diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2010-06-08 13:56:14 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2010-06-08 13:56:14 +0000 |
commit | d14635b0c74012e464aad9e77aeeffda0f1ef154 (patch) | |
tree | bb913fa1399a1d4c7cdbd403e10c4efcc58fcdb1 /theories/MSets | |
parent | f4c5934181c3e036cb77897ad8c8a192c999f6ad (diff) |
Made option "Automatic Introduction" active by default before too many
people use the undocumented "Lemma foo x : t" feature in a way
incompatible with this activation.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13090 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/MSets')
-rw-r--r-- | theories/MSets/MSetAVL.v | 36 | ||||
-rw-r--r-- | theories/MSets/MSetFacts.v | 4 | ||||
-rw-r--r-- | theories/MSets/MSetList.v | 32 | ||||
-rw-r--r-- | theories/MSets/MSetProperties.v | 4 | ||||
-rw-r--r-- | theories/MSets/MSetWeakList.v | 10 |
5 files changed, 43 insertions, 43 deletions
diff --git a/theories/MSets/MSetAVL.v b/theories/MSets/MSetAVL.v index 0d24e0339..d8486180c 100644 --- a/theories/MSets/MSetAVL.v +++ b/theories/MSets/MSetAVL.v @@ -833,7 +833,7 @@ Qed. Instance bal_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) : Ok (bal l x r). Proof. - intros l x r; functional induction bal l x r; intros; + functional induction bal l x r; intros; inv; repeat apply create_ok; auto; unfold create; (apply lt_tree_node || apply gt_tree_node); auto; (eapply lt_tree_trans || eapply gt_tree_trans); eauto. @@ -894,7 +894,7 @@ Proof. apply create_spec. Qed. -Instance join_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) : +Instance join_ok : forall l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r), Ok (join l x r). Proof. join_tac; auto with *; inv; apply bal_ok; auto; @@ -915,10 +915,10 @@ Proof. rewrite bal_spec, In_node_iff, IHp, e0; simpl; intuition. Qed. -Instance remove_min_ok l x r h `(Ok (Node l x r h)) : +Instance remove_min_ok l x r : forall h `(Ok (Node l x r h)), Ok (remove_min l x r)#1. Proof. - intros l x r; functional induction (remove_min l x r); simpl; intros. + functional induction (remove_min l x r); simpl; intros. inv; auto. assert (O : Ok (Node ll lx lr _x)) by (inv; auto). assert (L : lt_tree x (Node ll lx lr _x)) by (inv; auto). @@ -958,11 +958,11 @@ Proof. rewrite bal_spec, remove_min_spec, e1; simpl; intuition. Qed. -Instance merge_ok s1 s2 `(Ok s1, Ok s2) - `(forall y1 y2 : elt, InT y1 s1 -> InT y2 s2 -> X.lt y1 y2) : +Instance merge_ok s1 s2 : forall `(Ok s1, Ok s2) + `(forall y1 y2 : elt, InT y1 s1 -> InT y2 s2 -> X.lt y1 y2), Ok (merge s1 s2). Proof. - intros s1 s2; functional induction (merge s1 s2); intros; auto; + functional induction (merge s1 s2); intros; auto; try factornode _x _x0 _x1 _x2 as s1. apply bal_ok; auto. change s2' with ((s2',m)#1); rewrite <-e1; eauto with *. @@ -1110,11 +1110,11 @@ Proof. rewrite join_spec, remove_min_spec, e1; simpl; intuition. Qed. -Instance concat_ok s1 s2 `(Ok s1, Ok s2) - `(forall y1 y2 : elt, InT y1 s1 -> InT y2 s2 -> X.lt y1 y2) : +Instance concat_ok s1 s2 : forall `(Ok s1, Ok s2) + `(forall y1 y2 : elt, InT y1 s1 -> InT y2 s2 -> X.lt y1 y2), Ok (concat s1 s2). Proof. - intros s1 s2; functional induction (concat s1 s2); intros; auto; + functional induction (concat s1 s2); intros; auto; try factornode _x _x0 _x1 _x2 as s1. apply join_ok; auto. change (Ok (s2',m)#1); rewrite <-e1; eauto with *. @@ -1164,7 +1164,7 @@ Proof. destruct (split x r); simpl in *. rewrite IHr; intuition_in; order. Qed. -Lemma split_ok s x `{Ok s} : Ok (split x s)#l /\ Ok (split x s)#r. +Lemma split_ok : forall s x `{Ok s}, Ok (split x s)#l /\ Ok (split x s)#r. Proof. induct s x; simpl; auto. specialize (IHl x). @@ -1273,9 +1273,9 @@ Proof. elim_compare y x1; intuition_in. Qed. -Instance union_ok s1 s2 `(Ok s1, Ok s2) : Ok (union s1 s2). +Instance union_ok s1 s2 : forall `(Ok s1, Ok s2), Ok (union s1 s2). Proof. - intros s1 s2; functional induction union s1 s2; intros B1 B2; auto. + functional induction union s1 s2; intros B1 B2; auto. factornode _x0 _x1 _x2 _x3 as s2; destruct_split; inv. apply join_ok; auto with *. intro y; rewrite union_spec, split_spec1; intuition_in. @@ -1387,7 +1387,7 @@ Proof. rewrite H0 in H3; discriminate. Qed. -Instance filter_ok' s acc f `(Ok s, Ok acc) : +Instance filter_ok' : forall s acc f `(Ok s, Ok acc), Ok (filter_acc f acc s). Proof. induction s; simpl; auto. @@ -1473,7 +1473,7 @@ Proof. intros u v H; rewrite H; auto. Qed. -Instance partition_ok1' s acc f `(Ok s, Ok acc#1) : +Instance partition_ok1' : forall s acc f `(Ok s, Ok acc#1), Ok (partition_acc f acc s)#1. Proof. induction s; simpl; auto. @@ -1484,7 +1484,7 @@ Proof. apply IHs1; simpl; auto with *. Qed. -Instance partition_ok2' s acc f `(Ok s, Ok acc#2) : +Instance partition_ok2' : forall s acc f `(Ok s, Ok acc#2), Ok (partition_acc f acc s)#2. Proof. induction s; simpl; auto. @@ -1496,10 +1496,10 @@ Proof. Qed. Instance partition_ok1 s f `(Ok s) : Ok (partition f s)#1. -Proof. intros; apply partition_ok1'; auto. Qed. +Proof. apply partition_ok1'; auto. Qed. Instance partition_ok2 s f `(Ok s) : Ok (partition f s)#2. -Proof. intros; apply partition_ok2'; auto. Qed. +Proof. apply partition_ok2'; auto. Qed. diff --git a/theories/MSets/MSetFacts.v b/theories/MSets/MSetFacts.v index b61bf3fe7..4e17618f7 100644 --- a/theories/MSets/MSetFacts.v +++ b/theories/MSets/MSetFacts.v @@ -488,13 +488,13 @@ Qed. Generalizable Variables f. -Instance filter_equal `(Proper _ (E.eq==>Logic.eq) f) : +Instance filter_equal : forall `(Proper _ (E.eq==>Logic.eq) f), Proper (Equal==>Equal) (filter f). Proof. intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition. Qed. -Instance filter_subset `(Proper _ (E.eq==>Logic.eq) f) : +Instance filter_subset : forall `(Proper _ (E.eq==>Logic.eq) f), Proper (Subset==>Subset) (filter f). Proof. intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition. diff --git a/theories/MSets/MSetList.v b/theories/MSets/MSetList.v index b73af8f1a..45278eaf6 100644 --- a/theories/MSets/MSetList.v +++ b/theories/MSets/MSetList.v @@ -328,9 +328,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. Qed. Hint Resolve add_inf. - Global Instance add_ok s x `(Ok s) : Ok (add x s). + Global Instance add_ok s x : forall `(Ok s), Ok (add x s). Proof. - intros s x; repeat rewrite <- isok_iff; revert s x. + repeat rewrite <- isok_iff; revert s x. simple induction s; simpl. intuition. intros; elim_compare x a; inv; auto. @@ -356,9 +356,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. Qed. Hint Resolve remove_inf. - Global Instance remove_ok s x `(Ok s) : Ok (remove x s). + Global Instance remove_ok s x : forall `(Ok s), Ok (remove x s). Proof. - intros s x; repeat rewrite <- isok_iff; revert s x. + repeat rewrite <- isok_iff; revert s x. induction s; simpl. intuition. intros; elim_compare x a; inv; auto. @@ -399,9 +399,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. Qed. Hint Resolve union_inf. - Global Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s'). + Global Instance union_ok s s' : forall `(Ok s, Ok s'), Ok (union s s'). Proof. - intros s s'; repeat rewrite <- isok_iff; revert s s'. + repeat rewrite <- isok_iff; revert s s'. induction2; constructors; try apply @ok; auto. apply Inf_eq with x'; auto; apply union_inf; auto; apply Inf_eq with x; auto. change (Inf x' (union (x :: l) l')); auto. @@ -426,9 +426,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. Qed. Hint Resolve inter_inf. - Global Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s'). + Global Instance inter_ok s s' : forall `(Ok s, Ok s'), Ok (inter s s'). Proof. - intros s s'; repeat rewrite <- isok_iff; revert s s'. + repeat rewrite <- isok_iff; revert s s'. induction2. constructors; auto. apply Inf_eq with x'; auto; apply inter_inf; auto; apply Inf_eq with x; auto. @@ -457,9 +457,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. Qed. Hint Resolve diff_inf. - Global Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s'). + Global Instance diff_ok s s' : forall `(Ok s, Ok s'), Ok (diff s s'). Proof. - intros s s'; repeat rewrite <- isok_iff; revert s s'. + repeat rewrite <- isok_iff; revert s s'. induction2. Qed. @@ -644,9 +644,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. apply Inf_lt with x; auto. Qed. - Global Instance filter_ok s f `(Ok s) : Ok (filter f s). + Global Instance filter_ok s f : forall `(Ok s), Ok (filter f s). Proof. - intros s f; repeat rewrite <- isok_iff; revert s f. + repeat rewrite <- isok_iff; revert s f. simple induction s; simpl. auto. intros x l Hrec f Hs; inv. @@ -725,9 +725,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. auto. Qed. - Global Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)). + Global Instance partition_ok1 s f : forall `(Ok s), Ok (fst (partition f s)). Proof. - intros s f; repeat rewrite <- isok_iff; revert s f. + repeat rewrite <- isok_iff; revert s f. simple induction s; simpl. auto. intros x l Hrec f Hs; inv. @@ -735,9 +735,9 @@ Module MakeRaw (X: OrderedType) <: RawSets X. case (f x); case (partition f l); simpl; auto. Qed. - Global Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)). + Global Instance partition_ok2 s f : forall `(Ok s), Ok (snd (partition f s)). Proof. - intros s f; repeat rewrite <- isok_iff; revert s f. + repeat rewrite <- isok_iff; revert s f. simple induction s; simpl. auto. intros x l Hrec f Hs; inv. diff --git a/theories/MSets/MSetProperties.v b/theories/MSets/MSetProperties.v index 14fe097a9..9cd28e171 100644 --- a/theories/MSets/MSetProperties.v +++ b/theories/MSets/MSetProperties.v @@ -947,12 +947,12 @@ Module OrdProperties (M:Sets). Instance gtb_compat x : Proper (E.eq==>Logic.eq) (gtb x). Proof. - intros x a b H. unfold gtb. rewrite H; auto. + intros a b H. unfold gtb. rewrite H; auto. Qed. Instance leb_compat x : Proper (E.eq==>Logic.eq) (leb x). Proof. - intros x a b H; unfold leb. rewrite H; auto. + intros a b H; unfold leb. rewrite H; auto. Qed. Hint Resolve gtb_compat leb_compat. diff --git a/theories/MSets/MSetWeakList.v b/theories/MSets/MSetWeakList.v index 8239ecef8..799e5f57e 100644 --- a/theories/MSets/MSetWeakList.v +++ b/theories/MSets/MSetWeakList.v @@ -275,7 +275,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. reflexivity. Qed. - Global Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s'). + Global Instance union_ok : forall s s' `(Ok s, Ok s'), Ok (union s s'). Proof. induction s; simpl; auto; intros; inv; unfold flip; auto with *. Qed. @@ -291,7 +291,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. Global Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s'). Proof. - unfold inter, fold, flip; intros s. + unfold inter, fold, flip. set (acc := nil (A:=elt)). assert (Hacc : Ok acc) by constructors. clearbody acc; revert acc Hacc. @@ -322,7 +322,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. rewrite H2, <- mem_spec in H3; auto. congruence. Qed. - Global Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s'). + Global Instance diff_ok : forall s s' `(Ok s, Ok s'), Ok (diff s s'). Proof. unfold diff; intros s s'; revert s. induction s'; simpl; unfold flip; auto; intros. inv; auto with *. @@ -491,7 +491,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. inversion_clear H; auto. Qed. - Global Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)). + Global Instance partition_ok1 : forall s f `(Ok s), Ok (fst (partition f s)). Proof. simple induction s; simpl. auto. @@ -501,7 +501,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. case (f x); case (partition f l); simpl; constructors; auto. Qed. - Global Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)). + Global Instance partition_ok2 : forall s f `(Ok s), Ok (snd (partition f s)). Proof. simple induction s; simpl. auto. |