diff options
author | Pierre Boutillier <pierre.boutillier@pps.univ-paris-diderot.fr> | 2014-09-08 16:19:39 +0200 |
---|---|---|
committer | Pierre Boutillier <pierre.boutillier@ens-lyon.org> | 2014-10-01 23:24:36 +0200 |
commit | 183112fc6a5fbb7d1c6d60b9717cdb8aceda78ca (patch) | |
tree | 8ac0350e08c22893acbb3905e028aee18f86bb5b /theories/MSets | |
parent | b9a6247ddc52082065b56f296c889c41167e0507 (diff) |
Simpl less (so that cbn will not simpl too much)
Diffstat (limited to 'theories/MSets')
-rw-r--r-- | theories/MSets/MSetGenTree.v | 4 | ||||
-rw-r--r-- | theories/MSets/MSetRBT.v | 6 |
2 files changed, 5 insertions, 5 deletions
diff --git a/theories/MSets/MSetGenTree.v b/theories/MSets/MSetGenTree.v index d1d9897fb..154c2384c 100644 --- a/theories/MSets/MSetGenTree.v +++ b/theories/MSets/MSetGenTree.v @@ -1019,7 +1019,7 @@ Lemma flatten_e_elements : forall l x r c e, elements l ++ flatten_e (More x r e) = elements (Node c l x r) ++ flatten_e e. Proof. - intros; simpl. now rewrite elements_node, app_ass. + intros. now rewrite elements_node, app_ass. Qed. Lemma cons_1 : forall s e, @@ -1053,7 +1053,7 @@ Lemma compare_cont_Cmp : forall s1 cont e2 l, (forall e, Cmp (cont e) l (flatten_e e)) -> Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2). Proof. - induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; simpl; intros; auto. + induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; intros; auto. rewrite elements_node, app_ass; simpl. apply Hl1; auto. clear e2. intros [|x2 r2 e2]. simpl; auto. diff --git a/theories/MSets/MSetRBT.v b/theories/MSets/MSetRBT.v index d7e56cdef..751d4f35c 100644 --- a/theories/MSets/MSetRBT.v +++ b/theories/MSets/MSetRBT.v @@ -987,7 +987,7 @@ Proof. rewrite app_length, <- elements_cardinal. simpl. rewrite Nat.add_succ_r, <- Nat.succ_le_mono. apply Nat.add_le_mono_l. } - simpl. rewrite elements_node, app_ass. now subst. + rewrite elements_node, app_ass. now subst. Qed. Lemma treeify_aux_spec n (p:bool) : @@ -1012,7 +1012,7 @@ Qed. Lemma plength_aux_spec l p : Pos.to_nat (plength_aux l p) = length l + Pos.to_nat p. Proof. - revert p. induction l; simpl; trivial. + revert p. induction l; trivial. simpl plength_aux. intros. now rewrite IHl, Pos2Nat.inj_succ, Nat.add_succ_r. Qed. @@ -1058,7 +1058,7 @@ Lemma filter_aux_elements s f acc : filter_aux f s acc = List.filter f (elements s) ++ acc. Proof. revert acc. - induction s as [|c l IHl x r IHr]; simpl; trivial. + induction s as [|c l IHl x r IHr]; trivial. intros acc. rewrite elements_node, filter_app. simpl. destruct (f x); now rewrite IHl, IHr, app_ass. |