aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/NArith
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-12-28 16:26:45 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-12-28 16:26:45 +0000
commit380acdd0100d55cd908a96731365c1ce287e2d10 (patch)
tree7fa607978bfb166517a19e3e464de2544063e5fb /theories/NArith
parentd556fd3ffb8b59e2a5136ab748a3a8d73c3f45f0 (diff)
Remplacement de la définition de Pind et Prec par une définition
suggérée par Conor McBride qui ne fait pas intervenir eq_rect et qui permet de montrer "facilement" (mais avec l'axiome K) les équations de réduction de Prec. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9465 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/NArith')
-rw-r--r--theories/NArith/BinPos.v120
1 files changed, 62 insertions, 58 deletions
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index 9b19a12f9..03d29db35 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -501,70 +501,83 @@ intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
Qed.
(**********************************************************************)
-(** Peano induction on binary positive positive numbers *)
+(** Peano induction and recursion on binary positive positive numbers *)
+(** (a nice proof from Conor McBride, see "The view from the left") *)
-Fixpoint plus_iter (x y:positive) {struct x} : positive :=
- match x with
- | xH => Psucc y
- | xO x => plus_iter x (plus_iter x y)
- | xI x => plus_iter x (plus_iter x (Psucc y))
+Inductive PeanoView : positive -> Type :=
+| PeanoOne : PeanoView xH
+| PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p).
+
+Fixpoint peanoView_xO p (q:PeanoView p) {struct q} : PeanoView (xO p) :=
+ match q in PeanoView x return PeanoView (xO x) with
+ | PeanoOne => PeanoSucc _ PeanoOne
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
+ end.
+
+Fixpoint peanoView_xI p (q:PeanoView p) {struct q} : PeanoView (xI p) :=
+ match q in PeanoView x return PeanoView (xI x) with
+ | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
+ end.
+
+Fixpoint peanoView p : PeanoView p :=
+ match p return PeanoView p with
+ | xH => PeanoOne
+ | xO p => peanoView_xO p (peanoView p)
+ | xI p => peanoView_xI p (peanoView p)
end.
-Lemma plus_iter_eq_plus : forall p q:positive, plus_iter p q = p + q.
+Definition PeanoView_iter (P:positive->Type)
+ (a:P xH) (f:forall p, P p -> P (Psucc p)) :=
+ (fix iter p (q:PeanoView p) : P p :=
+ match q in PeanoView p return P p with
+ | PeanoOne => a
+ | PeanoSucc _ q => f _ (iter _ q)
+ end).
+
+Require Import JMeq.
+
+Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; reflexivity || (do 2 rewrite IHp);
- rewrite Pplus_assoc; rewrite Pplus_diag; try reflexivity.
-rewrite Pplus_carry_spec; rewrite <- Pplus_succ_permute_r; reflexivity.
-rewrite Pplus_one_succ_r; reflexivity.
+intros.
+induction q. apply JMeq_eq. cut (xH=xH). pattern xH at 1 2 5, q'. destruct q'. trivial.
+destruct p0; intros; discriminate.
+trivial.
+apply JMeq_eq.
+cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
+intro. destruct p; discriminate.
+intro. unfold p0 in H. apply Psucc_inj in H.
+generalize q'. rewrite H. intro.
+rewrite (IHq q'0).
+trivial.
+trivial.
Qed.
-Lemma plus_iter_xO : forall p:positive, plus_iter p p = xO p.
+Definition Prect (P:positive->Type) (a:P xH) (f:forall p, P p -> P (Psucc p))
+ (p:positive) :=
+ PeanoView_iter P a f p (peanoView p).
+
+Theorem Prect_succ : forall (P:positive->Type) (a:P xH)
+ (f:forall p, P p -> P (Psucc p)) (p:positive),
+ Prect P a f (Psucc p) = f _ (Prect P a f p).
Proof.
-intro; rewrite <- Pplus_diag; apply plus_iter_eq_plus.
+intros.
+unfold Prect.
+rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))).
+trivial.
Qed.
-Lemma plus_iter_xI : forall p:positive, Psucc (plus_iter p p) = xI p.
+Theorem Prect_base : forall (P:positive->Type) (a:P xH)
+ (f:forall p, P p -> P (Psucc p)) (p:positive), Prect P a f xH = a.
Proof.
-intro; rewrite xI_succ_xO; rewrite <- Pplus_diag;
- apply (f_equal (A:=positive)); apply plus_iter_eq_plus.
+trivial.
Qed.
-Lemma iterate_add :
- forall P:positive -> Type,
- (forall n:positive, P n -> P (Psucc n)) ->
- forall p q:positive, P q -> P (plus_iter p q).
-Proof.
-intros P H; induction p; simpl in |- *; intros.
-apply IHp; apply IHp; apply H; assumption.
-apply IHp; apply IHp; assumption.
-apply H; assumption.
-Defined.
+Definition Prec (P:positive->Set) := Prect P.
(** Peano induction *)
-Theorem Pind :
- forall P:positive -> Prop,
- P xH -> (forall n:positive, P n -> P (Psucc n)) -> forall p:positive, P p.
-Proof.
-intros P H1 Hsucc n; induction n.
-rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
-rewrite <- plus_iter_xO; apply iterate_add; assumption.
-assumption.
-Qed.
-
-(** Peano recursion *)
-
-Definition Prec (A:Set) (a:A) (f:positive -> A -> A) :
- positive -> A :=
- (fix Prec (p:positive) : A :=
- match p with
- | xH => a
- | xO p => iterate_add (fun _ => A) f p p (Prec p)
- | xI p => f (plus_iter p p) (iterate_add (fun _ => A) f p p (Prec p))
- end).
+Definition Pind (P:positive->Prop) := Prect P.
(** Peano case analysis *)
@@ -575,15 +588,6 @@ Proof.
intros; apply Pind; auto.
Qed.
-(*
-Check
- (let fact := Prec positive xH (fun p r => Psucc p * r) in
- let seven := xI (xI xH) in
- let five_thousand_forty :=
- xO (xO (xO (xO (xI (xI (xO (xI (xI (xI (xO (xO xH))))))))))) in
- refl_equal _:fact seven = five_thousand_forty).
-*)
-
(**********************************************************************)
(** Properties of multiplication on binary positive numbers *)