
destruct n. intro. discriminate H.
destruct p. intros. reflexivity.
@@ -287,31 +287,31 @@ Proof.
Qed.
Lemma Ndiv2_correct :
- forall (a:N) (n:nat), Nbit (Ndiv2 a) n = Nbit a (S n).
+ forall (a:N) (n:nat), N.testbit_nat (N.div2 a) n = N.testbit_nat a (S n).
Proof.
destruct a; trivial.
destruct p; trivial.
Qed.
Lemma Nxor_bit0 :
- forall a a':N, Nbit0 (Nxor a a') = xorb (Nbit0 a) (Nbit0 a').
+ forall a a':N, N.odd (N.lxor a a') = xorb (N.odd a) (N.odd a').
Proof.
intros. rewrite <- Nbit0_correct, (Nxor_semantics a a' O).
rewrite Nbit0_correct, Nbit0_correct. reflexivity.
Qed.
Lemma Nxor_div2 :
- forall a a':N, Ndiv2 (Nxor a a') = Nxor (Ndiv2 a) (Ndiv2 a').
+ forall a a':N, N.div2 (N.lxor a a') = N.lxor (N.div2 a) (N.div2 a').
Proof.
intros. apply Nbit_faithful. unfold eqf. intro.
- rewrite (Nxor_semantics (Ndiv2 a) (Ndiv2 a') n), Ndiv2_correct, (Nxor_semantics a a' (S n)).
+ rewrite (Nxor_semantics (N.div2 a) (N.div2 a') n), Ndiv2_correct, (Nxor_semantics a a' (S n)).
rewrite 2! Ndiv2_correct.
reflexivity.
Qed.
Lemma Nneg_bit0 :
forall a a':N,
- Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a').
+ N.odd (N.lxor a a') = true -> N.odd a = negb (N.odd a').
Proof.
intros.
rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc,
@@ -320,24 +320,24 @@ Proof.
Qed.
Lemma Nneg_bit0_1 :
- forall a a':N, Nxor a a' = Npos 1 -> Nbit0 a = negb (Nbit0 a').
+ forall a a':N, N.lxor a a' = Npos 1 -> N.odd a = negb (N.odd a').
Proof.
intros. apply Nneg_bit0. rewrite H. reflexivity.
Qed.
Lemma Nneg_bit0_2 :
forall (a a':N) (p:positive),
- Nxor a a' = Npos (xI p) -> Nbit0 a = negb (Nbit0 a').
+ N.lxor a a' = Npos (xI p) -> N.odd a = negb (N.odd a').
Proof.
intros. apply Nneg_bit0. rewrite H. reflexivity.
Qed.
Lemma Nsame_bit0 :
forall (a a':N) (p:positive),
- Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'.
+ N.lxor a a' = Npos (xO p) -> N.odd a = N.odd a'.
Proof.
- intros. rewrite <- (xorb_false (Nbit0 a)).
- assert (H0: Nbit0 (Npos (xO p)) = false) by reflexivity.
+ intros. rewrite <- (xorb_false (N.odd a)).
+ assert (H0: N.odd (Npos (xO p)) = false) by reflexivity.
rewrite <- H0, <- H, Nxor_bit0, <- xorb_assoc, xorb_nilpotent, false_xorb.
reflexivity.
Qed.
@@ -346,77 +346,77 @@ Qed.
Fixpoint Nless_aux (a a':N) (p:positive) : bool :=
match p with
- | xO p' => Nless_aux (Ndiv2 a) (Ndiv2 a') p'
- | _ => andb (negb (Nbit0 a)) (Nbit0 a')
+ | xO p' => Nless_aux (N.div2 a) (N.div2 a') p'
+ | _ => andb (negb (N.odd a)) (N.odd a')
end.
Definition Nless (a a':N) :=
- match Nxor a a' with
+ match N.lxor a a' with
| N0 => false
| Npos p => Nless_aux a a' p
end.
Lemma Nbit0_less :
forall a a',
- Nbit0 a = false -> Nbit0 a' = true -> Nless a a' = true.
+ N.odd a = false -> N.odd a' = true -> Nless a a' = true.
Proof.
- intros. destruct (Ndiscr (Nxor a a')) as [(p,H2)|H1]. unfold Nless.
+ intros. destruct (N.discr (N.lxor a a')) as [(p,H2)|H1]. unfold Nless.
rewrite H2. destruct p. simpl. rewrite H, H0. reflexivity.
- assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity).
+ assert (H1: N.odd (N.lxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
- assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
+ assert (H2: N.odd (N.lxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
Lemma Nbit0_gt :
forall a a',
- Nbit0 a = true -> Nbit0 a' = false -> Nless a a' = false.
+ N.odd a = true -> N.odd a' = false -> Nless a a' = false.
Proof.
- intros. destruct (Ndiscr (Nxor a a')) as [(p,H2)|H1]. unfold Nless.
+ intros. destruct (N.discr (N.lxor a a')) as [(p,H2)|H1]. unfold Nless.
rewrite H2. destruct p. simpl. rewrite H, H0. reflexivity.
- assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity).
+ assert (H1: N.odd (N.lxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
- assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
+ assert (H2: N.odd (N.lxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
Lemma Nless_not_refl : forall a, Nless a a = false.
Proof.
- intro. unfold Nless. rewrite (Nxor_nilpotent a). reflexivity.
+ intro. unfold Nless. rewrite (N.lxor_nilpotent a). reflexivity.
Qed.
Lemma Nless_def_1 :
- forall a a', Nless (Ndouble a) (Ndouble a') = Nless a a'.
+ forall a a', Nless (N.double a) (N.double a') = Nless a a'.
Proof.
destruct a; destruct a'. reflexivity.
trivial.
unfold Nless. simpl. destruct p; trivial.
- unfold Nless. simpl. destruct (Pxor p p0). reflexivity.
+ unfold Nless. simpl. destruct (Pos.lxor p p0). reflexivity.
trivial.
Qed.
Lemma Nless_def_2 :
forall a a',
- Nless (Ndouble_plus_one a) (Ndouble_plus_one a') = Nless a a'.
+ Nless (N.succ_double a) (N.succ_double a') = Nless a a'.
Proof.
destruct a; destruct a'. reflexivity.
trivial.
unfold Nless. simpl. destruct p; trivial.
- unfold Nless. simpl. destruct (Pxor p p0). reflexivity.
+ unfold Nless. simpl. destruct (Pos.lxor p p0). reflexivity.
trivial.
Qed.
Lemma Nless_def_3 :
- forall a a', Nless (Ndouble a) (Ndouble_plus_one a') = true.
+ forall a a', Nless (N.double a) (N.succ_double a') = true.
Proof.
intros. apply Nbit0_less. apply Ndouble_bit0.
apply Ndouble_plus_one_bit0.
Qed.
Lemma Nless_def_4 :
- forall a a', Nless (Ndouble_plus_one a) (Ndouble a') = false.
+ forall a a', Nless (N.succ_double a) (N.double a') = false.
Proof.
intros. apply Nbit0_gt. apply Ndouble_plus_one_bit0.
apply Ndouble_bit0.
@@ -425,7 +425,7 @@ Qed.
Lemma Nless_z : forall a, Nless a N0 = false.
Proof.
induction a. reflexivity.
- unfold Nless. rewrite (Nxor_neutral_right (Npos p)). induction p; trivial.
+ unfold Nless. rewrite (N.lxor_0_r (Npos p)). induction p; trivial.
Qed.
Lemma N0_less_1 :
@@ -445,26 +445,26 @@ Lemma Nless_trans :
forall a a' a'',
Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true.
Proof.
- induction a as [|a IHa|a IHa] using N_ind_double; intros a' a'' H H0.
+ induction a as [|a IHa|a IHa] using N.binary_ind; intros a' a'' H H0.
case_eq (Nless N0 a'') ; intros Heqn. trivial.
rewrite (N0_less_2 a'' Heqn), (Nless_z a') in H0. discriminate H0.
- induction a' as [|a' _|a' _] using N_ind_double.
- rewrite (Nless_z (Ndouble a)) in H. discriminate H.
+ induction a' as [|a' _|a' _] using N.binary_ind.
+ rewrite (Nless_z (N.double a)) in H. discriminate H.
rewrite (Nless_def_1 a a') in H.
- induction a'' using N_ind_double.
- rewrite (Nless_z (Ndouble a')) in H0. discriminate H0.
+ induction a'' using N.binary_ind.
+ rewrite (Nless_z (N.double a')) in H0. discriminate H0.
rewrite (Nless_def_1 a' a'') in H0. rewrite (Nless_def_1 a a'').
exact (IHa _ _ H H0).
apply Nless_def_3.
- induction a'' as [|a'' _|a'' _] using N_ind_double.
- rewrite (Nless_z (Ndouble_plus_one a')) in H0. discriminate H0.
+ induction a'' as [|a'' _|a'' _] using N.binary_ind.
+ rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
apply Nless_def_3.
- induction a' as [|a' _|a' _] using N_ind_double.
- rewrite (Nless_z (Ndouble_plus_one a)) in H. discriminate H.
+ induction a' as [|a' _|a' _] using N.binary_ind.
+ rewrite (Nless_z (N.succ_double a)) in H. discriminate H.
rewrite (Nless_def_4 a a') in H. discriminate H.
- induction a'' using N_ind_double.
- rewrite (Nless_z (Ndouble_plus_one a')) in H0. discriminate H0.
+ induction a'' using N.binary_ind.
+ rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H.
rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0).
@@ -473,17 +473,17 @@ Qed.
Lemma Nless_total :
forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
Proof.
- induction a using N_rec_double; intro a'.
+ induction a using N.binary_rec; intro a'.
case_eq (Nless N0 a') ; intros Heqb. left. left. auto.
right. rewrite (N0_less_2 a' Heqb). reflexivity.
- induction a' as [|a' _|a' _] using N_rec_double.
- case_eq (Nless N0 (Ndouble a)) ; intros Heqb. left. right. auto.
+ induction a' as [|a' _|a' _] using N.binary_rec.
+ case_eq (Nless N0 (N.double a)) ; intros Heqb. left. right. auto.
right. exact (N0_less_2 _ Heqb).
rewrite 2!Nless_def_1. destruct (IHa a') as [ | ->].
left. assumption.
right. reflexivity.
left. left. apply Nless_def_3.
- induction a' as [|a' _|a' _] using N_rec_double.
+ induction a' as [|a' _|a' _] using N.binary_rec.
left. right. destruct a; reflexivity.
left. right. apply Nless_def_3.
rewrite 2!Nless_def_2. destruct (IHa a') as [ | ->].
@@ -497,15 +497,15 @@ Notation Nsize := N.size_nat (compat "8.3").
(** conversions between N and bit vectors. *)
-Fixpoint P2Bv (p:positive) : Bvector (Psize p) :=
- match p return Bvector (Psize p) with
+Fixpoint P2Bv (p:positive) : Bvector (Pos.size_nat p) :=
+ match p return Bvector (Pos.size_nat p) with
| xH => Bvect_true 1%nat
- | xO p => Bcons false (Psize p) (P2Bv p)
- | xI p => Bcons true (Psize p) (P2Bv p)
+ | xO p => Bcons false (Pos.size_nat p) (P2Bv p)
+ | xI p => Bcons true (Pos.size_nat p) (P2Bv p)
end.
-Definition N2Bv (n:N) : Bvector (Nsize n) :=
- match n as n0 return Bvector (Nsize n0) with
+Definition N2Bv (n:N) : Bvector (N.size_nat n) :=
+ match n as n0 return Bvector (N.size_nat n0) with
| N0 => Bnil
| Npos p => P2Bv p
end.
@@ -513,8 +513,8 @@ Definition N2Bv (n:N) : Bvector (Nsize n) :=
Fixpoint Bv2N (n:nat)(bv:Bvector n) : N :=
match bv with
| Vector.nil => N0
- | Vector.cons false n bv => Ndouble (Bv2N n bv)
- | Vector.cons true n bv => Ndouble_plus_one (Bv2N n bv)
+ | Vector.cons false n bv => N.double (Bv2N n bv)
+ | Vector.cons true n bv => N.succ_double (Bv2N n bv)
end.
Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
@@ -528,7 +528,7 @@ Qed.
bit vector has some zeros on its right, they will disappear during
the return [Bv2N] translation: *)
-Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n.
+Lemma Bv2N_Nsize : forall n (bv:Bvector n), N.size_nat (Bv2N n bv) <= n.
Proof.
induction bv; intros.
auto.
@@ -543,7 +543,7 @@ Qed.
Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
Bsign _ bv = true <->
- Nsize (Bv2N _ bv) = (S n).
+ N.size_nat (Bv2N _ bv) = (S n).
Proof.
apply Vector.rectS ; intros ; simpl.
destruct a ; compute ; split ; intros x ; now inversion x.
@@ -567,7 +567,7 @@ Fixpoint N2Bv_gen (n:nat)(a:N) : Bvector n :=
(** The first [N2Bv] is then a special case of [N2Bv_gen] *)
-Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (Nsize a) a.
+Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (N.size_nat a) a.
Proof.
destruct a; simpl.
auto.
@@ -578,7 +578,7 @@ Qed.
[a] plus some zeros. *)
Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
- N2Bv_gen (Nsize a + k) a = Vector.append (N2Bv a) (Bvect_false k).
+ N2Bv_gen (N.size_nat a + k) a = Vector.append (N2Bv a) (Bvect_false k).
Proof.
destruct a; simpl.
destruct k; simpl; auto.
@@ -603,7 +603,7 @@ Qed.
(** accessing some precise bits. *)
Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
- Nbit0 (Bv2N _ bv) = Blow _ bv.
+ N.odd (Bv2N _ bv) = Blow _ bv.
Proof.
apply Vector.caseS.
intros.
@@ -616,7 +616,7 @@ Qed.
Notation Bnth := (@Vector.nth_order bool).
Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
- Bnth bv H = Nbit (Bv2N _ bv) p.
+ Bnth bv H = N.testbit_nat (Bv2N _ bv) p.
Proof.
induction bv; intros.
inversion H.
@@ -626,7 +626,7 @@ destruct p ; simpl.
simpl in * ; destruct (Bv2N n bv); destruct h; simpl in *; auto.
Qed.
-Lemma Nbit_Nsize : forall n p, Nsize n <= p -> Nbit n p = false.
+Lemma Nbit_Nsize : forall n p, N.size_nat n <= p -> N.testbit_nat n p = false.
Proof.
destruct n as [|n].
simpl; auto.
@@ -635,7 +635,8 @@ inversion H.
inversion H.
Qed.
-Lemma Nbit_Bth: forall n p (H:p < Nsize n), Nbit n p = Bnth (N2Bv n) H.
+Lemma Nbit_Bth: forall n p (H:p < N.size_nat n),
+ N.testbit_nat n p = Bnth (N2Bv n) H.
Proof.
destruct n as [|n].
inversion H.
@@ -646,7 +647,7 @@ Qed.
(** Binary bitwise operations are the same in the two worlds. *)
Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
- Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv').
+ Bv2N _ (BVxor _ bv bv') = N.lxor (Bv2N _ bv) (Bv2N _ bv').
Proof.
apply Vector.rect2 ; intros.
now simpl.
diff --git a/theories/NArith/Ndist.v b/theories/NArith/Ndist.v
index 22adc5050..7097159c7 100644
--- a/theories/NArith/Ndist.v
+++ b/theories/NArith/Ndist.v
@@ -38,7 +38,7 @@ Qed.
Lemma Nplength_zeros :
forall (a:N) (n:nat),
- Nplength a = ni n -> forall k:nat, k < n -> Nbit a k = false.
+ Nplength a = ni n -> forall k:nat, k < n -> N.testbit_nat a k = false.
Proof.
simple induction a; trivial.
simple induction p. simple induction n. intros. inversion H1.
@@ -46,33 +46,33 @@ Proof.
intros. simpl in H1. discriminate H1.
simple induction k. trivial.
generalize H0. case n. intros. inversion H3.
- intros. simpl in |- *. unfold Nbit in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
+ intros. simpl in |- *. unfold N.testbit_nat in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
exact (lt_S_n n1 n0 H3).
simpl in |- *. intros n H. inversion H. intros. inversion H0.
Qed.
Lemma Nplength_one :
- forall (a:N) (n:nat), Nplength a = ni n -> Nbit a n = true.
+ forall (a:N) (n:nat), Nplength a = ni n -> N.testbit_nat a n = true.
Proof.
simple induction a. intros. inversion H.
simple induction p. intros. simpl in H0. inversion H0. reflexivity.
- intros. simpl in H0. inversion H0. simpl in |- *. unfold Nbit in H. apply H. reflexivity.
+ intros. simpl in H0. inversion H0. simpl in |- *. unfold N.testbit_nat in H. apply H. reflexivity.
intros. simpl in H. inversion H. reflexivity.
Qed.
Lemma Nplength_first_one :
forall (a:N) (n:nat),
- (forall k:nat, k < n -> Nbit a k = false) ->
- Nbit a n = true -> Nplength a = ni n.
+ (forall k:nat, k < n -> N.testbit_nat a k = false) ->
+ N.testbit_nat a n = true -> Nplength a = ni n.
Proof.
simple induction a. intros. simpl in H0. discriminate H0.
simple induction p. intros. generalize H0. case n. intros. reflexivity.
- intros. absurd (Nbit (Npos (xI p0)) 0 = false). trivial with bool.
+ intros. absurd (N.testbit_nat (Npos (xI p0)) 0 = false). trivial with bool.
auto with bool arith.
intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3.
intros. simpl in |- *. unfold Nplength in H.
cut (ni (Pplength p0) = ni n0). intro. inversion H4. reflexivity.
- apply H. intros. change (Nbit (Npos (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4.
+ apply H. intros. change (N.testbit_nat (Npos (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4.
exact H3.
intro. case n. trivial.
intros. simpl in H0. discriminate H0.
@@ -222,27 +222,27 @@ Qed.
Lemma Nplength_lb :
forall (a:N) (n:nat),
- (forall k:nat, k < n -> Nbit a k = false) -> ni_le (ni n) (Nplength a).
+ (forall k:nat, k < n -> N.testbit_nat a k = false) -> ni_le (ni n) (Nplength a).
Proof.
simple induction a. intros. exact (ni_min_inf_r (ni n)).
intros. unfold Nplength in |- *. apply le_ni_le. case (le_or_lt n (Pplength p)). trivial.
- intro. absurd (Nbit (Npos p) (Pplength p) = false).
+ intro. absurd (N.testbit_nat (Npos p) (Pplength p) = false).
rewrite
(Nplength_one (Npos p) (Pplength p)
- (refl_equal (Nplength (Npos p)))).
+ (eq_refl (Nplength (Npos p)))).
discriminate.
apply H. exact H0.
Qed.
Lemma Nplength_ub :
- forall (a:N) (n:nat), Nbit a n = true -> ni_le (Nplength a) (ni n).
+ forall (a:N) (n:nat), N.testbit_nat a n = true -> ni_le (Nplength a) (ni n).
Proof.
simple induction a. intros. discriminate H.
intros. unfold Nplength in |- *. apply le_ni_le. case (le_or_lt (Pplength p) n). trivial.
- intro. absurd (Nbit (Npos p) n = true).
+ intro. absurd (N.testbit_nat (Npos p) n = true).
rewrite
(Nplength_zeros (Npos p) (Pplength p)
- (refl_equal (Nplength (Npos p))) n H0).
+ (eq_refl (Nplength (Npos p))) n H0).
discriminate.
exact H.
Qed.
@@ -255,26 +255,26 @@ Qed.
Instead of working with $d$, we work with $pd$, namely
[Npdist]: *)
-Definition Npdist (a a':N) := Nplength (Nxor a a').
+Definition Npdist (a a':N) := Nplength (N.lxor a a').
(** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that
$pd(a,a')=infty$ iff $a=a'$: *)
Lemma Npdist_eq_1 : forall a:N, Npdist a a = infty.
Proof.
- intros. unfold Npdist in |- *. rewrite Nxor_nilpotent. reflexivity.
+ intros. unfold Npdist in |- *. rewrite N.lxor_nilpotent. reflexivity.
Qed.
Lemma Npdist_eq_2 : forall a a':N, Npdist a a' = infty -> a = a'.
Proof.
- intros. apply Nxor_eq. apply Nplength_infty. exact H.
+ intros. apply N.lxor_eq. apply Nplength_infty. exact H.
Qed.
(** $d$ is a distance, so $d(a,a')=d(a',a)$: *)
Lemma Npdist_comm : forall a a':N, Npdist a a' = Npdist a' a.
Proof.
- unfold Npdist in |- *. intros. rewrite Nxor_comm. reflexivity.
+ unfold Npdist in |- *. intros. rewrite N.lxor_comm. reflexivity.
Qed.
(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq
@@ -292,21 +292,21 @@ Qed.
Lemma Nplength_ultra_1 :
forall a a':N,
ni_le (Nplength a) (Nplength a') ->
- ni_le (Nplength a) (Nplength (Nxor a a')).
+ ni_le (Nplength a) (Nplength (N.lxor a a')).
Proof.
simple induction a. intros. unfold ni_le in H. unfold Nplength at 1 3 in H.
rewrite (ni_min_inf_l (Nplength a')) in H.
rewrite (Nplength_infty a' H). simpl in |- *. apply ni_le_refl.
intros. unfold Nplength at 1 in |- *. apply Nplength_lb. intros.
- cut (forall a'':N, Nxor (Npos p) a' = a'' -> Nbit a'' k = false).
+ cut (forall a'':N, N.lxor (Npos p) a' = a'' -> N.testbit_nat a'' k = false).
intros. apply H1. reflexivity.
intro a''. case a''. intro. reflexivity.
intros. rewrite <- H1. rewrite (Nxor_semantics (Npos p) a' k).
rewrite
(Nplength_zeros (Npos p) (Pplength p)
- (refl_equal (Nplength (Npos p))) k H0).
+ (eq_refl (Nplength (Npos p))) k H0).
generalize H. case a'. trivial.
- intros. cut (Nbit (Npos p1) k = false). intros. rewrite H3. reflexivity.
+ intros. cut (N.testbit_nat (Npos p1) k = false). intros. rewrite H3. reflexivity.
apply Nplength_zeros with (n := Pplength p1). reflexivity.
apply (lt_le_trans k (Pplength p) (Pplength p1)). exact H0.
apply ni_le_le. exact H2.
@@ -314,14 +314,14 @@ Qed.
Lemma Nplength_ultra :
forall a a':N,
- ni_le (ni_min (Nplength a) (Nplength a')) (Nplength (Nxor a a')).
+ ni_le (ni_min (Nplength a) (Nplength a')) (Nplength (N.lxor a a')).
Proof.
intros. case (ni_le_total (Nplength a) (Nplength a')). intro.
cut (ni_min (Nplength a) (Nplength a') = Nplength a).
intro. rewrite H0. apply Nplength_ultra_1. exact H.
exact H.
intro. cut (ni_min (Nplength a) (Nplength a') = Nplength a').
- intro. rewrite H0. rewrite Nxor_comm. apply Nplength_ultra_1. exact H.
+ intro. rewrite H0. rewrite N.lxor_comm. apply Nplength_ultra_1. exact H.
rewrite ni_min_comm. exact H.
Qed.
@@ -329,8 +329,8 @@ Lemma Npdist_ultra :
forall a a' a'':N,
ni_le (ni_min (Npdist a a'') (Npdist a'' a')) (Npdist a a').
Proof.
- intros. unfold Npdist in |- *. cut (Nxor (Nxor a a'') (Nxor a'' a') = Nxor a a').
+ intros. unfold Npdist in |- *. cut (N.lxor (N.lxor a a'') (N.lxor a'' a') = N.lxor a a').
intro. rewrite <- H. apply Nplength_ultra.
- rewrite Nxor_assoc. rewrite <- (Nxor_assoc a'' a'' a'). rewrite Nxor_nilpotent.
- rewrite Nxor_neutral_left. reflexivity.
+ rewrite N.lxor_assoc. rewrite <- (N.lxor_assoc a'' a'' a'). rewrite N.lxor_nilpotent.
+ rewrite N.lxor_0_l. reflexivity.
Qed.