aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/MSets
diff options
context:
space:
mode:
authorGravatar Pierre Boutillier <pierre.boutillier@pps.univ-paris-diderot.fr>2014-09-08 16:19:39 +0200
committerGravatar Pierre Boutillier <pierre.boutillier@ens-lyon.org>2014-10-01 23:24:36 +0200
commit183112fc6a5fbb7d1c6d60b9717cdb8aceda78ca (patch)
tree8ac0350e08c22893acbb3905e028aee18f86bb5b /theories/MSets
parentb9a6247ddc52082065b56f296c889c41167e0507 (diff)
Simpl less (so that cbn will not simpl too much)
Diffstat (limited to 'theories/MSets')
-rw-r--r--theories/MSets/MSetGenTree.v4
-rw-r--r--theories/MSets/MSetRBT.v6
2 files changed, 5 insertions, 5 deletions
diff --git a/theories/MSets/MSetGenTree.v b/theories/MSets/MSetGenTree.v
index d1d9897fb..154c2384c 100644
--- a/theories/MSets/MSetGenTree.v
+++ b/theories/MSets/MSetGenTree.v
@@ -1019,7 +1019,7 @@ Lemma flatten_e_elements :
forall l x r c e,
elements l ++ flatten_e (More x r e) = elements (Node c l x r) ++ flatten_e e.
Proof.
- intros; simpl. now rewrite elements_node, app_ass.
+ intros. now rewrite elements_node, app_ass.
Qed.
Lemma cons_1 : forall s e,
@@ -1053,7 +1053,7 @@ Lemma compare_cont_Cmp : forall s1 cont e2 l,
(forall e, Cmp (cont e) l (flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2).
Proof.
- induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; simpl; intros; auto.
+ induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; intros; auto.
rewrite elements_node, app_ass; simpl.
apply Hl1; auto. clear e2. intros [|x2 r2 e2].
simpl; auto.
diff --git a/theories/MSets/MSetRBT.v b/theories/MSets/MSetRBT.v
index d7e56cdef..751d4f35c 100644
--- a/theories/MSets/MSetRBT.v
+++ b/theories/MSets/MSetRBT.v
@@ -987,7 +987,7 @@ Proof.
rewrite app_length, <- elements_cardinal. simpl.
rewrite Nat.add_succ_r, <- Nat.succ_le_mono.
apply Nat.add_le_mono_l. }
- simpl. rewrite elements_node, app_ass. now subst.
+ rewrite elements_node, app_ass. now subst.
Qed.
Lemma treeify_aux_spec n (p:bool) :
@@ -1012,7 +1012,7 @@ Qed.
Lemma plength_aux_spec l p :
Pos.to_nat (plength_aux l p) = length l + Pos.to_nat p.
Proof.
- revert p. induction l; simpl; trivial.
+ revert p. induction l; trivial. simpl plength_aux.
intros. now rewrite IHl, Pos2Nat.inj_succ, Nat.add_succ_r.
Qed.
@@ -1058,7 +1058,7 @@ Lemma filter_aux_elements s f acc :
filter_aux f s acc = List.filter f (elements s) ++ acc.
Proof.
revert acc.
- induction s as [|c l IHl x r IHr]; simpl; trivial.
+ induction s as [|c l IHl x r IHr]; trivial.
intros acc.
rewrite elements_node, filter_app. simpl.
destruct (f x); now rewrite IHl, IHr, app_ass.