aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/MSets/MSetRBT.v
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-04-13 18:00:56 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-04-13 18:00:56 +0000
commitc8ec3774d0c4c17e23609fea45f517f678ba56df (patch)
tree7874ffaaad78533e675d13c2fb25c9c7e29e57f9 /theories/MSets/MSetRBT.v
parent317035368edd7c5af8b7d187155f5f7c536ab5d4 (diff)
MSetRBT : implementation of MSets via Red-Black trees
Initial contribution by Andrew Appel, many ulterior modifications by myself. Interest: red-black trees maintain logarithmic depths as AVL, but they do not rely on integer height annotations as AVL, allowing interesting performance when computing in Coq or after standard extraction. More on this topic in the article by A. Appel. The common parts of MSetAVL and MSetRBT are shared in a new file MSetGenTree which include the definition of tree and functions such as mem fold elements compare subset. Note that the height of AVL trees is now the first arg of the Node constructor instead of the last one. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15168 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/MSets/MSetRBT.v')
-rw-r--r--theories/MSets/MSetRBT.v1931
1 files changed, 1931 insertions, 0 deletions
diff --git a/theories/MSets/MSetRBT.v b/theories/MSets/MSetRBT.v
new file mode 100644
index 000000000..b53c03920
--- /dev/null
+++ b/theories/MSets/MSetRBT.v
@@ -0,0 +1,1931 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(** * MSetRBT : Implementation of MSetInterface via Red-Black trees *)
+
+(** Initial author: Andrew W. Appel, 2011.
+ Extra modifications by: Pierre Letouzey
+
+The design decisions behind this implementation are described here:
+
+ - Efficient Verified Red-Black Trees, by Andrew W. Appel, September 2011.
+ http://www.cs.princeton.edu/~appel/papers/redblack.pdf
+
+Additional suggested reading:
+
+ - Red-Black Trees in a Functional Setting by Chris Okasaki.
+ Journal of Functional Programming, 9(4):471-477, July 1999.
+ http://www.eecs.usma.edu/webs/people/okasaki/jfp99redblack.pdf
+
+ - Red-black trees with types, by Stefan Kahrs.
+ Journal of Functional Programming, 11(4), 425-432, 2001.
+
+ - Functors for Proofs and Programs, by J.-C. Filliatre and P. Letouzey.
+ ESOP'04: European Symposium on Programming, pp. 370-384, 2004.
+ http://www.lri.fr/~filliatr/ftp/publis/fpp.ps.gz
+*)
+
+Require MSetGenTree.
+Require Import Bool List BinPos Pnat Setoid SetoidList NPeano Psatz.
+Local Open Scope list_scope.
+
+(* For nicer extraction, we create induction principles
+ only when needed *)
+Local Unset Elimination Schemes.
+Local Unset Case Analysis Schemes.
+
+(** An extra function not (yet?) in MSetInterface.S *)
+
+Module Type MSetRemoveMin (Import M:MSetInterface.S).
+
+ Parameter remove_min : t -> option (elt * t).
+
+ Axiom remove_min_spec1 : forall s k s',
+ remove_min s = Some (k,s') ->
+ min_elt s = Some k /\ remove k s [=] s'.
+
+ Axiom remove_min_spec2 : forall s, remove_min s = None -> Empty s.
+
+End MSetRemoveMin.
+
+(** The type of color annotation. *)
+
+Inductive color := Red | Black.
+
+Module Color.
+ Definition t := color.
+End Color.
+
+(** * Ops : the pure functions *)
+
+Module Ops (X:Orders.OrderedType) <: MSetInterface.Ops X.
+
+(** ** Generic trees instantiated with color *)
+
+(** We reuse a generic definition of trees where the information
+ parameter is a color. Functions like mem or fold are also
+ provided by this generic functor. *)
+
+Include MSetGenTree.Ops X Color.
+
+Definition t := tree.
+Local Notation Rd := (Node Red).
+Local Notation Bk := (Node Black).
+
+(** ** Basic tree *)
+
+Definition singleton (k: elt) : tree := Bk Leaf k Leaf.
+
+(** ** Changing root color *)
+
+Definition makeBlack t :=
+ match t with
+ | Leaf => Leaf
+ | Node _ a x b => Bk a x b
+ end.
+
+Definition makeRed t :=
+ match t with
+ | Leaf => Leaf
+ | Node _ a x b => Rd a x b
+ end.
+
+(** ** Balancing *)
+
+(** We adapt when one side is not a true red-black tree.
+ Both sides have the same black depth. *)
+
+Definition lbal l k r :=
+ match l with
+ | Rd (Rd a x b) y c => Rd (Bk a x b) y (Bk c k r)
+ | Rd a x (Rd b y c) => Rd (Bk a x b) y (Bk c k r)
+ | _ => Bk l k r
+ end.
+
+Definition rbal l k r :=
+ match r with
+ | Rd (Rd b y c) z d => Rd (Bk l k b) y (Bk c z d)
+ | Rd b y (Rd c z d) => Rd (Bk l k b) y (Bk c z d)
+ | _ => Bk l k r
+ end.
+
+(** A variant of [rbal], with reverse pattern order.
+ Is it really useful ? Should we always use it ? *)
+
+Definition rbal' l k r :=
+ match r with
+ | Rd b y (Rd c z d) => Rd (Bk l k b) y (Bk c z d)
+ | Rd (Rd b y c) z d => Rd (Bk l k b) y (Bk c z d)
+ | _ => Bk l k r
+ end.
+
+(** Balancing with different black depth.
+ One side is almost a red-black tree, while the other is
+ a true red-black tree, but with black depth + 1.
+ Used in deletion. *)
+
+Definition lbalS l k r :=
+ match l with
+ | Rd a x b => Rd (Bk a x b) k r
+ | _ =>
+ match r with
+ | Bk a y b => rbal' l k (Rd a y b)
+ | Rd (Bk a y b) z c => Rd (Bk l k a) y (rbal' b z (makeRed c))
+ | _ => Rd l k r (* impossible *)
+ end
+ end.
+
+Definition rbalS l k r :=
+ match r with
+ | Rd b y c => Rd l k (Bk b y c)
+ | _ =>
+ match l with
+ | Bk a x b => lbal (Rd a x b) k r
+ | Rd a x (Bk b y c) => Rd (lbal (makeRed a) x b) y (Bk c k r)
+ | _ => Rd l k r (* impossible *)
+ end
+ end.
+
+(** ** Insertion *)
+
+Fixpoint ins x s :=
+ match s with
+ | Leaf => Rd Leaf x Leaf
+ | Node c l y r =>
+ match X.compare x y with
+ | Eq => s
+ | Lt =>
+ match c with
+ | Red => Rd (ins x l) y r
+ | Black => lbal (ins x l) y r
+ end
+ | Gt =>
+ match c with
+ | Red => Rd l y (ins x r)
+ | Black => rbal l y (ins x r)
+ end
+ end
+ end.
+
+Definition add x s := makeBlack (ins x s).
+
+(** ** Deletion *)
+
+Fixpoint append (l:tree) : tree -> tree :=
+ match l with
+ | Leaf => fun r => r
+ | Node lc ll lx lr =>
+ fix append_l (r:tree) : tree :=
+ match r with
+ | Leaf => l
+ | Node rc rl rx rr =>
+ match lc, rc with
+ | Red, Red =>
+ let lrl := append lr rl in
+ match lrl with
+ | Rd lr' x rl' => Rd (Rd ll lx lr') x (Rd rl' rx rr)
+ | _ => Rd ll lx (Rd lrl rx rr)
+ end
+ | Black, Black =>
+ let lrl := append lr rl in
+ match lrl with
+ | Rd lr' x rl' => Rd (Bk ll lx lr') x (Bk rl' rx rr)
+ | _ => lbalS ll lx (Bk lrl rx rr)
+ end
+ | Black, Red => Rd (append_l rl) rx rr
+ | Red, Black => Rd ll lx (append lr r)
+ end
+ end
+ end.
+
+Fixpoint del x t :=
+ match t with
+ | Leaf => Leaf
+ | Node _ a y b =>
+ match X.compare x y with
+ | Eq => append a b
+ | Lt =>
+ match a with
+ | Bk _ _ _ => lbalS (del x a) y b
+ | _ => Rd (del x a) y b
+ end
+ | Gt =>
+ match b with
+ | Bk _ _ _ => rbalS a y (del x b)
+ | _ => Rd a y (del x b)
+ end
+ end
+ end.
+
+Definition remove x t := makeBlack (del x t).
+
+(** ** Removing minimal element *)
+
+Fixpoint delmin l x r : (elt * tree) :=
+ match l with
+ | Leaf => (x,r)
+ | Node lc ll lx lr =>
+ let (k,l') := delmin ll lx lr in
+ match lc with
+ | Black => (k, lbalS l' x r)
+ | Red => (k, Rd l' x r)
+ end
+ end.
+
+Definition remove_min t : option (elt * tree) :=
+ match t with
+ | Leaf => None
+ | Node _ l x r =>
+ let (k,t) := delmin l x r in
+ Some (k, makeBlack t)
+ end.
+
+(** ** Tree-ification
+
+ We rebuild a tree of size [if pred then n-1 else n] as soon
+ as the list [l] has enough elements *)
+
+Definition bogus : tree * list elt := (Leaf, nil).
+
+Notation treeify_t := (list elt -> tree * list elt).
+
+Definition treeify_zero : treeify_t :=
+ fun acc => (Leaf,acc).
+
+Definition treeify_one : treeify_t :=
+ fun acc => match acc with
+ | x::acc => (Rd Leaf x Leaf, acc)
+ | _ => bogus
+ end.
+
+Definition treeify_cont (f g : treeify_t) : treeify_t :=
+ fun acc =>
+ match f acc with
+ | (l, x::acc) =>
+ match g acc with
+ | (r, acc) => (Bk l x r, acc)
+ end
+ | _ => bogus
+ end.
+
+Fixpoint treeify_aux (pred:bool)(n: positive) : treeify_t :=
+ match n with
+ | xH => if pred then treeify_zero else treeify_one
+ | xO n => treeify_cont (treeify_aux pred n) (treeify_aux true n)
+ | xI n => treeify_cont (treeify_aux false n) (treeify_aux pred n)
+ end.
+
+Fixpoint plength (l:list elt) := match l with
+ | nil => 1%positive
+ | _::l => Psucc (plength l)
+end.
+
+Definition treeify (l:list elt) :=
+ fst (treeify_aux true (plength l) l).
+
+(** ** Filtering *)
+
+Fixpoint filter_aux (f: elt -> bool) s acc :=
+ match s with
+ | Leaf => acc
+ | Node _ l k r =>
+ let acc := filter_aux f r acc in
+ if f k then filter_aux f l (k::acc)
+ else filter_aux f l acc
+ end.
+
+Definition filter (f: elt -> bool) (s: t) : t :=
+ treeify (filter_aux f s nil).
+
+Fixpoint partition_aux (f: elt -> bool) s acc1 acc2 :=
+ match s with
+ | Leaf => (acc1,acc2)
+ | Node _ sl k sr =>
+ let (acc1, acc2) := partition_aux f sr acc1 acc2 in
+ if f k then partition_aux f sl (k::acc1) acc2
+ else partition_aux f sl acc1 (k::acc2)
+ end.
+
+Definition partition (f: elt -> bool) (s:t) : t*t :=
+ let (ok,ko) := partition_aux f s nil nil in
+ (treeify ok, treeify ko).
+
+(** ** Union, intersection, difference *)
+
+(** union of the elements of [l1] and [l2] into a third [acc] list. *)
+
+Fixpoint union_list l1 : list elt -> list elt -> list elt :=
+ match l1 with
+ | nil => @rev_append _
+ | x::l1' =>
+ fix union_l1 l2 acc :=
+ match l2 with
+ | nil => rev_append l1 acc
+ | y::l2' =>
+ match X.compare x y with
+ | Eq => union_list l1' l2' (x::acc)
+ | Lt => union_l1 l2' (y::acc)
+ | Gt => union_list l1' l2 (x::acc)
+ end
+ end
+ end.
+
+Definition linear_union s1 s2 :=
+ treeify (union_list (rev_elements s1) (rev_elements s2) nil).
+
+Fixpoint inter_list l1 : list elt -> list elt -> list elt :=
+ match l1 with
+ | nil => fun _ acc => acc
+ | x::l1' =>
+ fix inter_l1 l2 acc :=
+ match l2 with
+ | nil => acc
+ | y::l2' =>
+ match X.compare x y with
+ | Eq => inter_list l1' l2' (x::acc)
+ | Lt => inter_l1 l2' acc
+ | Gt => inter_list l1' l2 acc
+ end
+ end
+ end.
+
+Definition linear_inter s1 s2 :=
+ treeify (inter_list (rev_elements s1) (rev_elements s2) nil).
+
+Fixpoint diff_list l1 : list elt -> list elt -> list elt :=
+ match l1 with
+ | nil => fun _ acc => acc
+ | x::l1' =>
+ fix diff_l1 l2 acc :=
+ match l2 with
+ | nil => rev_append l1 acc
+ | y::l2' =>
+ match X.compare x y with
+ | Eq => diff_list l1' l2' acc
+ | Lt => diff_l1 l2' acc
+ | Gt => diff_list l1' l2 (x::acc)
+ end
+ end
+ end.
+
+Definition linear_diff s1 s2 :=
+ treeify (diff_list (rev_elements s1) (rev_elements s2) nil).
+
+(** [compare_height] returns:
+ - [Lt] if [height s2] is at least twice [height s1];
+ - [Gt] if [height s1] is at least twice [height s2];
+ - [Eq] if heights are approximately equal.
+ Warning: this is not an equivalence relation! but who cares.... *)
+
+Definition skip_red t :=
+ match t with
+ | Rd t' _ _ => t'
+ | _ => t
+ end.
+
+Definition skip_black t :=
+ match skip_red t with
+ | Bk t' _ _ => t'
+ | t' => t'
+ end.
+
+Fixpoint compare_height (s1x s1 s2 s2x: tree) : comparison :=
+ match skip_red s1x, skip_red s1, skip_red s2, skip_red s2x with
+ | Node _ s1x' _ _, Node _ s1' _ _, Node _ s2' _ _, Node _ s2x' _ _ =>
+ compare_height (skip_black s2x') s1' s2' (skip_black s2x')
+ | _, Leaf, _, Node _ _ _ _ => Lt
+ | Node _ _ _ _, _, Leaf, _ => Gt
+ | Node _ s1x' _ _, Node _ s1' _ _, Node _ s2' _ _, Leaf =>
+ compare_height (skip_black s1x') s1' s2' Leaf
+ | Leaf, Node _ s1' _ _, Node _ s2' _ _, Node _ s2x' _ _ =>
+ compare_height Leaf s1' s2' (skip_black s2x')
+ | _, _, _, _ => Eq
+ end.
+
+(** When one tree is quite smaller than the other, we simply
+ adds repeatively all its elements in the big one.
+ For trees of comparable height, we rather use [linear_union]. *)
+
+Definition union (t1 t2: t) : t :=
+ match compare_height t1 t1 t2 t2 with
+ | Lt => fold add t1 t2
+ | Gt => fold add t2 t1
+ | Eq => linear_union t1 t2
+ end.
+
+Definition diff (t1 t2: t) : t :=
+ match compare_height t1 t1 t2 t2 with
+ | Lt => filter (fun k => negb (mem k t2)) t1
+ | Gt => fold remove t2 t1
+ | Eq => linear_diff t1 t2
+ end.
+
+Definition inter (t1 t2: t) : t :=
+ match compare_height t1 t1 t2 t2 with
+ | Lt => filter (fun k => mem k t2) t1
+ | Gt => filter (fun k => mem k t1) t2
+ | Eq => linear_inter t1 t2
+ end.
+
+End Ops.
+
+(** * MakeRaw : the pure functions and their specifications *)
+
+Module Type MakeRaw (X:Orders.OrderedType) <: MSetInterface.RawSets X.
+Include Ops X.
+
+(** Generic definition of binary-search-trees and proofs of
+ specifications for generic functions such as mem or fold. *)
+
+Include MSetGenTree.Props X Color.
+
+Local Notation Rd := (Node Red).
+Local Notation Bk := (Node Black).
+
+Local Hint Immediate MX.eq_sym.
+Local Hint Unfold In lt_tree gt_tree Ok.
+Local Hint Constructors InT bst.
+Local Hint Resolve MX.eq_refl MX.eq_trans MX.lt_trans @ok.
+Local Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.
+Local Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.
+Local Hint Resolve elements_spec2.
+
+(** ** Singleton set *)
+
+Lemma singleton_spec x y : InT y (singleton x) <-> X.eq y x.
+Proof.
+ unfold singleton; intuition_in.
+Qed.
+
+Instance singleton_ok x : Ok (singleton x).
+Proof.
+ unfold singleton; auto.
+Qed.
+
+(** ** makeBlack, MakeRed *)
+
+Lemma makeBlack_spec s x : InT x (makeBlack s) <-> InT x s.
+Proof.
+ destruct s; simpl; intuition_in.
+Qed.
+
+Lemma makeRed_spec s x : InT x (makeRed s) <-> InT x s.
+Proof.
+ destruct s; simpl; intuition_in.
+Qed.
+
+Instance makeBlack_ok s `{Ok s} : Ok (makeBlack s).
+Proof.
+ destruct s; simpl; ok.
+Qed.
+
+Instance makeRed_ok s `{Ok s} : Ok (makeRed s).
+Proof.
+ destruct s; simpl; ok.
+Qed.
+
+(** ** Generic handling for red-matching and red-red-matching *)
+
+Definition isblack t :=
+ match t with Bk _ _ _ => True | _ => False end.
+
+Definition notblack t :=
+ match t with Bk _ _ _ => False | _ => True end.
+
+Definition notred t :=
+ match t with Rd _ _ _ => False | _ => True end.
+
+Definition rcase {A} f g t : A :=
+ match t with
+ | Rd a x b => f a x b
+ | _ => g t
+ end.
+
+Inductive rspec {A} f g : tree -> A -> Prop :=
+ | rred a x b : rspec f g (Rd a x b) (f a x b)
+ | relse t : notred t -> rspec f g t (g t).
+
+Fact rmatch {A} f g t : rspec (A:=A) f g t (rcase f g t).
+Proof.
+destruct t as [|[|] l x r]; simpl; now constructor.
+Qed.
+
+Definition rrcase {A} f g t : A :=
+ match t with
+ | Rd (Rd a x b) y c => f a x b y c
+ | Rd a x (Rd b y c) => f a x b y c
+ | _ => g t
+ end.
+
+Notation notredred := (rrcase (fun _ _ _ _ _ => False) (fun _ => True)).
+
+Inductive rrspec {A} f g : tree -> A -> Prop :=
+ | rrleft a x b y c : rrspec f g (Rd (Rd a x b) y c) (f a x b y c)
+ | rrright a x b y c : rrspec f g (Rd a x (Rd b y c)) (f a x b y c)
+ | rrelse t : notredred t -> rrspec f g t (g t).
+
+Fact rrmatch {A} f g t : rrspec (A:=A) f g t (rrcase f g t).
+Proof.
+destruct t as [|[|] l x r]; simpl; try now constructor.
+destruct l as [|[|] ll lx lr], r as [|[|] rl rx rr]; now constructor.
+Qed.
+
+Definition rrcase' {A} f g t : A :=
+ match t with
+ | Rd a x (Rd b y c) => f a x b y c
+ | Rd (Rd a x b) y c => f a x b y c
+ | _ => g t
+ end.
+
+Fact rrmatch' {A} f g t : rrspec (A:=A) f g t (rrcase' f g t).
+Proof.
+destruct t as [|[|] l x r]; simpl; try now constructor.
+destruct l as [|[|] ll lx lr], r as [|[|] rl rx rr]; now constructor.
+Qed.
+
+(** Balancing operations are instances of generic match *)
+
+Fact lbal_match l k r :
+ rrspec
+ (fun a x b y c => Rd (Bk a x b) y (Bk c k r))
+ (fun l => Bk l k r)
+ l
+ (lbal l k r).
+Proof.
+ exact (rrmatch _ _ _).
+Qed.
+
+Fact rbal_match l k r :
+ rrspec
+ (fun a x b y c => Rd (Bk l k a) x (Bk b y c))
+ (fun r => Bk l k r)
+ r
+ (rbal l k r).
+Proof.
+ exact (rrmatch _ _ _).
+Qed.
+
+Fact rbal'_match l k r :
+ rrspec
+ (fun a x b y c => Rd (Bk l k a) x (Bk b y c))
+ (fun r => Bk l k r)
+ r
+ (rbal' l k r).
+Proof.
+ exact (rrmatch' _ _ _).
+Qed.
+
+Fact lbalS_match l x r :
+ rspec
+ (fun a y b => Rd (Bk a y b) x r)
+ (fun l =>
+ match r with
+ | Bk a y b => rbal' l x (Rd a y b)
+ | Rd (Bk a y b) z c => Rd (Bk l x a) y (rbal' b z (makeRed c))
+ | _ => Rd l x r
+ end)
+ l
+ (lbalS l x r).
+Proof.
+ exact (rmatch _ _ _).
+Qed.
+
+Fact rbalS_match l x r :
+ rspec
+ (fun a y b => Rd l x (Bk a y b))
+ (fun r =>
+ match l with
+ | Bk a y b => lbal (Rd a y b) x r
+ | Rd a y (Bk b z c) => Rd (lbal (makeRed a) y b) z (Bk c x r)
+ | _ => Rd l x r
+ end)
+ r
+ (rbalS l x r).
+Proof.
+ exact (rmatch _ _ _).
+Qed.
+
+(** ** Balancing for insertion *)
+
+Lemma lbal_spec l x r y :
+ InT y (lbal l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ case lbal_match; intuition_in.
+Qed.
+
+Instance lbal_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
+ Ok (lbal l x r).
+Proof.
+ destruct (lbal_match l x r); ok.
+Qed.
+
+Lemma rbal_spec l x r y :
+ InT y (rbal l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ case rbal_match; intuition_in.
+Qed.
+
+Instance rbal_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
+ Ok (rbal l x r).
+Proof.
+ destruct (rbal_match l x r); ok.
+Qed.
+
+Lemma rbal'_spec l x r y :
+ InT y (rbal' l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ case rbal'_match; intuition_in.
+Qed.
+
+Instance rbal'_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
+ Ok (rbal' l x r).
+Proof.
+ destruct (rbal'_match l x r); ok.
+Qed.
+
+Hint Rewrite In_node_iff In_leaf_iff
+ makeRed_spec makeBlack_spec lbal_spec rbal_spec rbal'_spec : rb.
+
+Ltac descolor := destruct_all Color.t.
+Ltac destree t := destruct t as [|[|] ? ? ?].
+Ltac autorew := autorewrite with rb.
+Tactic Notation "autorew" "in" ident(H) := autorewrite with rb in H.
+
+(** ** Insertion *)
+
+Lemma ins_spec : forall s x y,
+ InT y (ins x s) <-> X.eq y x \/ InT y s.
+Proof.
+ induct s x.
+ - intuition_in.
+ - intuition_in. setoid_replace y with x; eauto.
+ - descolor; autorew; rewrite IHl; intuition_in.
+ - descolor; autorew; rewrite IHr; intuition_in.
+Qed.
+Hint Rewrite ins_spec : rb.
+
+Instance ins_ok s x `{Ok s} : Ok (ins x s).
+Proof.
+ induct s x; auto; descolor;
+ (apply lbal_ok || apply rbal_ok || ok); auto;
+ intros y; autorew; intuition; order.
+Qed.
+
+Lemma add_spec' s x y :
+ InT y (add x s) <-> X.eq y x \/ InT y s.
+Proof.
+ unfold add. now autorew.
+Qed.
+
+Hint Rewrite add_spec' : rb.
+
+Lemma add_spec s x y `{Ok s} :
+ InT y (add x s) <-> X.eq y x \/ InT y s.
+Proof.
+ apply add_spec'.
+Qed.
+
+Instance add_ok s x `{Ok s} : Ok (add x s).
+Proof.
+ unfold add; auto_tc.
+Qed.
+
+(** ** Balancing for deletion *)
+
+Lemma lbalS_spec l x r y :
+ InT y (lbalS l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ case lbalS_match.
+ - intros; autorew; intuition_in.
+ - clear l. intros l _.
+ destruct r as [|[|] rl rx rr].
+ * autorew. intuition_in.
+ * destree rl; autorew; intuition_in.
+ * autorew. intuition_in.
+Qed.
+
+Instance lbalS_ok l x r :
+ forall `(Ok l, Ok r, lt_tree x l, gt_tree x r), Ok (lbalS l x r).
+Proof.
+ case lbalS_match; intros.
+ - ok.
+ - destruct r as [|[|] rl rx rr].
+ * ok.
+ * destruct rl as [|[|] rll rlx rlr]; intros; ok.
+ + apply rbal'_ok; ok.
+ intros w; autorew; auto.
+ + intros w; autorew.
+ destruct 1 as [Hw|[Hw|Hw]]; try rewrite Hw; eauto.
+ * ok. autorew. apply rbal'_ok; ok.
+Qed.
+
+Lemma rbalS_spec l x r y :
+ InT y (rbalS l x r) <-> X.eq y x \/ InT y l \/ InT y r.
+Proof.
+ case rbalS_match.
+ - intros; autorew; intuition_in.
+ - intros t _.
+ destruct l as [|[|] ll lx lr].
+ * autorew. intuition_in.
+ * destruct lr as [|[|] lrl lrx lrr]; autorew; intuition_in.
+ * autorew. intuition_in.
+Qed.
+
+Instance rbalS_ok l x r :
+ forall `(Ok l, Ok r, lt_tree x l, gt_tree x r), Ok (rbalS l x r).
+Proof.
+ case rbalS_match; intros.
+ - ok.
+ - destruct l as [|[|] ll lx lr].
+ * ok.
+ * destruct lr as [|[|] lrl lrx lrr]; intros; ok.
+ + apply lbal_ok; ok.
+ intros w; autorew; auto.
+ + intros w; autorew.
+ destruct 1 as [Hw|[Hw|Hw]]; try rewrite Hw; eauto.
+ * ok. apply lbal_ok; ok.
+Qed.
+
+Hint Rewrite lbalS_spec rbalS_spec : rb.
+
+(** ** Append for deletion *)
+
+Ltac append_tac l r :=
+ induction l as [| lc ll _ lx lr IHlr];
+ [intro r; simpl
+ |induction r as [| rc rl IHrl rx rr _];
+ [simpl
+ |destruct lc, rc;
+ [specialize (IHlr rl); clear IHrl
+ |simpl;
+ assert (Hr:notred (Bk rl rx rr)) by (simpl; trivial);
+ set (r:=Bk rl rx rr) in *; clearbody r; clear IHrl rl rx rr;
+ specialize (IHlr r)
+ |change (append _ _) with (Rd (append (Bk ll lx lr) rl) rx rr);
+ assert (Hl:notred (Bk ll lx lr)) by (simpl; trivial);
+ set (l:=Bk ll lx lr) in *; clearbody l; clear IHlr ll lx lr
+ |specialize (IHlr rl); clear IHrl]]].
+
+Fact append_rr_match ll lx lr rl rx rr :
+ rspec
+ (fun a x b => Rd (Rd ll lx a) x (Rd b rx rr))
+ (fun t => Rd ll lx (Rd t rx rr))
+ (append lr rl)
+ (append (Rd ll lx lr) (Rd rl rx rr)).
+Proof.
+ exact (rmatch _ _ _).
+Qed.
+
+Fact append_bb_match ll lx lr rl rx rr :
+ rspec
+ (fun a x b => Rd (Bk ll lx a) x (Bk b rx rr))
+ (fun t => lbalS ll lx (Bk t rx rr))
+ (append lr rl)
+ (append (Bk ll lx lr) (Bk rl rx rr)).
+Proof.
+ exact (rmatch _ _ _).
+Qed.
+
+Lemma append_spec l r x :
+ InT x (append l r) <-> InT x l \/ InT x r.
+Proof.
+ revert r.
+ append_tac l r; autorew; try tauto.
+ - (* Red / Red *)
+ revert IHlr; case append_rr_match;
+ [intros a y b | intros t Ht]; autorew; tauto.
+ - (* Black / Black *)
+ revert IHlr; case append_bb_match;
+ [intros a y b | intros t Ht]; autorew; tauto.
+Qed.
+
+Hint Rewrite append_spec : rb.
+
+Lemma append_ok : forall x l r `{Ok l, Ok r},
+ lt_tree x l -> gt_tree x r -> Ok (append l r).
+Proof.
+ append_tac l r.
+ - (* Leaf / _ *)
+ trivial.
+ - (* _ / Leaf *)
+ trivial.
+ - (* Red / Red *)
+ intros; inv.
+ assert (IH : Ok (append lr rl)) by (apply IHlr; eauto). clear IHlr.
+ assert (X.lt lx rx) by (transitivity x; eauto).
+ assert (G : gt_tree lx (append lr rl)).
+ { intros w. autorew. destruct 1; [|transitivity x]; eauto. }
+ assert (L : lt_tree rx (append lr rl)).
+ { intros w. autorew. destruct 1; [transitivity x|]; eauto. }
+ revert IH G L; case append_rr_match; intros; ok.
+ - (* Red / Black *)
+ intros; ok.
+ intros w; autorew; destruct 1; eauto.
+ - (* Black / Red *)
+ intros; ok.
+ intros w; autorew; destruct 1; eauto.
+ - (* Black / Black *)
+ intros; inv.
+ assert (IH : Ok (append lr rl)) by (apply IHlr; eauto). clear IHlr.
+ assert (X.lt lx rx) by (transitivity x; eauto).
+ assert (G : gt_tree lx (append lr rl)).
+ { intros w. autorew. destruct 1; [|transitivity x]; eauto. }
+ assert (L : lt_tree rx (append lr rl)).
+ { intros w. autorew. destruct 1; [transitivity x|]; eauto. }
+ revert IH G L; case append_bb_match; intros; ok.
+ apply lbalS_ok; ok.
+Qed.
+
+(** ** Deletion *)
+
+Lemma del_spec : forall s x y `{Ok s},
+ InT y (del x s) <-> InT y s /\ ~X.eq y x.
+Proof.
+induct s x.
+- intuition_in.
+- autorew; intuition_in.
+ assert (X.lt y x') by eauto. order.
+ assert (X.lt x' y) by eauto. order.
+ order.
+- destruct l as [|[|] ll lx lr]; autorew;
+ rewrite ?IHl by trivial; intuition_in; order.
+- destruct r as [|[|] rl rx rr]; autorew;
+ rewrite ?IHr by trivial; intuition_in; order.
+Qed.
+
+Hint Rewrite del_spec : rb.
+
+Instance del_ok s x `{Ok s} : Ok (del x s).
+Proof.
+induct s x.
+- trivial.
+- eapply append_ok; eauto.
+- assert (lt_tree x' (del x l)).
+ { intro w. autorew; trivial. destruct 1. eauto. }
+ destruct l as [|[|] ll lx lr]; auto_tc.
+- assert (gt_tree x' (del x r)).
+ { intro w. autorew; trivial. destruct 1. eauto. }
+ destruct r as [|[|] rl rx rr]; auto_tc.
+Qed.
+
+Lemma remove_spec s x y `{Ok s} :
+ InT y (remove x s) <-> InT y s /\ ~X.eq y x.
+Proof.
+unfold remove. now autorew.
+Qed.
+
+Hint Rewrite remove_spec : rb.
+
+Instance remove_ok s x `{Ok s} : Ok (remove x s).
+Proof.
+unfold remove; auto_tc.
+Qed.
+
+(** ** Removing the minimal element *)
+
+Lemma delmin_spec l y r c x s' `{O : Ok (Node c l y r)} :
+ delmin l y r = (x,s') ->
+ min_elt (Node c l y r) = Some x /\ del x (Node c l y r) = s'.
+Proof.
+ revert y r c x s' O.
+ induction l as [|lc ll IH ly lr _].
+ - simpl. intros y r _ x s' _. injection 1; intros; subst.
+ now rewrite MX.compare_refl.
+ - intros y r c x s' O.
+ simpl delmin.
+ specialize (IH ly lr). destruct delmin as (x0,s0).
+ destruct (IH lc x0 s0); clear IH; [ok|trivial|].
+ remember (Node lc ll ly lr) as l.
+ simpl min_elt in *.
+ intros E.
+ replace x0 with x in * by (destruct lc; now injection E).
+ split.
+ * subst l; intuition.
+ * assert (X.lt x y).
+ { inversion_clear O.
+ assert (InT x l) by now apply min_elt_spec1. auto. }
+ simpl. case X.compare_spec; try order.
+ destruct lc; injection E; clear E; intros; subst l s0; auto.
+Qed.
+
+Lemma remove_min_spec1 s x s' `{Ok s}:
+ remove_min s = Some (x,s') ->
+ min_elt s = Some x /\ remove x s = s'.
+Proof.
+ unfold remove_min.
+ destruct s as [|c l y r]; try easy.
+ generalize (delmin_spec l y r c).
+ destruct delmin as (x0,s0). intros D.
+ destruct (D x0 s0) as (->,<-); auto.
+ fold (remove x0 (Node c l y r)).
+ inversion_clear 1; auto.
+Qed.
+
+Lemma remove_min_spec2 s : remove_min s = None -> Empty s.
+Proof.
+ unfold remove_min.
+ destruct s as [|c l y r].
+ - easy.
+ - now destruct delmin.
+Qed.
+
+Lemma remove_min_ok (s:t) `{Ok s}:
+ match remove_min s with
+ | Some (_,s') => Ok s'
+ | None => True
+ end.
+Proof.
+ generalize (remove_min_spec1 s).
+ destruct remove_min as [(x0,s0)|]; auto.
+ intros R. destruct (R x0 s0); auto. subst s0. auto_tc.
+Qed.
+
+(** ** Treeify *)
+
+Notation ifpred p n := (if p then pred n else n%nat).
+
+Definition treeify_invariant size (f:treeify_t) :=
+ forall acc,
+ size <= length acc ->
+ let (t,acc') := f acc in
+ cardinal t = size /\ acc = elements t ++ acc'.
+
+Lemma treeify_zero_spec : treeify_invariant 0 treeify_zero.
+Proof.
+ intro. simpl. auto.
+Qed.
+
+Lemma treeify_one_spec : treeify_invariant 1 treeify_one.
+Proof.
+ intros [|x acc]; simpl; auto; inversion 1.
+Qed.
+
+Lemma treeify_cont_spec f g size1 size2 size :
+ treeify_invariant size1 f ->
+ treeify_invariant size2 g ->
+ size = S (size1 + size2) ->
+ treeify_invariant size (treeify_cont f g).
+Proof.
+ intros Hf Hg EQ acc LE. unfold treeify_cont.
+ specialize (Hf acc).
+ destruct (f acc) as (t1,acc1).
+ destruct Hf as (Hf1,Hf2).
+ { lia. }
+ destruct acc1 as [|x acc1].
+ { exfalso. subst acc.
+ rewrite <- app_nil_end, <- elements_cardinal in LE. lia. }
+ specialize (Hg acc1).
+ destruct (g acc1) as (t2,acc2).
+ destruct Hg as (Hg1,Hg2).
+ { subst acc. rewrite app_length, <- elements_cardinal in LE.
+ simpl in LE. unfold elt in *. lia. }
+ simpl. split.
+ * lia.
+ * rewrite elements_node, app_ass. simpl. unfold elt in *; congruence.
+Qed.
+
+Lemma treeify_aux_spec n (p:bool) :
+ treeify_invariant (ifpred p (Pos.to_nat n)) (treeify_aux p n).
+Proof.
+ revert p.
+ induction n as [n|n|]; intros p; simpl treeify_aux.
+ - eapply treeify_cont_spec; [ apply (IHn false) | apply (IHn p) | ].
+ rewrite Pos2Nat.inj_xI. generalize (Pos2Nat.is_pos n).
+ destruct p; simpl; lia.
+ - eapply treeify_cont_spec; [ apply (IHn p) | apply (IHn true) | ].
+ rewrite Pos2Nat.inj_xO. generalize (Pos2Nat.is_pos n).
+ destruct p; simpl; lia.
+ - destruct p; [ apply treeify_zero_spec | apply treeify_one_spec ].
+Qed.
+
+Lemma plength_spec l : Pos.to_nat (plength l) = S (length l).
+Proof.
+ induction l; simpl; now rewrite ?Pos2Nat.inj_succ, ?IHl.
+Qed.
+
+Lemma treeify_elements l : elements (treeify l) = l.
+Proof.
+ assert (H := treeify_aux_spec (plength l) true l).
+ unfold treeify. destruct treeify_aux as (t,acc); simpl in *.
+ destruct H as (H,H'). { now rewrite plength_spec. }
+ subst l. rewrite plength_spec, app_length, <- elements_cardinal in *.
+ destruct acc.
+ * now rewrite app_nil_r.
+ * simpl in H. lia.
+Qed.
+
+Lemma treeify_spec x l : InT x (treeify l) <-> InA X.eq x l.
+Proof.
+ intros. now rewrite <- elements_spec1, treeify_elements.
+Qed.
+
+Lemma treeify_ok l : sort X.lt l -> Ok (treeify l).
+Proof.
+ intros. apply elements_sort_ok. rewrite treeify_elements; auto.
+Qed.
+
+
+(** ** Filter *)
+
+Lemma filter_app A f (l l':list A) :
+ List.filter f (l ++ l') = List.filter f l ++ List.filter f l'.
+Proof.
+ induction l as [|x l IH]; simpl; trivial.
+ destruct (f x); simpl; now rewrite IH.
+Qed.
+
+Lemma filter_aux_elements s f acc :
+ filter_aux f s acc = List.filter f (elements s) ++ acc.
+Proof.
+ revert acc.
+ induction s as [|c l IHl x r IHr]; simpl; trivial.
+ intros acc.
+ rewrite elements_node, filter_app. simpl.
+ destruct (f x); now rewrite IHl, IHr, app_ass.
+Qed.
+
+Lemma filter_elements s f :
+ elements (filter f s) = List.filter f (elements s).
+Proof.
+ unfold filter.
+ now rewrite treeify_elements, filter_aux_elements, app_nil_r.
+Qed.
+
+Lemma filter_spec s x f :
+ Proper (X.eq==>Logic.eq) f ->
+ (InT x (filter f s) <-> InT x s /\ f x = true).
+Proof.
+ intros Hf.
+ rewrite <- elements_spec1, filter_elements, filter_InA, elements_spec1;
+ now auto_tc.
+Qed.
+
+Instance filter_ok s f `(Ok s) : Ok (filter f s).
+Proof.
+ apply elements_sort_ok.
+ rewrite filter_elements.
+ apply filter_sort with X.eq; auto_tc.
+Qed.
+
+(** ** Partition *)
+
+Lemma partition_aux_spec s f acc1 acc2 :
+ partition_aux f s acc1 acc2 =
+ (filter_aux f s acc1, filter_aux (fun x => negb (f x)) s acc2).
+Proof.
+ revert acc1 acc2.
+ induction s as [ | c l Hl x r Hr ]; simpl.
+ - trivial.
+ - intros acc1 acc2.
+ destruct (f x); simpl; now rewrite Hr, Hl.
+Qed.
+
+Lemma partition_spec s f :
+ partition f s = (filter f s, filter (fun x => negb (f x)) s).
+Proof.
+ unfold partition, filter. now rewrite partition_aux_spec.
+Qed.
+
+Lemma partition_spec1 s f :
+ Proper (X.eq==>Logic.eq) f ->
+ Equal (fst (partition f s)) (filter f s).
+Proof. now rewrite partition_spec. Qed.
+
+Lemma partition_spec2 s f :
+ Proper (X.eq==>Logic.eq) f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
+Proof. now rewrite partition_spec. Qed.
+
+Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)).
+Proof. rewrite partition_spec; now apply filter_ok. Qed.
+
+Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)).
+Proof. rewrite partition_spec; now apply filter_ok. Qed.
+
+
+(** ** An invariant for binary list functions with accumulator. *)
+
+Ltac inA :=
+ rewrite ?InA_app_iff, ?InA_cons, ?InA_nil, ?InA_rev in *; auto_tc.
+
+Record INV l1 l2 acc : Prop := {
+ l1_sorted : sort X.lt (rev l1);
+ l2_sorted : sort X.lt (rev l2);
+ acc_sorted : sort X.lt acc;
+ l1_lt_acc x y : InA X.eq x l1 -> InA X.eq y acc -> X.lt x y;
+ l2_lt_acc x y : InA X.eq x l2 -> InA X.eq y acc -> X.lt x y}.
+Local Hint Resolve l1_sorted l2_sorted acc_sorted.
+
+Lemma INV_init s1 s2 `(Ok s1, Ok s2) :
+ INV (rev_elements s1) (rev_elements s2) nil.
+Proof.
+ rewrite !rev_elements_rev.
+ split; rewrite ?rev_involutive; auto; intros; now inA.
+Qed.
+
+Lemma INV_sym l1 l2 acc : INV l1 l2 acc -> INV l2 l1 acc.
+Proof.
+ destruct 1; now split.
+Qed.
+
+Lemma INV_drop x1 l1 l2 acc :
+ INV (x1 :: l1) l2 acc -> INV l1 l2 acc.
+Proof.
+ intros (l1s,l2s,accs,l1a,l2a). simpl in *.
+ destruct (sorted_app_inv _ _ l1s) as (U & V & W); auto.
+ split; auto.
+Qed.
+
+Lemma INV_eq x1 x2 l1 l2 acc :
+ INV (x1 :: l1) (x2 :: l2) acc -> X.eq x1 x2 ->
+ INV l1 l2 (x1 :: acc).
+Proof.
+ intros (U,V,W,X,Y) EQ. simpl in *.
+ destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
+ destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
+ split; auto.
+ - constructor; auto. apply InA_InfA with X.eq; auto_tc.
+ - intros x y; inA; intros Hx [Hy|Hy].
+ + apply U3; inA.
+ + apply X; inA.
+ - intros x y; inA; intros Hx [Hy|Hy].
+ + rewrite Hy, EQ; apply V3; inA.
+ + apply Y; inA.
+Qed.
+
+Lemma INV_lt x1 x2 l1 l2 acc :
+ INV (x1 :: l1) (x2 :: l2) acc -> X.lt x1 x2 ->
+ INV (x1 :: l1) l2 (x2 :: acc).
+Proof.
+ intros (U,V,W,X,Y) EQ. simpl in *.
+ destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
+ destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
+ split; auto.
+ - constructor; auto. apply InA_InfA with X.eq; auto_tc.
+ - intros x y; inA; intros Hx [Hy|Hy].
+ + rewrite Hy; clear Hy. destruct Hx; [order|].
+ transitivity x1; auto. apply U3; inA.
+ + apply X; inA.
+ - intros x y; inA; intros Hx [Hy|Hy].
+ + rewrite Hy. apply V3; inA.
+ + apply Y; inA.
+Qed.
+
+Lemma INV_rev l1 l2 acc :
+ INV l1 l2 acc -> Sorted X.lt (rev_append l1 acc).
+Proof.
+ intros. rewrite rev_append_rev.
+ apply SortA_app with X.eq; eauto with *.
+ intros x y. inA. eapply l1_lt_acc; eauto.
+Qed.
+
+(** ** union *)
+
+Lemma union_list_ok l1 l2 acc :
+ INV l1 l2 acc -> sort X.lt (union_list l1 l2 acc).
+Proof.
+ revert l2 acc.
+ induction l1 as [|x1 l1 IH1];
+ [intro l2|induction l2 as [|x2 l2 IH2]];
+ intros acc inv.
+ - eapply INV_rev, INV_sym; eauto.
+ - eapply INV_rev; eauto.
+ - simpl. case X.compare_spec; intro C.
+ * apply IH1. eapply INV_eq; eauto.
+ * apply (IH2 (x2::acc)). eapply INV_lt; eauto.
+ * apply IH1. eapply INV_sym, INV_lt; eauto. now apply INV_sym.
+Qed.
+
+Instance linear_union_ok s1 s2 `(Ok s1, Ok s2) :
+ Ok (linear_union s1 s2).
+Proof.
+ unfold linear_union. now apply treeify_ok, union_list_ok, INV_init.
+Qed.
+
+Instance fold_add_ok s1 s2 `(Ok s1, Ok s2) :
+ Ok (fold add s1 s2).
+Proof.
+ rewrite fold_spec, <- fold_left_rev_right.
+ unfold elt in *.
+ induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
+Qed.
+
+Instance union_ok s1 s2 `(Ok s1, Ok s2) : Ok (union s1 s2).
+Proof.
+ unfold union. destruct compare_height; auto_tc.
+Qed.
+
+Lemma union_list_spec x l1 l2 acc :
+ InA X.eq x (union_list l1 l2 acc) <->
+ InA X.eq x l1 \/ InA X.eq x l2 \/ InA X.eq x acc.
+Proof.
+ revert l2 acc.
+ induction l1 as [|x1 l1 IH1].
+ - intros l2 acc; simpl. rewrite rev_append_rev. inA. tauto.
+ - induction l2 as [|x2 l2 IH2]; intros acc; simpl.
+ * rewrite rev_append_rev. inA. tauto.
+ * case X.compare_spec; intro C.
+ + rewrite IH1, !InA_cons, C; tauto.
+ + rewrite (IH2 (x2::acc)), !InA_cons. tauto.
+ + rewrite IH1, !InA_cons; tauto.
+Qed.
+
+Lemma linear_union_spec s1 s2 x :
+ InT x (linear_union s1 s2) <-> InT x s1 \/ InT x s2.
+Proof.
+ unfold linear_union.
+ rewrite treeify_spec, union_list_spec, !rev_elements_rev.
+ rewrite !InA_rev, InA_nil, !elements_spec1 by auto_tc.
+ tauto.
+Qed.
+
+Lemma fold_add_spec s1 s2 x :
+ InT x (fold add s1 s2) <-> InT x s1 \/ InT x s2.
+Proof.
+ rewrite fold_spec, <- fold_left_rev_right.
+ rewrite <- (elements_spec1 s1), <- InA_rev by auto_tc.
+ unfold elt in *.
+ induction (rev (elements s1)); simpl.
+ - rewrite InA_nil. tauto.
+ - unfold flip. rewrite add_spec', IHl, InA_cons. tauto.
+Qed.
+
+Lemma union_spec' s1 s2 x :
+ InT x (union s1 s2) <-> InT x s1 \/ InT x s2.
+Proof.
+ unfold union. destruct compare_height.
+ - apply linear_union_spec.
+ - apply fold_add_spec.
+ - rewrite fold_add_spec. tauto.
+Qed.
+
+Lemma union_spec : forall s1 s2 y `{Ok s1, Ok s2},
+ (InT y (union s1 s2) <-> InT y s1 \/ InT y s2).
+Proof.
+ intros; apply union_spec'.
+Qed.
+
+(** ** inter *)
+
+Lemma inter_list_ok l1 l2 acc :
+ INV l1 l2 acc -> sort X.lt (inter_list l1 l2 acc).
+Proof.
+ revert l2 acc.
+ induction l1 as [|x1 l1 IH1]; [|induction l2 as [|x2 l2 IH2]]; simpl.
+ - eauto.
+ - eauto.
+ - intros acc inv.
+ case X.compare_spec; intro C.
+ * apply IH1. eapply INV_eq; eauto.
+ * apply (IH2 acc). eapply INV_sym, INV_drop, INV_sym; eauto.
+ * apply IH1. eapply INV_drop; eauto.
+Qed.
+
+Instance linear_inter_ok s1 s2 `(Ok s1, Ok s2) :
+ Ok (linear_inter s1 s2).
+Proof.
+ unfold linear_inter. now apply treeify_ok, inter_list_ok, INV_init.
+Qed.
+
+Instance inter_ok s1 s2 `(Ok s1, Ok s2) : Ok (inter s1 s2).
+Proof.
+ unfold inter. destruct compare_height; auto_tc.
+Qed.
+
+Lemma inter_list_spec x l1 l2 acc :
+ sort X.lt (rev l1) ->
+ sort X.lt (rev l2) ->
+ (InA X.eq x (inter_list l1 l2 acc) <->
+ (InA X.eq x l1 /\ InA X.eq x l2) \/ InA X.eq x acc).
+Proof.
+ revert l2 acc.
+ induction l1 as [|x1 l1 IH1].
+ - intros l2 acc; simpl. inA. tauto.
+ - induction l2 as [|x2 l2 IH2]; intros acc.
+ * simpl. inA. tauto.
+ * simpl. intros U V.
+ destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
+ destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
+ case X.compare_spec; intro C.
+ + rewrite IH1, !InA_cons, C; tauto.
+ + rewrite (IH2 acc); auto. inA. intuition; try order.
+ assert (X.lt x x1) by (apply U3; inA). order.
+ + rewrite IH1; auto. inA. intuition; try order.
+ assert (X.lt x x2) by (apply V3; inA). order.
+Qed.
+
+Lemma linear_inter_spec s1 s2 x `(Ok s1, Ok s2) :
+ InT x (linear_inter s1 s2) <-> InT x s1 /\ InT x s2.
+Proof.
+ unfold linear_inter.
+ rewrite !rev_elements_rev, treeify_spec, inter_list_spec
+ by (rewrite rev_involutive; auto_tc).
+ rewrite !InA_rev, InA_nil, !elements_spec1 by auto_tc. tauto.
+Qed.
+
+Local Instance mem_proper s `(Ok s) :
+ Proper (X.eq ==> Logic.eq) (fun k => mem k s).
+Proof.
+ intros x y EQ. apply Bool.eq_iff_eq_true; rewrite !mem_spec; auto.
+ now rewrite EQ.
+Qed.
+
+Lemma inter_spec s1 s2 y `{Ok s1, Ok s2} :
+ InT y (inter s1 s2) <-> InT y s1 /\ InT y s2.
+Proof.
+ unfold inter. destruct compare_height.
+ - now apply linear_inter_spec.
+ - rewrite filter_spec, mem_spec by auto_tc; tauto.
+ - rewrite filter_spec, mem_spec by auto_tc; tauto.
+Qed.
+
+(** ** difference *)
+
+Lemma diff_list_ok l1 l2 acc :
+ INV l1 l2 acc -> sort X.lt (diff_list l1 l2 acc).
+Proof.
+ revert l2 acc.
+ induction l1 as [|x1 l1 IH1];
+ [intro l2|induction l2 as [|x2 l2 IH2]];
+ intros acc inv.
+ - eauto.
+ - unfold diff_list. eapply INV_rev; eauto.
+ - simpl. case X.compare_spec; intro C.
+ * apply IH1. eapply INV_drop, INV_sym, INV_drop, INV_sym; eauto.
+ * apply (IH2 acc). eapply INV_sym, INV_drop, INV_sym; eauto.
+ * apply IH1. eapply INV_sym, INV_lt; eauto. now apply INV_sym.
+Qed.
+
+Instance diff_inter_ok s1 s2 `(Ok s1, Ok s2) :
+ Ok (linear_diff s1 s2).
+Proof.
+ unfold linear_inter. now apply treeify_ok, diff_list_ok, INV_init.
+Qed.
+
+Instance fold_remove_ok s1 s2 `(Ok s2) :
+ Ok (fold remove s1 s2).
+Proof.
+ rewrite fold_spec, <- fold_left_rev_right.
+ unfold elt in *.
+ induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
+Qed.
+
+Instance diff_ok s1 s2 `(Ok s1, Ok s2) : Ok (diff s1 s2).
+Proof.
+ unfold diff. destruct compare_height; auto_tc.
+Qed.
+
+Lemma diff_list_spec x l1 l2 acc :
+ sort X.lt (rev l1) ->
+ sort X.lt (rev l2) ->
+ (InA X.eq x (diff_list l1 l2 acc) <->
+ (InA X.eq x l1 /\ ~InA X.eq x l2) \/ InA X.eq x acc).
+Proof.
+ revert l2 acc.
+ induction l1 as [|x1 l1 IH1].
+ - intros l2 acc; simpl. inA. tauto.
+ - induction l2 as [|x2 l2 IH2]; intros acc.
+ * intros; simpl. rewrite rev_append_rev. inA. tauto.
+ * simpl. intros U V.
+ destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
+ destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
+ case X.compare_spec; intro C.
+ + rewrite IH1; auto. f_equiv. inA. intuition; try order.
+ assert (X.lt x x1) by (apply U3; inA). order.
+ + rewrite (IH2 acc); auto. f_equiv. inA. intuition; try order.
+ assert (X.lt x x1) by (apply U3; inA). order.
+ + rewrite IH1; auto. inA. intuition; try order.
+ left; split; auto. destruct 1. order.
+ assert (X.lt x x2) by (apply V3; inA). order.
+Qed.
+
+Lemma linear_diff_spec s1 s2 x `(Ok s1, Ok s2) :
+ InT x (linear_diff s1 s2) <-> InT x s1 /\ ~InT x s2.
+Proof.
+ unfold linear_diff.
+ rewrite !rev_elements_rev, treeify_spec, diff_list_spec
+ by (rewrite rev_involutive; auto_tc).
+ rewrite !InA_rev, InA_nil, !elements_spec1 by auto_tc. tauto.
+Qed.
+
+Lemma fold_remove_spec s1 s2 x `(Ok s2) :
+ InT x (fold remove s1 s2) <-> InT x s2 /\ ~InT x s1.
+Proof.
+ rewrite fold_spec, <- fold_left_rev_right.
+ rewrite <- (elements_spec1 s1), <- InA_rev by auto_tc.
+ unfold elt in *.
+ induction (rev (elements s1)); simpl; intros.
+ - rewrite InA_nil. intuition.
+ - unfold flip in *. rewrite remove_spec, IHl, InA_cons. tauto.
+ clear IHl. induction l; simpl; auto_tc.
+Qed.
+
+Lemma diff_spec s1 s2 y `{Ok s1, Ok s2} :
+ InT y (diff s1 s2) <-> InT y s1 /\ ~InT y s2.
+Proof.
+ unfold diff. destruct compare_height.
+ - now apply linear_diff_spec.
+ - rewrite filter_spec, Bool.negb_true_iff,
+ <- Bool.not_true_iff_false, mem_spec;
+ intuition.
+ intros x1 x2 EQ. f_equal. now apply mem_proper.
+ - now apply fold_remove_spec.
+Qed.
+
+End MakeRaw.
+
+(** * Balancing properties
+
+ We now prove that all operations preserve a red-black invariant,
+ and that trees have hence a logarithmic depth.
+*)
+
+Module BalanceProps(X:Orders.OrderedType)(Import M : MakeRaw X).
+
+Local Notation Rd := (Node Red).
+Local Notation Bk := (Node Black).
+Import M.MX.
+
+(** ** Red-Black invariants *)
+
+(** In a red-black tree :
+ - a red node has no red children
+ - the black depth at each node is the same along all paths.
+ The black depth is here an argument of the predicate. *)
+
+Inductive rbt : nat -> tree -> Prop :=
+ | RB_Leaf : rbt 0 Leaf
+ | RB_Rd n l k r :
+ notred l -> notred r -> rbt n l -> rbt n r -> rbt n (Rd l k r)
+ | RB_Bk n l k r : rbt n l -> rbt n r -> rbt (S n) (Bk l k r).
+
+(** A red-red tree is almost a red-black tree, except that it has
+ a _red_ root node which _may_ have red children. Note that a
+ red-red tree is hence non-empty, and all its strict subtrees
+ are red-black. *)
+
+Inductive rrt (n:nat) : tree -> Prop :=
+ | RR_Rd l k r : rbt n l -> rbt n r -> rrt n (Rd l k r).
+
+(** An almost-red-black tree is almost a red-black tree, except that
+ it's permitted to have two red nodes in a row at the very root (only).
+ We implement this notion by saying that a quasi-red-black tree
+ is either a red-black tree or a red-red tree. *)
+
+Inductive arbt (n:nat)(t:tree) : Prop :=
+ | ARB_RB : rbt n t -> arbt n t
+ | ARB_RR : rrt n t -> arbt n t.
+
+(** The main exported invariant : being a red-black tree for some
+ black depth. *)
+
+Class Rbt (t:tree) := RBT : exists d, rbt d t.
+
+(** ** Basic tactics and results about red-black *)
+
+Scheme rbt_ind := Induction for rbt Sort Prop.
+Local Hint Constructors rbt rrt arbt.
+Local Hint Extern 0 (notred _) => (exact I).
+Ltac invrb := intros; invtree rrt; invtree rbt; try contradiction.
+Ltac desarb := match goal with H:arbt _ _ |- _ => destruct H end.
+Ltac nonzero n := destruct n as [|n]; [try split; invrb|].
+
+Lemma rr_nrr_rb n t :
+ rrt n t -> notredred t -> rbt n t.
+Proof.
+ destruct 1 as [l x r Hl Hr].
+ destruct l, r; descolor; invrb; auto.
+Qed.
+
+Local Hint Resolve rr_nrr_rb.
+
+Lemma arb_nrr_rb n t :
+ arbt n t -> notredred t -> rbt n t.
+Proof.
+ destruct 1; auto.
+Qed.
+
+Lemma arb_nr_rb n t :
+ arbt n t -> notred t -> rbt n t.
+Proof.
+ destruct 1; destruct t; descolor; invrb; auto.
+Qed.
+
+Local Hint Resolve arb_nrr_rb arb_nr_rb.
+
+(** ** A Red-Black tree has indeed a logarithmic depth *)
+
+Definition redcarac s := rcase (fun _ _ _ => 1) (fun _ => 0) s.
+
+Lemma rb_maxdepth s n : rbt n s -> maxdepth s <= 2*n + redcarac s.
+Proof.
+ induction 1.
+ - simpl; auto.
+ - replace (redcarac l) with 0 in * by now destree l.
+ replace (redcarac r) with 0 in * by now destree r.
+ simpl maxdepth. simpl redcarac.
+ rewrite Nat.add_succ_r, <- Nat.succ_le_mono.
+ now apply Nat.max_lub.
+ - simpl. Nat.nzsimpl. rewrite <- Nat.succ_le_mono.
+ apply Nat.max_lub; eapply Nat.le_trans; eauto.
+ destree l; simpl; lia.
+ destree r; simpl; lia.
+Qed.
+
+Lemma rb_mindepth s n : rbt n s -> n + redcarac s <= mindepth s.
+Proof.
+ induction 1; simpl.
+ - trivial.
+ - rewrite Nat.add_succ_r.
+ apply -> Nat.succ_le_mono.
+ replace (redcarac l) with 0 in * by now destree l.
+ replace (redcarac r) with 0 in * by now destree r.
+ now apply Nat.min_glb.
+ - apply -> Nat.succ_le_mono. apply Nat.min_glb; lia.
+Qed.
+
+Lemma maxdepth_upperbound s : Rbt s ->
+ maxdepth s <= 2 * log2 (S (cardinal s)).
+Proof.
+ intros (n,H).
+ eapply Nat.le_trans; [eapply rb_maxdepth; eauto|].
+ generalize (rb_mindepth s n H).
+ generalize (mindepth_log_cardinal s). lia.
+Qed.
+
+Lemma maxdepth_lowerbound s : s<>Leaf ->
+ log2 (cardinal s) < maxdepth s.
+Proof.
+ apply maxdepth_log_cardinal.
+Qed.
+
+
+(** ** Singleton *)
+
+Lemma singleton_rb x : Rbt (singleton x).
+Proof.
+ unfold singleton. exists 1; auto.
+Qed.
+
+(** ** [makeBlack] and [makeRed] *)
+
+Lemma makeBlack_rb n t : arbt n t -> Rbt (makeBlack t).
+Proof.
+ destruct t as [|[|] l x r].
+ - exists 0; auto.
+ - destruct 1; invrb; exists (S n); simpl; auto.
+ - exists n; auto.
+Qed.
+
+Lemma makeRed_rr t n :
+ rbt (S n) t -> notred t -> rrt n (makeRed t).
+Proof.
+ destruct t as [|[|] l x r]; invrb; simpl; auto.
+Qed.
+
+(** ** Balancing *)
+
+Lemma lbal_rb n l k r :
+ arbt n l -> rbt n r -> rbt (S n) (lbal l k r).
+Proof.
+case lbal_match; intros; desarb; invrb; auto.
+Qed.
+
+Lemma rbal_rb n l k r :
+ rbt n l -> arbt n r -> rbt (S n) (rbal l k r).
+Proof.
+case rbal_match; intros; desarb; invrb; auto.
+Qed.
+
+Lemma rbal'_rb n l k r :
+ rbt n l -> arbt n r -> rbt (S n) (rbal' l k r).
+Proof.
+case rbal'_match; intros; desarb; invrb; auto.
+Qed.
+
+Lemma lbalS_rb n l x r :
+ arbt n l -> rbt (S n) r -> notred r -> rbt (S n) (lbalS l x r).
+Proof.
+ intros Hl Hr Hr'.
+ destruct r as [|[|] rl rx rr]; invrb. clear Hr'.
+ revert Hl.
+ case lbalS_match.
+ - destruct 1; invrb; auto.
+ - intros. apply rbal'_rb; auto.
+Qed.
+
+Lemma lbalS_arb n l x r :
+ arbt n l -> rbt (S n) r -> arbt (S n) (lbalS l x r).
+Proof.
+ case lbalS_match.
+ - destruct 1; invrb; auto.
+ - clear l. intros l Hl Hl' Hr.
+ destruct r as [|[|] rl rx rr]; invrb.
+ * destruct rl as [|[|] rll rlx rlr]; invrb.
+ right; auto using rbal'_rb, makeRed_rr.
+ * left; apply rbal'_rb; auto.
+Qed.
+
+Lemma rbalS_rb n l x r :
+ rbt (S n) l -> notred l -> arbt n r -> rbt (S n) (rbalS l x r).
+Proof.
+ intros Hl Hl' Hr.
+ destruct l as [|[|] ll lx lr]; invrb. clear Hl'.
+ revert Hr.
+ case rbalS_match.
+ - destruct 1; invrb; auto.
+ - intros. apply lbal_rb; auto.
+Qed.
+
+Lemma rbalS_arb n l x r :
+ rbt (S n) l -> arbt n r -> arbt (S n) (rbalS l x r).
+Proof.
+ case rbalS_match.
+ - destruct 2; invrb; auto.
+ - clear r. intros r Hr Hr' Hl.
+ destruct l as [|[|] ll lx lr]; invrb.
+ * destruct lr as [|[|] lrl lrx lrr]; invrb.
+ right; auto using lbal_rb, makeRed_rr.
+ * left; apply lbal_rb; auto.
+Qed.
+
+
+(** ** Insertion *)
+
+(** The next lemmas combine simultaneous results about rbt and arbt.
+ A first solution here: statement with [if ... then ... else] *)
+
+Definition ifred s (A B:Prop) := rcase (fun _ _ _ => A) (fun _ => B) s.
+
+Lemma ifred_notred s A B : notred s -> (ifred s A B <-> B).
+Proof.
+ destruct s; descolor; simpl; intuition.
+Qed.
+
+Lemma ifred_or s A B : ifred s A B -> A\/B.
+Proof.
+ destruct s; descolor; simpl; intuition.
+Qed.
+
+Lemma ins_rr_rb x s n : rbt n s ->
+ ifred s (rrt n (ins x s)) (rbt n (ins x s)).
+Proof.
+induction 1 as [ | n l k r | n l k r Hl IHl Hr IHr ].
+- simpl; auto.
+- simpl. rewrite ifred_notred in * by trivial.
+ elim_compare x k; auto.
+- rewrite ifred_notred by trivial.
+ unfold ins; fold ins. (* simpl is too much here ... *)
+ elim_compare x k.
+ * auto.
+ * apply lbal_rb; trivial. apply ifred_or in IHl; intuition.
+ * apply rbal_rb; trivial. apply ifred_or in IHr; intuition.
+Qed.
+
+Lemma ins_arb x s n : rbt n s -> arbt n (ins x s).
+Proof.
+ intros H. apply (ins_rr_rb x), ifred_or in H. intuition.
+Qed.
+
+Instance add_rb x s : Rbt s -> Rbt (add x s).
+Proof.
+ intros (n,H). unfold add. now apply (makeBlack_rb n), ins_arb.
+Qed.
+
+(** ** Deletion *)
+
+(** A second approach here: statement with ... /\ ... *)
+
+Lemma append_arb_rb n l r : rbt n l -> rbt n r ->
+ (arbt n (append l r)) /\
+ (notred l -> notred r -> rbt n (append l r)).
+Proof.
+revert r n.
+append_tac l r.
+- split; auto.
+- split; auto.
+- (* Red / Red *)
+ intros n. invrb.
+ case (IHlr n); auto; clear IHlr.
+ case append_rr_match.
+ + intros a x b _ H; split; invrb.
+ assert (rbt n (Rd a x b)) by auto. invrb. auto.
+ + split; invrb; auto.
+- (* Red / Black *)
+ split; invrb. destruct (IHlr n) as (_,IH); auto.
+- (* Black / Red *)
+ split; invrb. destruct (IHrl n) as (_,IH); auto.
+- (* Black / Black *)
+ nonzero n.
+ invrb.
+ destruct (IHlr n) as (IH,_); auto; clear IHlr.
+ revert IH.
+ case append_bb_match.
+ + intros a x b IH; split; destruct IH; invrb; auto.
+ + split; [left | invrb]; auto using lbalS_rb.
+Qed.
+
+(** A third approach : Lemma ... with ... *)
+
+Lemma del_arb s x n : rbt (S n) s -> isblack s -> arbt n (del x s)
+with del_rb s x n : rbt n s -> notblack s -> rbt n (del x s).
+Proof.
+{ revert n.
+ induct s x; try destruct c; try contradiction; invrb.
+ - apply append_arb_rb; assumption.
+ - assert (IHl' := del_rb l x). clear IHr del_arb del_rb.
+ destruct l as [|[|] ll lx lr]; auto.
+ nonzero n. apply lbalS_arb; auto.
+ - assert (IHr' := del_rb r x). clear IHl del_arb del_rb.
+ destruct r as [|[|] rl rx rr]; auto.
+ nonzero n. apply rbalS_arb; auto. }
+{ revert n.
+ induct s x; try assumption; try destruct c; try contradiction; invrb.
+ - apply append_arb_rb; assumption.
+ - assert (IHl' := del_arb l x). clear IHr del_arb del_rb.
+ destruct l as [|[|] ll lx lr]; auto.
+ nonzero n. destruct n as [|n]; [invrb|]; apply lbalS_rb; auto.
+ - assert (IHr' := del_arb r x). clear IHl del_arb del_rb.
+ destruct r as [|[|] rl rx rr]; auto.
+ nonzero n. apply rbalS_rb; auto. }
+Qed.
+
+Instance remove_rb s x : Rbt s -> Rbt (remove x s).
+Proof.
+ intros (n,H). unfold remove.
+ destruct s as [|[|] l y r].
+ - apply (makeBlack_rb n). auto.
+ - apply (makeBlack_rb n). left. apply del_rb; simpl; auto.
+ - nonzero n. apply (makeBlack_rb n). apply del_arb; simpl; auto.
+Qed.
+
+(** ** Treeify *)
+
+Definition treeify_rb_invariant size depth (f:treeify_t) :=
+ forall acc,
+ size <= length acc ->
+ rbt depth (fst (f acc)) /\
+ size + length (snd (f acc)) = length acc.
+
+Lemma treeify_zero_rb : treeify_rb_invariant 0 0 treeify_zero.
+Proof.
+ intros acc _; simpl; auto.
+Qed.
+
+Lemma treeify_one_rb : treeify_rb_invariant 1 0 treeify_one.
+Proof.
+ intros [|x acc]; simpl; auto; inversion 1.
+Qed.
+
+Lemma treeify_cont_rb f g size1 size2 size d :
+ treeify_rb_invariant size1 d f ->
+ treeify_rb_invariant size2 d g ->
+ size = S (size1 + size2) ->
+ treeify_rb_invariant size (S d) (treeify_cont f g).
+Proof.
+ intros Hf Hg H acc Hacc.
+ unfold treeify_cont.
+ specialize (Hf acc).
+ destruct (f acc) as (l, acc1). simpl in *.
+ destruct Hf as (Hf1, Hf2). { lia. }
+ destruct acc1 as [|x acc2]; simpl in *. { lia. }
+ specialize (Hg acc2).
+ destruct (g acc2) as (r, acc3). simpl in *.
+ destruct Hg as (Hg1, Hg2). { lia. }
+ split; [auto | lia].
+Qed.
+
+Lemma treeify_aux_rb n :
+ exists d, forall (b:bool),
+ treeify_rb_invariant (ifpred b (Pos.to_nat n)) d (treeify_aux b n).
+Proof.
+ induction n as [n (d,IHn)|n (d,IHn)| ].
+ - exists (S d). intros b.
+ eapply treeify_cont_rb; [ apply (IHn false) | apply (IHn b) | ].
+ rewrite Pos2Nat.inj_xI. generalize (Pos2Nat.is_pos n).
+ destruct b; simpl; lia.
+ - exists (S d). intros b.
+ eapply treeify_cont_rb; [ apply (IHn b) | apply (IHn true) | ].
+ rewrite Pos2Nat.inj_xO. generalize (Pos2Nat.is_pos n).
+ destruct b; simpl; lia.
+ - exists 0; destruct b;
+ [ apply treeify_zero_rb | apply treeify_one_rb ].
+Qed.
+
+(** The black depth of [treeify l] is actually a log2, but
+ we don't need to mention that. *)
+
+Instance treeify_rb l : Rbt (treeify l).
+Proof.
+ unfold treeify.
+ destruct (treeify_aux_rb (plength l)) as (d,H).
+ exists d.
+ apply H.
+ now rewrite plength_spec.
+Qed.
+
+(** ** Filtering *)
+
+Instance filter_rb f s : Rbt (filter f s).
+Proof.
+ unfold filter; auto_tc.
+Qed.
+
+Instance partition_rb1 f s : Rbt (fst (partition f s)).
+Proof.
+ unfold partition. destruct partition_aux. simpl. auto_tc.
+Qed.
+
+Instance partition_rb2 f s : Rbt (snd (partition f s)).
+Proof.
+ unfold partition. destruct partition_aux. simpl. auto_tc.
+Qed.
+
+(** ** Union, intersection, difference *)
+
+Instance fold_add_rb s1 s2 : Rbt s2 -> Rbt (fold add s1 s2).
+Proof.
+ intros. rewrite fold_spec, <- fold_left_rev_right. unfold elt in *.
+ induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
+Qed.
+
+Instance fold_remove_rb s1 s2 : Rbt s2 -> Rbt (fold remove s1 s2).
+Proof.
+ intros. rewrite fold_spec, <- fold_left_rev_right. unfold elt in *.
+ induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
+Qed.
+
+Lemma union_rb s1 s2 : Rbt s1 -> Rbt s2 -> Rbt (union s1 s2).
+Proof.
+ intros. unfold union, linear_union. destruct compare_height; auto_tc.
+Qed.
+
+Lemma inter_rb s1 s2 : Rbt s1 -> Rbt s2 -> Rbt (inter s1 s2).
+Proof.
+ intros. unfold inter, linear_inter. destruct compare_height; auto_tc.
+Qed.
+
+Lemma diff_rb s1 s2 : Rbt s1 -> Rbt s2 -> Rbt (diff s1 s2).
+Proof.
+ intros. unfold diff, linear_diff. destruct compare_height; auto_tc.
+Qed.
+
+End BalanceProps.
+
+(** * Final Encapsulation
+
+ Now, in order to really provide a functor implementing [S], we
+ need to encapsulate everything into a type of binary search trees.
+ They also happen to be well-balanced, but this has no influence
+ on the correctness of operations, so we won't state this here,
+ see [BalanceProps] if you need more than just the MSet interface.
+*)
+
+Module Type MSetInterface_S_Ext := MSetInterface.S <+ MSetRemoveMin.
+
+Module Make (X: Orders.OrderedType) <:
+ MSetInterface_S_Ext with Module E := X.
+ Module Raw. Include MakeRaw X. End Raw.
+ Include MSetInterface.Raw2Sets X Raw.
+
+ Definition opt_ok (x:option (elt * Raw.t)) :=
+ match x with Some (_,s) => Raw.Ok s | None => True end.
+
+ Definition mk_opt_t (x: option (elt * Raw.t))(P: opt_ok x) :
+ option (elt * t) :=
+ match x as o return opt_ok o -> option (elt * t) with
+ | Some (k,s') => fun P : Raw.Ok s' => Some (k, Mkt s')
+ | None => fun _ => None
+ end P.
+
+ Definition remove_min s : option (elt * t) :=
+ mk_opt_t (Raw.remove_min (this s)) (Raw.remove_min_ok s).
+
+ Lemma remove_min_spec1 s x s' :
+ remove_min s = Some (x,s') ->
+ min_elt s = Some x /\ Equal (remove x s) s'.
+ Proof.
+ destruct s as (s,Hs).
+ unfold remove_min, mk_opt_t, min_elt, remove, Equal, In; simpl.
+ generalize (fun x s' => @Raw.remove_min_spec1 s x s' Hs).
+ set (P := Raw.remove_min_ok s). clearbody P.
+ destruct (Raw.remove_min s) as [(x0,s0)|]; try easy.
+ intros H U. injection U. clear U; intros; subst. simpl.
+ destruct (H x s0); auto. subst; intuition.
+ Qed.
+
+ Lemma remove_min_spec2 s : remove_min s = None -> Empty s.
+ Proof.
+ destruct s as (s,Hs).
+ unfold remove_min, mk_opt_t, Empty, In; simpl.
+ generalize (Raw.remove_min_spec2 s).
+ set (P := Raw.remove_min_ok s). clearbody P.
+ destruct (Raw.remove_min s) as [(x0,s0)|]; now intuition.
+ Qed.
+
+End Make.