aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/NArith/Nnat.v
diff options
context:
space:
mode:
authorGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2014-06-26 11:04:34 +0200
committerGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2014-07-09 18:47:26 +0200
commit8836eae5d52fbbadf7722548052da3f7ceb5b260 (patch)
treeff067362a375c7c5e9539bb230378ca8bc0cf1ee /theories/NArith/Nnat.v
parent6e9a1c4c71f58aba8bb0bb5942c5063a5984a1bc (diff)
Arith: full integration of the "Numbers" modular framework
- The earlier proof-of-concept file NPeano (which instantiates the "Numbers" framework for nat) becomes now the entry point in the Arith lib, and gets renamed PeanoNat. It still provides an inner module "Nat" which sums up everything about type nat (functions, predicates and properties of them). This inner module Nat is usable as soon as you Require Import Arith, or just Arith_base, or simply PeanoNat. - Definitions of operations over type nat are now grouped in a new file Init/Nat.v. This file is meant to be used without "Import", hence providing for instance Nat.add or Nat.sqrt as soon as coqtop starts (but no proofs about them). - The definitions that used to be in Init/Peano.v (pred, plus, minus, mult) are now compatibility notations (for Nat.pred, Nat.add, Nat.sub, Nat.mul where here Nat is Init/Nat.v). - This Coq.Init.Nat module (with only pure definitions) is Include'd in the aforementioned Coq.Arith.PeanoNat.Nat. You might see Init.Nat sometimes instead of just Nat (for instance when doing "Print plus"). Normally it should be ok to just ignore these "Init" since Init.Nat is included in the full PeanoNat.Nat. I'm investigating if it's possible to get rid of these "Init" prefixes. - Concerning predicates, orders le and lt are still defined in Init/Peano.v, with their notations "<=" and "<". Properties in PeanoNat.Nat directly refer to these predicates in Peano. For instantation reasons, PeanoNat.Nat also contains a Nat.le and Nat.lt (defined via "Definition le := Peano.le", we cannot yet include an Inductive to implement a Parameter), but these aliased predicates won't probably be very convenient to use. - Technical remark: I've split the previous property functor NProp in two parts (NBasicProp and NExtraProp), it helps a lot for building PeanoNat.Nat incrementally. Roughly speaking, we have the following schema: Module Nat. Include Coq.Init.Nat. (* definition of operations : add ... sqrt ... *) ... (** proofs of specifications for basic ops such as + * - *) Include NBasicProp. (** generic properties of these basic ops *) ... (** proofs of specifications for advanced ops (pow sqrt log2...) that may rely on proofs for + * - *) Include NExtraProp. (** all remaining properties *) End Nat. - All other files in directory Arith are now taking advantage of PeanoNat : they are now filled with compatibility notations (when earlier lemmas have exact counterpart in the Nat module) or lemmas with one-line proofs based on the Nat module. All hints for database "arith" remain declared in these old-style file (such as Plus.v, Lt.v, etc). All the old-style files are still Require'd (or not) by Arith.v, just as before. - Compatibility should be almost complete. For instance in the stdlib, the only adaptations were due to .ml code referring to some Coq constant name such as Coq.Init.Peano.pred, which doesn't live well with the new compatibility notations.
Diffstat (limited to 'theories/NArith/Nnat.v')
-rw-r--r--theories/NArith/Nnat.v61
1 files changed, 33 insertions, 28 deletions
diff --git a/theories/NArith/Nnat.v b/theories/NArith/Nnat.v
index cddc5f4cf..94242394b 100644
--- a/theories/NArith/Nnat.v
+++ b/theories/NArith/Nnat.v
@@ -6,8 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Minus Compare_dec Sumbool Div2 Min Max.
-Require Import BinPos BinNat Pnat.
+Require Import BinPos BinNat PeanoNat Pnat.
(** * Conversions from [N] to [nat] *)
@@ -68,52 +67,58 @@ Qed.
Lemma inj_sub a a' :
N.to_nat (a - a') = N.to_nat a - N.to_nat a'.
Proof.
- destruct a as [|a], a' as [|a']; simpl; auto with arith.
+ destruct a as [|a], a' as [|a']; simpl; rewrite ?Nat.sub_0_r; trivial.
destruct (Pos.compare_spec a a').
- subst. now rewrite Pos.sub_mask_diag, <- minus_n_n.
- rewrite Pos.sub_mask_neg; trivial. apply Pos2Nat.inj_lt in H.
- simpl; symmetry; apply not_le_minus_0; auto with arith.
- destruct (Pos.sub_mask_pos' _ _ H) as (q & -> & Hq).
- simpl. apply plus_minus. now rewrite <- Hq, Pos2Nat.inj_add.
+ - subst. now rewrite Pos.sub_mask_diag, Nat.sub_diag.
+ - rewrite Pos.sub_mask_neg; trivial. apply Pos2Nat.inj_lt in H.
+ simpl; symmetry; apply Nat.sub_0_le. now apply Nat.lt_le_incl.
+ - destruct (Pos.sub_mask_pos' _ _ H) as (q & -> & Hq).
+ simpl; symmetry; apply Nat.add_sub_eq_l. now rewrite <- Hq, Pos2Nat.inj_add.
Qed.
-Lemma inj_pred a : N.to_nat (N.pred a) = pred (N.to_nat a).
+Lemma inj_pred a : N.to_nat (N.pred a) = Nat.pred (N.to_nat a).
Proof.
- intros. rewrite pred_of_minus, N.pred_sub. apply inj_sub.
+ rewrite <- Nat.sub_1_r, N.pred_sub. apply inj_sub.
Qed.
-Lemma inj_div2 a : N.to_nat (N.div2 a) = div2 (N.to_nat a).
+Lemma inj_div2 a : N.to_nat (N.div2 a) = Nat.div2 (N.to_nat a).
Proof.
destruct a as [|[p|p| ]]; trivial.
- simpl N.to_nat. now rewrite Pos2Nat.inj_xI, div2_double_plus_one.
- simpl N.to_nat. now rewrite Pos2Nat.inj_xO, div2_double.
+ - simpl N.to_nat. now rewrite Pos2Nat.inj_xI, Nat.div2_succ_double.
+ - simpl N.to_nat. now rewrite Pos2Nat.inj_xO, Nat.div2_double.
Qed.
Lemma inj_compare a a' :
- (a ?= a')%N = nat_compare (N.to_nat a) (N.to_nat a').
+ (a ?= a')%N = (N.to_nat a ?= N.to_nat a').
Proof.
destruct a, a'; simpl; trivial.
- now destruct (Pos2Nat.is_succ p) as (n,->).
- now destruct (Pos2Nat.is_succ p) as (n,->).
- apply Pos2Nat.inj_compare.
+ - now destruct (Pos2Nat.is_succ p) as (n,->).
+ - now destruct (Pos2Nat.is_succ p) as (n,->).
+ - apply Pos2Nat.inj_compare.
Qed.
Lemma inj_max a a' :
- N.to_nat (N.max a a') = max (N.to_nat a) (N.to_nat a').
+ N.to_nat (N.max a a') = Nat.max (N.to_nat a) (N.to_nat a').
Proof.
unfold N.max. rewrite inj_compare; symmetry.
- case nat_compare_spec; intros H; try rewrite H; auto with arith.
+ case Nat.compare_spec; intros.
+ - now apply Nat.max_r, Nat.eq_le_incl.
+ - now apply Nat.max_r, Nat.lt_le_incl.
+ - now apply Nat.max_l, Nat.lt_le_incl.
Qed.
Lemma inj_min a a' :
- N.to_nat (N.min a a') = min (N.to_nat a) (N.to_nat a').
+ N.to_nat (N.min a a') = Nat.min (N.to_nat a) (N.to_nat a').
Proof.
unfold N.min; rewrite inj_compare. symmetry.
- case nat_compare_spec; intros H; try rewrite H; auto with arith.
+ case Nat.compare_spec; intros.
+ - now apply Nat.min_l, Nat.eq_le_incl.
+ - now apply Nat.min_l, Nat.lt_le_incl.
+ - now apply Nat.min_r, Nat.lt_le_incl.
Qed.
Lemma inj_iter a {A} (f:A->A) (x:A) :
- N.iter a f x = nat_rect (fun _ => A) x (fun _ => f) (N.to_nat a).
+ N.iter a f x = Nat.iter (N.to_nat a) f x.
Proof.
destruct a as [|a]. trivial. apply Pos2Nat.inj_iter.
Qed.
@@ -166,7 +171,7 @@ Proof. nat2N. Qed.
Lemma inj_succ n : N.of_nat (S n) = N.succ (N.of_nat n).
Proof. nat2N. Qed.
-Lemma inj_pred n : N.of_nat (pred n) = N.pred (N.of_nat n).
+Lemma inj_pred n : N.of_nat (Nat.pred n) = N.pred (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_add n n' : N.of_nat (n+n') = (N.of_nat n + N.of_nat n')%N.
@@ -178,23 +183,23 @@ Proof. nat2N. Qed.
Lemma inj_mul n n' : N.of_nat (n*n') = (N.of_nat n * N.of_nat n')%N.
Proof. nat2N. Qed.
-Lemma inj_div2 n : N.of_nat (div2 n) = N.div2 (N.of_nat n).
+Lemma inj_div2 n : N.of_nat (Nat.div2 n) = N.div2 (N.of_nat n).
Proof. nat2N. Qed.
Lemma inj_compare n n' :
- nat_compare n n' = (N.of_nat n ?= N.of_nat n')%N.
+ (n ?= n') = (N.of_nat n ?= N.of_nat n')%N.
Proof. now rewrite N2Nat.inj_compare, !id. Qed.
Lemma inj_min n n' :
- N.of_nat (min n n') = N.min (N.of_nat n) (N.of_nat n').
+ N.of_nat (Nat.min n n') = N.min (N.of_nat n) (N.of_nat n').
Proof. nat2N. Qed.
Lemma inj_max n n' :
- N.of_nat (max n n') = N.max (N.of_nat n) (N.of_nat n').
+ N.of_nat (Nat.max n n') = N.max (N.of_nat n) (N.of_nat n').
Proof. nat2N. Qed.
Lemma inj_iter n {A} (f:A->A) (x:A) :
- nat_rect (fun _ => A) x (fun _ => f) n = N.iter (N.of_nat n) f x.
+ Nat.iter n f x = N.iter (N.of_nat n) f x.
Proof. now rewrite N2Nat.inj_iter, !id. Qed.
End Nat2N.