aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/NArith
diff options
context:
space:
mode:
authorGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-09-17 15:58:14 +0000
committerGravatar glondu <glondu@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-09-17 15:58:14 +0000
commit61ccbc81a2f3b4662ed4a2bad9d07d2003dda3a2 (patch)
tree961cc88c714aa91a0276ea9fbf8bc53b2b9d5c28 /theories/NArith
parent6d3fbdf36c6a47b49c2a4b16f498972c93c07574 (diff)
Delete trailing whitespaces in all *.{v,ml*} files
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/NArith')
-rw-r--r--theories/NArith/BinNat.v14
-rw-r--r--theories/NArith/BinPos.v86
-rw-r--r--theories/NArith/Ndec.v20
-rw-r--r--theories/NArith/Ndigits.v94
-rw-r--r--theories/NArith/Ndist.v18
-rw-r--r--theories/NArith/Nnat.v38
-rw-r--r--theories/NArith/Pnat.v28
7 files changed, 149 insertions, 149 deletions
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v
index eaf3f126a..e02f2817c 100644
--- a/theories/NArith/BinNat.v
+++ b/theories/NArith/BinNat.v
@@ -45,7 +45,7 @@ Definition Ndouble_plus_one x :=
(** Operation x -> 2*x *)
-Definition Ndouble n :=
+Definition Ndouble n :=
match n with
| N0 => N0
| Npos p => Npos (xO p)
@@ -130,12 +130,12 @@ Infix ">" := Ngt : N_scope.
(** Min and max *)
-Definition Nmin (n n' : N) := match Ncompare n n' with
+Definition Nmin (n n' : N) := match Ncompare n n' with
| Lt | Eq => n
| Gt => n'
end.
-Definition Nmax (n n' : N) := match Ncompare n n' with
+Definition Nmax (n n' : N) := match Ncompare n n' with
| Lt | Eq => n'
| Gt => n
end.
@@ -149,7 +149,7 @@ Lemma N_ind_double :
(forall a, P a -> P (Ndouble_plus_one a)) -> P a.
Proof.
intros; elim a. trivial.
- simple induction p. intros.
+ simple induction p. intros.
apply (H1 (Npos p0)); trivial.
intros; apply (H0 (Npos p0)); trivial.
intros; apply (H1 N0); assumption.
@@ -162,7 +162,7 @@ Lemma N_rec_double :
(forall a, P a -> P (Ndouble_plus_one a)) -> P a.
Proof.
intros; elim a. trivial.
- simple induction p. intros.
+ simple induction p. intros.
apply (H1 (Npos p0)); trivial.
intros; apply (H0 (Npos p0)); trivial.
intros; apply (H1 N0); assumption.
@@ -354,7 +354,7 @@ destruct p; intros Hp H.
contradiction Hp; reflexivity.
destruct n; destruct m; reflexivity || (try discriminate H).
injection H; clear H; intro H; rewrite Pmult_reg_r with (1 := H); reflexivity.
-Qed.
+Qed.
(** Properties of comparison *)
@@ -373,7 +373,7 @@ Qed.
Theorem Ncompare_eq_correct : forall n m:N, (n ?= m) = Eq <-> n = m.
Proof.
-split; intros;
+split; intros;
[ apply Ncompare_Eq_eq; auto | subst; apply Ncompare_refl ].
Qed.
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index af281b73f..21ff55c19 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -32,15 +32,15 @@ Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].
-(** Postfix notation for positive numbers, allowing to mimic
- the position of bits in a big-endian representation.
- For instance, we can write 1~1~0 instead of (xO (xI xH))
+(** Postfix notation for positive numbers, allowing to mimic
+ the position of bits in a big-endian representation.
+ For instance, we can write 1~1~0 instead of (xO (xI xH))
for the number 6 (which is 110 in binary notation).
*)
-Notation "p ~ 1" := (xI p)
+Notation "p ~ 1" := (xI p)
(at level 7, left associativity, format "p '~' '1'") : positive_scope.
-Notation "p ~ 0" := (xO p)
+Notation "p ~ 0" := (xO p)
(at level 7, left associativity, format "p '~' '0'") : positive_scope.
Open Local Scope positive_scope.
@@ -76,7 +76,7 @@ Fixpoint Pplus (x y:positive) : positive :=
| 1, q~0 => q~1
| 1, 1 => 1~0
end
-
+
with Pplus_carry (x y:positive) : positive :=
match x, y with
| p~1, q~1 => (Pplus_carry p q)~1
@@ -178,7 +178,7 @@ Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
| 1, 1 => IsNul
| 1, _ => IsNeg
end
-
+
with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
match x, y with
| p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
@@ -255,13 +255,13 @@ Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
-Definition Pmin (p p' : positive) := match Pcompare p p' Eq with
- | Lt | Eq => p
+Definition Pmin (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p
| Gt => p'
end.
-Definition Pmax (p p' : positive) := match Pcompare p p' Eq with
- | Lt | Eq => p'
+Definition Pmax (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p'
| Gt => p
end.
@@ -380,14 +380,14 @@ Theorem Pplus_comm : forall p q:positive, p + q = q + p.
Proof.
induction p; destruct q; simpl; f_equal; auto.
rewrite 2 Pplus_carry_spec; f_equal; auto.
-Qed.
+Qed.
(** Permutation of [Pplus] and [Psucc] *)
Theorem Pplus_succ_permute_r :
forall p q:positive, p + Psucc q = Psucc (p + q).
Proof.
- induction p; destruct q; simpl; f_equal;
+ induction p; destruct q; simpl; f_equal;
auto using Pplus_one_succ_r; rewrite Pplus_carry_spec; auto.
Qed.
@@ -432,10 +432,10 @@ Qed.
Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
Proof.
intros p q r; revert p q; induction r.
- intros [p|p| ] [q|q| ] H; simpl; destr_eq H;
- f_equal; auto using Pplus_carry_plus;
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H;
+ f_equal; auto using Pplus_carry_plus;
contradict H; auto using Pplus_carry_no_neutral.
- intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
contradict H; auto using Pplus_no_neutral.
intros p q H; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
Qed.
@@ -465,11 +465,11 @@ Qed.
Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
Proof.
induction p.
- intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
- rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
- rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
intros p r; rewrite <- 2 Pplus_one_succ_l, Pplus_succ_permute_l; auto.
Qed.
@@ -493,7 +493,7 @@ Lemma Pplus_xO_double_minus_one :
forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q.
Proof.
induction p as [p IHp| p IHp| ]; destruct q; simpl;
- rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI,
+ rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI,
?Pplus_xI_double_minus_one; try reflexivity.
rewrite IHp; auto.
rewrite <- Psucc_o_double_minus_one_eq_xO, Pplus_one_succ_l; reflexivity.
@@ -503,7 +503,7 @@ Qed.
Lemma Pplus_diag : forall p:positive, p + p = p~0.
Proof.
- induction p as [p IHp| p IHp| ]; simpl;
+ induction p as [p IHp| p IHp| ]; simpl;
try rewrite ?Pplus_carry_spec, ?IHp; reflexivity.
Qed.
@@ -534,10 +534,10 @@ Fixpoint peanoView p : PeanoView p :=
| p~1 => peanoView_xI p (peanoView p)
end.
-Definition PeanoView_iter (P:positive->Type)
+Definition PeanoView_iter (P:positive->Type)
(a:P 1) (f:forall p, P p -> P (Psucc p)) :=
(fix iter p (q:PeanoView p) : P p :=
- match q in PeanoView p return P p with
+ match q in PeanoView p return P p with
| PeanoOne => a
| PeanoSucc _ q => f _ (iter _ q)
end).
@@ -545,23 +545,23 @@ Definition PeanoView_iter (P:positive->Type)
Require Import Eqdep_dec EqdepFacts.
Theorem eq_dep_eq_positive :
- forall (P:positive->Type) (p:positive) (x y:P p),
+ forall (P:positive->Type) (p:positive) (x y:P p),
eq_dep positive P p x p y -> x = y.
Proof.
apply eq_dep_eq_dec.
decide equality.
Qed.
-Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
+Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
- intros.
+ intros.
induction q as [ | p q IHq ].
apply eq_dep_eq_positive.
cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
destruct p0; intros; discriminate.
trivial.
apply eq_dep_eq_positive.
- cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
+ cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
intro. destruct p; discriminate.
intro. unfold p0 in H. apply Psucc_inj in H.
generalize q'. rewrite H. intro.
@@ -570,12 +570,12 @@ Proof.
trivial.
Qed.
-Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p))
+Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p))
(p:positive) :=
PeanoView_iter P a f p (peanoView p).
-Theorem Prect_succ : forall (P:positive->Type) (a:P 1)
- (f:forall p, P p -> P (Psucc p)) (p:positive),
+Theorem Prect_succ : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)) (p:positive),
Prect P a f (Psucc p) = f _ (Prect P a f p).
Proof.
intros.
@@ -584,7 +584,7 @@ Proof.
trivial.
Qed.
-Theorem Prect_base : forall (P:positive->Type) (a:P 1)
+Theorem Prect_base : forall (P:positive->Type) (a:P 1)
(f:forall p, P p -> P (Psucc p)), Prect P a f 1 = a.
Proof.
trivial.
@@ -744,7 +744,7 @@ Qed.
Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
Proof.
- induction p; intros [q| q| ] H; simpl in *; auto;
+ induction p; intros [q| q| ] H; simpl in *; auto;
try discriminate H; try (f_equal; auto; fail).
destruct (Pcompare_not_Eq p q) as (H',_); elim H'; auto.
destruct (Pcompare_not_Eq p q) as (_,H'); elim H'; auto.
@@ -821,7 +821,7 @@ Lemma Pcompare_antisym :
forall (p q:positive) (r:comparison),
CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
Proof.
- induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto;
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto;
rewrite IHp; auto.
Qed.
@@ -949,14 +949,14 @@ Qed.
Theorem Pminus_mask_carry_spec :
forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q).
Proof.
- induction p as [p IHp|p IHp| ]; destruct q; simpl;
+ induction p as [p IHp|p IHp| ]; destruct q; simpl;
try reflexivity; try rewrite IHp;
destruct (Pminus_mask p q) as [|[r|r| ]|] || destruct p; auto.
Qed.
Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q).
Proof.
- intros p q; unfold Pminus;
+ intros p q; unfold Pminus;
rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
destruct (Pminus_mask p q) as [|[r|r| ]|]; auto.
Qed.
@@ -995,11 +995,11 @@ Proof.
induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
Qed.
-Lemma Pminus_mask_IsNeg : forall p q:positive,
+Lemma Pminus_mask_IsNeg : forall p q:positive,
Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg.
Proof.
- induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
- try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H;
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H;
specialize IHp with q.
destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
destruct (Pminus_mask p q); simpl; auto; try discriminate.
@@ -1028,9 +1028,9 @@ Lemma Pminus_mask_Gt :
Pminus_mask p q = IsPos h /\
q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)).
Proof.
- induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *;
+ induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *;
try discriminate H.
- (* p~1, q~1 *)
+ (* p~1, q~1 *)
destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
repeat split; auto; right.
destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
@@ -1091,10 +1091,10 @@ Qed.
(** Number of digits in a number *)
-Fixpoint Psize (p:positive) : nat :=
- match p with
+Fixpoint Psize (p:positive) : nat :=
+ match p with
| 1 => S O
- | p~1 => S (Psize p)
+ | p~1 => S (Psize p)
| p~0 => S (Psize p)
end.
diff --git a/theories/NArith/Ndec.v b/theories/NArith/Ndec.v
index e9bc4b266..ef381c7f2 100644
--- a/theories/NArith/Ndec.v
+++ b/theories/NArith/Ndec.v
@@ -45,7 +45,7 @@ Proof.
Qed.
Lemma Pcompare_Peqb : forall p p', Pcompare p p' Eq = Eq -> Peqb p p' = true.
-Proof.
+Proof.
intros; rewrite <- (Pcompare_Eq_eq _ _ H).
apply Peqb_correct.
Qed.
@@ -69,7 +69,7 @@ Proof.
Qed.
Lemma Ncompare_Neqb : forall n n', Ncompare n n' = Eq -> Neqb n n' = true.
-Proof.
+Proof.
intros; rewrite <- (Ncompare_Eq_eq _ _ H).
apply Neqb_correct.
Qed.
@@ -107,7 +107,7 @@ Lemma Nodd_not_double :
Nodd a -> forall a0, Neqb (Ndouble a0) a = false.
Proof.
intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0.
- rewrite <- (Neqb_complete _ _ H0) in H.
+ rewrite <- (Neqb_complete _ _ H0) in H.
unfold Nodd in H.
rewrite (Ndouble_bit0 a0) in H. discriminate H.
trivial.
@@ -128,7 +128,7 @@ Lemma Neven_not_double_plus_one :
Neven a -> forall a0, Neqb (Ndouble_plus_one a0) a = false.
Proof.
intros. elim (sumbool_of_bool (Neqb (Ndouble_plus_one a0) a)). intro H0.
- rewrite <- (Neqb_complete _ _ H0) in H.
+ rewrite <- (Neqb_complete _ _ H0) in H.
unfold Neven in H.
rewrite (Ndouble_plus_one_bit0 a0) in H.
discriminate H.
@@ -391,8 +391,8 @@ Lemma Nmin_Nmin' : forall a b, Nmin a b = Nmin' a b.
Proof.
unfold Nmin, Nmin', Nleb; intros.
rewrite nat_of_Ncompare.
- generalize (leb_compare (nat_of_N a) (nat_of_N b));
- destruct (nat_compare (nat_of_N a) (nat_of_N b));
+ generalize (leb_compare (nat_of_N a) (nat_of_N b));
+ destruct (nat_compare (nat_of_N a) (nat_of_N b));
destruct (leb (nat_of_N a) (nat_of_N b)); intuition.
lapply H1; intros; discriminate.
lapply H1; intros; discriminate.
@@ -421,7 +421,7 @@ Qed.
Lemma Nmin_le_3 :
forall a b c, Nleb a (Nmin b c) = true -> Nleb a b = true.
Proof.
- intros; rewrite Nmin_Nmin' in *.
+ intros; rewrite Nmin_Nmin' in *.
unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
assumption.
intro H0. rewrite H0 in H. apply Nltb_leb_weak. apply Nleb_ltb_trans with (b := c); assumption.
@@ -430,7 +430,7 @@ Qed.
Lemma Nmin_le_4 :
forall a b c, Nleb a (Nmin b c) = true -> Nleb a c = true.
Proof.
- intros; rewrite Nmin_Nmin' in *.
+ intros; rewrite Nmin_Nmin' in *.
unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
apply Nleb_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
@@ -447,7 +447,7 @@ Qed.
Lemma Nmin_lt_3 :
forall a b c, Nleb (Nmin b c) a = false -> Nleb b a = false.
Proof.
- intros; rewrite Nmin_Nmin' in *.
+ intros; rewrite Nmin_Nmin' in *.
unfold Nmin' in *. intros. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
assumption.
intro H0. rewrite H0 in H. apply Nltb_trans with (b := c); assumption.
@@ -456,7 +456,7 @@ Qed.
Lemma Nmin_lt_4 :
forall a b c, Nleb (Nmin b c) a = false -> Nleb c a = false.
Proof.
- intros; rewrite Nmin_Nmin' in *.
+ intros; rewrite Nmin_Nmin' in *.
unfold Nmin' in *. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
apply Nltb_leb_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
index ea5f02bba..b1f2668e6 100644
--- a/theories/NArith/Ndigits.v
+++ b/theories/NArith/Ndigits.v
@@ -27,7 +27,7 @@ Fixpoint Pxor (p1 p2:positive) {struct p1} : N :=
| xO p1, xI p2 => Ndouble_plus_one (Pxor p1 p2)
| xI p1, xH => Npos (xO p1)
| xI p1, xO p2 => Ndouble_plus_one (Pxor p1 p2)
- | xI p1, xI p2 => Ndouble (Pxor p1 p2)
+ | xI p1, xI p2 => Ndouble (Pxor p1 p2)
end.
Definition Nxor (n n':N) :=
@@ -65,7 +65,7 @@ Proof.
simpl. rewrite IHp; reflexivity.
Qed.
-(** Checking whether a particular bit is set on not *)
+(** Checking whether a particular bit is set on not *)
Fixpoint Pbit (p:positive) : nat -> bool :=
match p with
@@ -134,13 +134,13 @@ Qed.
(** End of auxilliary results *)
-(** This part is aimed at proving that if two numbers produce
+(** This part is aimed at proving that if two numbers produce
the same stream of bits, then they are equal. *)
Lemma Nbit_faithful_1 : forall a:N, eqf (Nbit N0) (Nbit a) -> N0 = a.
Proof.
destruct a. trivial.
- induction p as [p IHp| p IHp| ]; intro H.
+ induction p as [p IHp| p IHp| ]; intro H.
absurd (N0 = Npos p). discriminate.
exact (IHp (fun n => H (S n))).
absurd (N0 = Npos p). discriminate.
@@ -196,7 +196,7 @@ Proof.
assert (Npos p = Npos p') by exact (IHp (Npos p') H0).
inversion H1. reflexivity.
assumption.
- intros. apply Nbit_faithful_3. intros.
+ intros. apply Nbit_faithful_3. intros.
assert (Npos p = Npos p') by exact (IHp (Npos p') H0).
inversion H1. reflexivity.
assumption.
@@ -257,7 +257,7 @@ Proof.
generalize (fun p1 p2 => H (Npos p1) (Npos p2)); clear H; intro H.
unfold xorf in *.
destruct a as [|p]. simpl Nbit; rewrite false_xorb. reflexivity.
- destruct a' as [|p0].
+ destruct a' as [|p0].
simpl Nbit; rewrite xorb_false. reflexivity.
destruct p. destruct p0; simpl Nbit in *.
rewrite <- H; simpl; case (Pxor p p0); trivial.
@@ -273,13 +273,13 @@ Qed.
Lemma Nxor_semantics :
forall a a':N, eqf (Nbit (Nxor a a')) (xorf (Nbit a) (Nbit a')).
Proof.
- unfold eqf. intros; generalize a, a'. induction n.
+ unfold eqf. intros; generalize a, a'. induction n.
apply Nxor_sem_5. apply Nxor_sem_6; assumption.
Qed.
-(** Consequences:
+(** Consequences:
- only equal numbers lead to a null xor
- - xor is associative
+ - xor is associative
*)
Lemma Nxor_eq : forall a a':N, Nxor a a' = N0 -> a = a'.
@@ -306,7 +306,7 @@ Proof.
apply eqf_sym, Nxor_semantics.
Qed.
-(** Checking whether a number is odd, i.e.
+(** Checking whether a number is odd, i.e.
if its lower bit is set. *)
Definition Nbit0 (n:N) :=
@@ -380,8 +380,8 @@ Lemma Nneg_bit0 :
forall a a':N,
Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a').
Proof.
- intros.
- rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc, xorb_nilpotent, xorb_false.
+ intros.
+ rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc, xorb_nilpotent, xorb_false.
reflexivity.
Qed.
@@ -402,7 +402,7 @@ Lemma Nsame_bit0 :
forall (a a':N) (p:positive),
Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'.
Proof.
- intros. rewrite <- (xorb_false (Nbit0 a)).
+ intros. rewrite <- (xorb_false (Nbit0 a)).
assert (H0: Nbit0 (Npos (xO p)) = false) by reflexivity.
rewrite <- H0, <- H, Nxor_bit0, <- xorb_assoc, xorb_nilpotent, false_xorb. reflexivity.
Qed.
@@ -430,7 +430,7 @@ Proof.
assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
- assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
+ assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
@@ -443,7 +443,7 @@ Proof.
assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
- assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
+ assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
@@ -534,7 +534,7 @@ Proof.
rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H.
rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0).
Qed.
-
+
Lemma Nless_total :
forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
Proof.
@@ -558,7 +558,7 @@ Qed.
(** Number of digits in a number *)
-Definition Nsize (n:N) : nat := match n with
+Definition Nsize (n:N) : nat := match n with
| N0 => 0%nat
| Npos p => Psize p
end.
@@ -566,35 +566,35 @@ Definition Nsize (n:N) : nat := match n with
(** conversions between N and bit vectors. *)
-Fixpoint P2Bv (p:positive) : Bvector (Psize p) :=
- match p return Bvector (Psize p) with
+Fixpoint P2Bv (p:positive) : Bvector (Psize p) :=
+ match p return Bvector (Psize p) with
| xH => Bvect_true 1%nat
| xO p => Bcons false (Psize p) (P2Bv p)
| xI p => Bcons true (Psize p) (P2Bv p)
end.
Definition N2Bv (n:N) : Bvector (Nsize n) :=
- match n as n0 return Bvector (Nsize n0) with
+ match n as n0 return Bvector (Nsize n0) with
| N0 => Bnil
| Npos p => P2Bv p
end.
-Fixpoint Bv2N (n:nat)(bv:Bvector n) {struct bv} : N :=
- match bv with
+Fixpoint Bv2N (n:nat)(bv:Bvector n) {struct bv} : N :=
+ match bv with
| Vnil => N0
| Vcons false n bv => Ndouble (Bv2N n bv)
- | Vcons true n bv => Ndouble_plus_one (Bv2N n bv)
+ | Vcons true n bv => Ndouble_plus_one (Bv2N n bv)
end.
Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
-Proof.
+Proof.
destruct n.
simpl; auto.
induction p; simpl in *; auto; rewrite IHp; simpl; auto.
Qed.
-(** The opposite composition is not so simple: if the considered
- bit vector has some zeros on its right, they will disappear during
+(** The opposite composition is not so simple: if the considered
+ bit vector has some zeros on its right, they will disappear during
the return [Bv2N] translation: *)
Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n.
@@ -603,16 +603,16 @@ induction n; intros.
rewrite (V0_eq _ bv); simpl; auto.
rewrite (VSn_eq _ _ bv); simpl.
specialize IHn with (Vtail _ _ bv).
-destruct (Vhead _ _ bv);
- destruct (Bv2N n (Vtail bool n bv));
+destruct (Vhead _ _ bv);
+ destruct (Bv2N n (Vtail bool n bv));
simpl; auto with arith.
Qed.
(** In the previous lemma, we can only replace the inequality by
an equality whenever the highest bit is non-null. *)
-Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
- Bsign _ bv = true <->
+Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
+ Bsign _ bv = true <->
Nsize (Bv2N _ bv) = (S n).
Proof.
induction n; intro.
@@ -621,18 +621,18 @@ rewrite (V0_eq _ (Vtail _ _ bv)); simpl.
destruct (Vhead _ _ bv); simpl; intuition; try discriminate.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
-destruct (Vhead _ _ bv);
- destruct (Bv2N (S n) (Vtail bool (S n) bv));
+destruct (Vhead _ _ bv);
+ destruct (Bv2N (S n) (Vtail bool (S n) bv));
simpl; intuition; try discriminate.
Qed.
-(** To state nonetheless a second result about composition of
- conversions, we define a conversion on a given number of bits : *)
+(** To state nonetheless a second result about composition of
+ conversions, we define a conversion on a given number of bits : *)
-Fixpoint N2Bv_gen (n:nat)(a:N) { struct n } : Bvector n :=
- match n return Bvector n with
+Fixpoint N2Bv_gen (n:nat)(a:N) { struct n } : Bvector n :=
+ match n return Bvector n with
| 0 => Bnil
- | S n => match a with
+ | S n => match a with
| N0 => Bvect_false (S n)
| Npos xH => Bcons true _ (Bvect_false n)
| Npos (xO p) => Bcons false _ (N2Bv_gen n (Npos p))
@@ -649,10 +649,10 @@ auto.
induction p; simpl; intros; auto; congruence.
Qed.
-(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of
+(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of
[a] plus some zeros. *)
-Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
+Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
N2Bv_gen (Nsize a + k) a = Vextend _ _ _ (N2Bv a) (Bvect_false k).
Proof.
destruct a; simpl.
@@ -662,7 +662,7 @@ Qed.
(** Here comes now the second composition result. *)
-Lemma N2Bv_Bv2N : forall n (bv:Bvector n),
+Lemma N2Bv_Bv2N : forall n (bv:Bvector n),
N2Bv_gen n (Bv2N n bv) = bv.
Proof.
induction n; intros.
@@ -670,21 +670,21 @@ rewrite (V0_eq _ bv); simpl; auto.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
unfold Bcons.
-destruct (Bv2N _ (Vtail _ _ bv));
- destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial;
+destruct (Bv2N _ (Vtail _ _ bv));
+ destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial;
induction n; simpl; auto.
Qed.
(** accessing some precise bits. *)
-Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
+Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
Nbit0 (Bv2N _ bv) = Blow _ bv.
Proof.
intros.
unfold Blow.
rewrite (VSn_eq _ _ bv) at 1.
simpl.
-destruct (Bv2N n (Vtail bool n bv)); simpl;
+destruct (Bv2N n (Vtail bool n bv)); simpl;
destruct (Vhead bool n bv); auto.
Qed.
@@ -699,7 +699,7 @@ Proof.
apply (IHbv p); auto with arith.
Defined.
-Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
+Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
Bnth _ bv p H = Nbit (Bv2N _ bv) p.
Proof.
induction bv; intros.
@@ -726,7 +726,7 @@ Qed.
(** Xor is the same in the two worlds. *)
-Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
+Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv').
Proof.
induction n.
@@ -735,7 +735,7 @@ rewrite (V0_eq _ bv), (V0_eq _ bv'); simpl; auto.
intros.
rewrite (VSn_eq _ _ bv), (VSn_eq _ _ bv'); simpl; auto.
rewrite IHn.
-destruct (Vhead bool n bv); destruct (Vhead bool n bv');
+destruct (Vhead bool n bv); destruct (Vhead bool n bv');
destruct (Bv2N n (Vtail bool n bv)); destruct (Bv2N n (Vtail bool n bv')); simpl; auto.
Qed.
diff --git a/theories/NArith/Ndist.v b/theories/NArith/Ndist.v
index 678d37c1e..92559ff67 100644
--- a/theories/NArith/Ndist.v
+++ b/theories/NArith/Ndist.v
@@ -34,7 +34,7 @@ Definition Nplength (a:N) :=
Lemma Nplength_infty : forall a:N, Nplength a = infty -> a = N0.
Proof.
- simple induction a; trivial.
+ simple induction a; trivial.
unfold Nplength in |- *; intros; discriminate H.
Qed.
@@ -42,7 +42,7 @@ Lemma Nplength_zeros :
forall (a:N) (n:nat),
Nplength a = ni n -> forall k:nat, k < n -> Nbit a k = false.
Proof.
- simple induction a; trivial.
+ simple induction a; trivial.
simple induction p. simple induction n. intros. inversion H1.
simple induction k. simpl in H1. discriminate H1.
intros. simpl in H1. discriminate H1.
@@ -116,11 +116,11 @@ Qed.
Lemma ni_min_assoc :
forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d'').
Proof.
- simple induction d; trivial. simple induction d'; trivial.
+ simple induction d; trivial. simple induction d'; trivial.
simple induction d''; trivial.
unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)).
intro. rewrite H. reflexivity.
- generalize n0 n1. elim n; trivial.
+ generalize n0 n1. elim n; trivial.
simple induction n3; trivial. simple induction n5; trivial.
intros. simpl in |- *. auto.
Qed.
@@ -250,10 +250,10 @@ Proof.
Qed.
-(** We define an ultrametric distance between [N] numbers:
- $d(a,a')=1/2^pd(a,a')$,
- where $pd(a,a')$ is the number of identical bits at the beginning
- of $a$ and $a'$ (infinity if $a=a'$).
+(** We define an ultrametric distance between [N] numbers:
+ $d(a,a')=1/2^pd(a,a')$,
+ where $pd(a,a')$ is the number of identical bits at the beginning
+ of $a$ and $a'$ (infinity if $a=a'$).
Instead of working with $d$, we work with $pd$, namely
[Npdist]: *)
@@ -286,7 +286,7 @@ Qed.
This follows from the fact that $a ~Ra~|a| = 1/2^{\texttt{Nplength}}(a))$
is an ultrametric norm, i.e. that $|a-a'| \leq max (|a-a''|, |a''-a'|)$,
or equivalently that $|a+b|<=max(|a|,|b|)$, i.e. that
- min $(\texttt{Nplength}(a), \texttt{Nplength}(b)) \leq
+ min $(\texttt{Nplength}(a), \texttt{Nplength}(b)) \leq
\texttt{Nplength} (a~\texttt{xor}~ b)$
(lemma [Nplength_ultra]).
*)
diff --git a/theories/NArith/Nnat.v b/theories/NArith/Nnat.v
index 36a1f1d8f..0016d035f 100644
--- a/theories/NArith/Nnat.v
+++ b/theories/NArith/Nnat.v
@@ -39,7 +39,7 @@ Definition N_of_nat (n:nat) :=
Lemma N_of_nat_of_N : forall a:N, N_of_nat (nat_of_N a) = a.
Proof.
destruct a as [| p]. reflexivity.
- simpl in |- *. elim (ZL4 p). intros n H. rewrite H. simpl in |- *.
+ simpl in |- *. elim (ZL4 p). intros n H. rewrite H. simpl in |- *.
rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ in H.
rewrite nat_of_P_inj with (1 := H). reflexivity.
Qed.
@@ -66,14 +66,14 @@ Proof.
apply N_of_nat_of_N.
Qed.
-Lemma nat_of_Ndouble_plus_one :
+Lemma nat_of_Ndouble_plus_one :
forall a, nat_of_N (Ndouble_plus_one a) = S (2*(nat_of_N a)).
Proof.
destruct a; simpl nat_of_N; auto.
apply nat_of_P_xI.
Qed.
-Lemma N_of_double_plus_one :
+Lemma N_of_double_plus_one :
forall n, N_of_nat (S (2*n)) = Ndouble_plus_one (N_of_nat n).
Proof.
intros.
@@ -97,14 +97,14 @@ Proof.
apply N_of_nat_of_N.
Qed.
-Lemma nat_of_Nplus :
+Lemma nat_of_Nplus :
forall a a', nat_of_N (Nplus a a') = (nat_of_N a)+(nat_of_N a').
Proof.
destruct a; destruct a'; simpl; auto.
apply nat_of_P_plus_morphism.
Qed.
-Lemma N_of_plus :
+Lemma N_of_plus :
forall n n', N_of_nat (n+n') = Nplus (N_of_nat n) (N_of_nat n').
Proof.
intros.
@@ -138,14 +138,14 @@ Proof.
apply N_of_nat_of_N.
Qed.
-Lemma nat_of_Nmult :
+Lemma nat_of_Nmult :
forall a a', nat_of_N (Nmult a a') = (nat_of_N a)*(nat_of_N a').
Proof.
destruct a; destruct a'; simpl; auto.
apply nat_of_P_mult_morphism.
Qed.
-Lemma N_of_mult :
+Lemma N_of_mult :
forall n n', N_of_nat (n*n') = Nmult (N_of_nat n) (N_of_nat n').
Proof.
intros.
@@ -155,7 +155,7 @@ Proof.
apply N_of_nat_of_N.
Qed.
-Lemma nat_of_Ndiv2 :
+Lemma nat_of_Ndiv2 :
forall a, nat_of_N (Ndiv2 a) = div2 (nat_of_N a).
Proof.
destruct a; simpl in *; auto.
@@ -164,9 +164,9 @@ Proof.
rewrite div2_double_plus_one; auto.
rewrite nat_of_P_xO.
rewrite div2_double; auto.
-Qed.
+Qed.
-Lemma N_of_div2 :
+Lemma N_of_div2 :
forall n, N_of_nat (div2 n) = Ndiv2 (N_of_nat n).
Proof.
intros.
@@ -175,7 +175,7 @@ Proof.
apply N_of_nat_of_N.
Qed.
-Lemma nat_of_Ncompare :
+Lemma nat_of_Ncompare :
forall a a', Ncompare a a' = nat_compare (nat_of_N a) (nat_of_N a').
Proof.
destruct a; destruct a'; simpl.
@@ -187,7 +187,7 @@ Proof.
apply nat_of_P_compare_morphism.
Qed.
-Lemma N_of_nat_compare :
+Lemma N_of_nat_compare :
forall n n', nat_compare n n' = Ncompare (N_of_nat n) (N_of_nat n').
Proof.
intros.
@@ -321,17 +321,17 @@ Qed.
Lemma Z_of_N_of_nat : forall n:nat, Z_of_N (N_of_nat n) = Z_of_nat n.
Proof.
destruct n; simpl; auto.
-Qed.
+Qed.
Lemma Z_of_N_pos : forall p:positive, Z_of_N (Npos p) = Zpos p.
Proof.
destruct p; simpl; auto.
-Qed.
+Qed.
Lemma Z_of_N_abs : forall z:Z, Z_of_N (Zabs_N z) = Zabs z.
Proof.
destruct z; simpl; auto.
-Qed.
+Qed.
Lemma Z_of_N_le_0 : forall n, (0 <= Z_of_N n)%Z.
Proof.
@@ -348,22 +348,22 @@ Proof.
destruct n; destruct m; auto.
Qed.
-Lemma Z_of_N_minus : forall n m:N, Z_of_N (n-m) = Zmax 0 (Z_of_N n - Z_of_N m).
+Lemma Z_of_N_minus : forall n m:N, Z_of_N (n-m) = Zmax 0 (Z_of_N n - Z_of_N m).
Proof.
intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nminus; apply inj_minus.
Qed.
-Lemma Z_of_N_succ : forall n:N, Z_of_N (Nsucc n) = Zsucc (Z_of_N n).
+Lemma Z_of_N_succ : forall n:N, Z_of_N (Nsucc n) = Zsucc (Z_of_N n).
Proof.
intros; do 2 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nsucc; apply inj_S.
Qed.
-Lemma Z_of_N_min : forall n m:N, Z_of_N (Nmin n m) = Zmin (Z_of_N n) (Z_of_N m).
+Lemma Z_of_N_min : forall n m:N, Z_of_N (Nmin n m) = Zmin (Z_of_N n) (Z_of_N m).
Proof.
intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmin; apply inj_min.
Qed.
-Lemma Z_of_N_max : forall n m:N, Z_of_N (Nmax n m) = Zmax (Z_of_N n) (Z_of_N m).
+Lemma Z_of_N_max : forall n m:N, Z_of_N (Nmax n m) = Zmax (Z_of_N n) (Z_of_N m).
Proof.
intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmax; apply inj_max.
Qed.
diff --git a/theories/NArith/Pnat.v b/theories/NArith/Pnat.v
index bf42c5e99..f989e01d0 100644
--- a/theories/NArith/Pnat.v
+++ b/theories/NArith/Pnat.v
@@ -11,7 +11,7 @@
Require Import BinPos.
(**********************************************************************)
-(** Properties of the injection from binary positive numbers to Peano
+(** Properties of the injection from binary positive numbers to Peano
natural numbers *)
(** Original development by Pierre Crégut, CNET, Lannion, France *)
@@ -50,7 +50,7 @@ Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
+ | destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
intro m;
[ rewrite IHp; rewrite plus_assoc; trivial with arith
| rewrite IHp; rewrite plus_assoc; trivial with arith
@@ -75,11 +75,11 @@ intro x; induction x as [p IHp| p IHp| ]; intro y;
| destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
[ intros m; rewrite Pmult_nat_plus_carry_morphism; rewrite IHp;
rewrite plus_assoc_reverse; rewrite plus_assoc_reverse;
- rewrite (plus_permute m (Pmult_nat p (m + m)));
+ rewrite (plus_permute m (Pmult_nat p (m + m)));
trivial with arith
| intros m; rewrite IHp; apply plus_assoc
| intros m; rewrite Pmult_nat_succ_morphism;
- rewrite (plus_comm (m + Pmult_nat p (m + m)));
+ rewrite (plus_comm (m + Pmult_nat p (m + m)));
apply plus_assoc_reverse
| intros m; rewrite IHp; apply plus_permute
| intros m; rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ].
@@ -110,7 +110,7 @@ Proof.
intro p; change 2 with (1 + 1) in |- *; rewrite Pmult_nat_r_plus_morphism;
trivial.
Qed.
-
+
(** [nat_of_P] is a morphism for multiplication *)
Theorem nat_of_P_mult_morphism :
@@ -133,11 +133,11 @@ Proof.
intro y; induction y as [p H| p H| ];
[ destruct H as [x H1]; exists (S x + S x); unfold nat_of_P in |- *;
simpl in |- *; change 2 with (1 + 1) in |- *;
- rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1;
+ rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1;
rewrite H1; auto with arith
| destruct H as [x H2]; exists (x + S x); unfold nat_of_P in |- *;
simpl in |- *; change 2 with (1 + 1) in |- *;
- rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2;
+ rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2;
rewrite H2; auto with arith
| exists 0; auto with arith ].
Qed.
@@ -182,7 +182,7 @@ intro x; induction x as [p H| p H| ]; intro y; destruct y as [q| q| ];
apply ZL7; apply H; assumption
| simpl in |- *; discriminate H2
| unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; rewrite ZL6;
- elim (ZL4 q); intros h H3; rewrite H3; simpl in |- *;
+ elim (ZL4 q); intros h H3; rewrite H3; simpl in |- *;
apply lt_O_Sn
| unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 q);
intros h H3; rewrite H3; simpl in |- *; rewrite <- plus_n_Sm;
@@ -314,7 +314,7 @@ Proof.
Qed.
(**********************************************************************)
-(** Properties of the shifted injection from Peano natural numbers to
+(** Properties of the shifted injection from Peano natural numbers to
binary positive numbers *)
(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)
@@ -366,7 +366,7 @@ intros; rewrite P_of_succ_nat_o_nat_of_P_eq_succ, Ppred_succ; auto.
Qed.
(**********************************************************************)
-(** Extra properties of the injection from binary positive numbers to Peano
+(** Extra properties of the injection from binary positive numbers to Peano
natural numbers *)
(** [nat_of_P] is a morphism for subtraction on positive numbers *)
@@ -384,14 +384,14 @@ Qed.
Lemma ZL16 : forall p q:positive, nat_of_P p - nat_of_P q < nat_of_P p.
Proof.
intros p q; elim (ZL4 p); elim (ZL4 q); intros h H1 i H2; rewrite H1;
- rewrite H2; simpl in |- *; unfold lt in |- *; apply le_n_S;
+ rewrite H2; simpl in |- *; unfold lt in |- *; apply le_n_S;
apply le_minus.
Qed.
Lemma ZL17 : forall p q:positive, nat_of_P p < nat_of_P (p + q).
Proof.
intros p q; rewrite nat_of_P_plus_morphism; unfold lt in |- *; elim (ZL4 q);
- intros k H; rewrite H; rewrite plus_comm; simpl in |- *;
+ intros k H; rewrite H; rewrite plus_comm; simpl in |- *;
apply le_n_S; apply le_plus_r.
Qed.
@@ -410,7 +410,7 @@ intros; apply nat_of_P_lt_Lt_compare_complement_morphism;
[ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p);
rewrite plus_assoc; rewrite le_plus_minus_r;
[ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l;
- apply nat_of_P_lt_Lt_compare_morphism;
+ apply nat_of_P_lt_Lt_compare_morphism;
assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
@@ -454,7 +454,7 @@ intros x y z H; apply nat_of_P_inj; rewrite nat_of_P_mult_morphism;
[ do 2 rewrite nat_of_P_mult_morphism;
do 3 rewrite (mult_comm (nat_of_P x)); apply mult_minus_distr_r
| apply nat_of_P_gt_Gt_compare_complement_morphism;
- do 2 rewrite nat_of_P_mult_morphism; unfold gt in |- *;
+ do 2 rewrite nat_of_P_mult_morphism; unfold gt in |- *;
elim (ZL4 x); intros h H1; rewrite H1; apply mult_S_lt_compat_l;
exact (nat_of_P_gt_Gt_compare_morphism y z H) ]
| assumption ].