aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/MMaps
diff options
context:
space:
mode:
authorGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2015-03-16 08:38:45 +0100
committerGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2015-04-02 11:44:18 +0200
commita2febeae76d4046e20b257ba11fa2343f28ba0b9 (patch)
treed084752808081d9e4ebea9192ac146a6b89cfc36 /theories/MMaps
parent47e2247fe47dafe834855dd61e7b14b30c57f70d (diff)
MMapAVL: implementing MMapInterface via AVL trees
Diffstat (limited to 'theories/MMaps')
-rw-r--r--theories/MMaps/MMapAVL.v2159
-rw-r--r--theories/MMaps/vo.itarget1
2 files changed, 2160 insertions, 0 deletions
diff --git a/theories/MMaps/MMapAVL.v b/theories/MMaps/MMapAVL.v
new file mode 100644
index 000000000..c9552356a
--- /dev/null
+++ b/theories/MMaps/MMapAVL.v
@@ -0,0 +1,2159 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Finite map library. *)
+
+(** * MMapAVL *)
+
+(** This module implements maps using AVL trees.
+ It follows the implementation from Ocaml's standard library.
+
+ See the comments at the beginning of MSetAVL for more details.
+*)
+
+Require Import Bool PeanoNat BinInt Int MMapInterface MMapList.
+Require Import Orders OrdersFacts OrdersLists.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+(* For nicer extraction, we create inductive principles
+ only when needed *)
+Local Unset Elimination Schemes.
+
+(** Notations and helper lemma about pairs *)
+
+Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
+Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
+
+(** * The Raw functor
+
+ Functor of pure functions + separate proofs of invariant
+ preservation *)
+
+Module Raw (Import I:Int)(X: OrderedType).
+Local Open Scope pair_scope.
+Local Open Scope lazy_bool_scope.
+Local Open Scope Int_scope.
+Local Notation int := I.t.
+
+Definition key := X.t.
+Hint Transparent key.
+
+(** * Trees *)
+
+Section Elt.
+
+Variable elt : Type.
+
+(** * Trees
+
+ The fifth field of [Node] is the height of the tree *)
+
+Inductive tree :=
+ | Leaf : tree
+ | Node : tree -> key -> elt -> tree -> int -> tree.
+
+Notation t := tree.
+
+(** * Basic functions on trees: height and cardinal *)
+
+Definition height (m : t) : int :=
+ match m with
+ | Leaf => 0
+ | Node _ _ _ _ h => h
+ end.
+
+Fixpoint cardinal (m : t) : nat :=
+ match m with
+ | Leaf => 0%nat
+ | Node l _ _ r _ => S (cardinal l + cardinal r)
+ end.
+
+(** * Empty Map *)
+
+Definition empty := Leaf.
+
+(** * Emptyness test *)
+
+Definition is_empty m := match m with Leaf => true | _ => false end.
+
+(** * Membership *)
+
+(** The [mem] function is deciding membership. It exploits the [Bst] property
+ to achieve logarithmic complexity. *)
+
+Fixpoint mem x m : bool :=
+ match m with
+ | Leaf => false
+ | Node l y _ r _ =>
+ match X.compare x y with
+ | Eq => true
+ | Lt => mem x l
+ | Gt => mem x r
+ end
+ end.
+
+Fixpoint find x m : option elt :=
+ match m with
+ | Leaf => None
+ | Node l y d r _ =>
+ match X.compare x y with
+ | Eq => Some d
+ | Lt => find x l
+ | Gt => find x r
+ end
+ end.
+
+(** * Helper functions *)
+
+(** [create l x r] creates a node, assuming [l] and [r]
+ to be balanced and [|height l - height r| <= 2]. *)
+
+Definition create l x e r :=
+ Node l x e r (max (height l) (height r) + 1).
+
+(** [bal l x e r] acts as [create], but performs one step of
+ rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
+
+Definition assert_false := create.
+
+Fixpoint bal l x d r :=
+ let hl := height l in
+ let hr := height r in
+ if (hr+2) <? hl then
+ match l with
+ | Leaf => assert_false l x d r
+ | Node ll lx ld lr _ =>
+ if (height lr) <=? (height ll) then
+ create ll lx ld (create lr x d r)
+ else
+ match lr with
+ | Leaf => assert_false l x d r
+ | Node lrl lrx lrd lrr _ =>
+ create (create ll lx ld lrl) lrx lrd (create lrr x d r)
+ end
+ end
+ else
+ if (hl+2) <? hr then
+ match r with
+ | Leaf => assert_false l x d r
+ | Node rl rx rd rr _ =>
+ if (height rl) <=? (height rr) then
+ create (create l x d rl) rx rd rr
+ else
+ match rl with
+ | Leaf => assert_false l x d r
+ | Node rll rlx rld rlr _ =>
+ create (create l x d rll) rlx rld (create rlr rx rd rr)
+ end
+ end
+ else
+ create l x d r.
+
+(** * Insertion *)
+
+Fixpoint add x d m :=
+ match m with
+ | Leaf => Node Leaf x d Leaf 1
+ | Node l y d' r h =>
+ match X.compare x y with
+ | Eq => Node l y d r h
+ | Lt => bal (add x d l) y d' r
+ | Gt => bal l y d' (add x d r)
+ end
+ end.
+
+(** * Extraction of minimum binding
+
+ Morally, [remove_min] is to be applied to a non-empty tree
+ [t = Node l x e r h]. Since we can't deal here with [assert false]
+ for [t=Leaf], we pre-unpack [t] (and forget about [h]).
+*)
+
+Fixpoint remove_min l x d r : t*(key*elt) :=
+ match l with
+ | Leaf => (r,(x,d))
+ | Node ll lx ld lr lh =>
+ let (l',m) := remove_min ll lx ld lr in
+ (bal l' x d r, m)
+ end.
+
+(** * Merging two trees
+
+ [merge0 t1 t2] builds the union of [t1] and [t2] assuming all elements
+ of [t1] to be smaller than all elements of [t2], and
+ [|height t1 - height t2| <= 2].
+*)
+
+Definition merge0 s1 s2 :=
+ match s1,s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | _, Node l2 x2 d2 r2 h2 =>
+ let '(s2',(x,d)) := remove_min l2 x2 d2 r2 in
+ bal s1 x d s2'
+ end.
+
+(** * Deletion *)
+
+Fixpoint remove x m := match m with
+ | Leaf => Leaf
+ | Node l y d r h =>
+ match X.compare x y with
+ | Eq => merge0 l r
+ | Lt => bal (remove x l) y d r
+ | Gt => bal l y d (remove x r)
+ end
+ end.
+
+(** * join
+
+ Same as [bal] but does not assume anything regarding heights of [l]
+ and [r].
+*)
+
+Fixpoint join l : key -> elt -> t -> t :=
+ match l with
+ | Leaf => add
+ | Node ll lx ld lr lh => fun x d =>
+ fix join_aux (r:t) : t := match r with
+ | Leaf => add x d l
+ | Node rl rx rd rr rh =>
+ if rh+2 <? lh then bal ll lx ld (join lr x d r)
+ else if lh+2 <? rh then bal (join_aux rl) rx rd rr
+ else create l x d r
+ end
+ end.
+
+(** * Splitting
+
+ [split x m] returns a triple [(l, o, r)] where
+ - [l] is the set of elements of [m] that are [< x]
+ - [r] is the set of elements of [m] that are [> x]
+ - [o] is the result of [find x m].
+*)
+
+Record triple := mktriple { t_left:t; t_opt:option elt; t_right:t }.
+Notation "〚 l , b , r 〛" := (mktriple l b r) (at level 9).
+
+Fixpoint split x m : triple := match m with
+ | Leaf => 〚 Leaf, None, Leaf 〛
+ | Node l y d r h =>
+ match X.compare x y with
+ | Lt => let (ll,o,rl) := split x l in 〚 ll, o, join rl y d r 〛
+ | Eq => 〚 l, Some d, r 〛
+ | Gt => let (rl,o,rr) := split x r in 〚 join l y d rl, o, rr 〛
+ end
+ end.
+
+(** * Concatenation
+
+ Same as [merge] but does not assume anything about heights.
+*)
+
+Definition concat m1 m2 :=
+ match m1, m2 with
+ | Leaf, _ => m2
+ | _ , Leaf => m1
+ | _, Node l2 x2 d2 r2 _ =>
+ let (m2',xd) := remove_min l2 x2 d2 r2 in
+ join m1 xd#1 xd#2 m2'
+ end.
+
+(** * Bindings *)
+
+(** [bindings_aux acc t] catenates the bindings of [t] in infix
+ order to the list [acc] *)
+
+Fixpoint bindings_aux (acc : list (key*elt)) m : list (key*elt) :=
+ match m with
+ | Leaf => acc
+ | Node l x d r _ => bindings_aux ((x,d) :: bindings_aux acc r) l
+ end.
+
+(** then [bindings] is an instantiation with an empty [acc] *)
+
+Definition bindings := bindings_aux nil.
+
+(** * Fold *)
+
+Fixpoint fold {A} (f : key -> elt -> A -> A) (m : t) : A -> A :=
+ fun a => match m with
+ | Leaf => a
+ | Node l x d r _ => fold f r (f x d (fold f l a))
+ end.
+
+(** * Comparison *)
+
+Variable cmp : elt->elt->bool.
+
+(** ** Enumeration of the elements of a tree *)
+
+Inductive enumeration :=
+ | End : enumeration
+ | More : key -> elt -> t -> enumeration -> enumeration.
+
+(** [cons m e] adds the elements of tree [m] on the head of
+ enumeration [e]. *)
+
+Fixpoint cons m e : enumeration :=
+ match m with
+ | Leaf => e
+ | Node l x d r h => cons l (More x d r e)
+ end.
+
+(** One step of comparison of elements *)
+
+Definition equal_more x1 d1 (cont:enumeration->bool) e2 :=
+ match e2 with
+ | End => false
+ | More x2 d2 r2 e2 =>
+ match X.compare x1 x2 with
+ | Eq => cmp d1 d2 &&& cont (cons r2 e2)
+ | _ => false
+ end
+ end.
+
+(** Comparison of left tree, middle element, then right tree *)
+
+Fixpoint equal_cont m1 (cont:enumeration->bool) e2 :=
+ match m1 with
+ | Leaf => cont e2
+ | Node l1 x1 d1 r1 _ =>
+ equal_cont l1 (equal_more x1 d1 (equal_cont r1 cont)) e2
+ end.
+
+(** Initial continuation *)
+
+Definition equal_end e2 := match e2 with End => true | _ => false end.
+
+(** The complete comparison *)
+
+Definition equal m1 m2 := equal_cont m1 equal_end (cons m2 End).
+
+End Elt.
+Notation t := tree.
+Notation "〚 l , b , r 〛" := (mktriple l b r) (at level 9).
+Notation "t #l" := (t_left t) (at level 9, format "t '#l'").
+Notation "t #o" := (t_opt t) (at level 9, format "t '#o'").
+Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
+
+
+(** * Map *)
+
+Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' :=
+ match m with
+ | Leaf _ => Leaf _
+ | Node l x d r h => Node (map f l) x (f d) (map f r) h
+ end.
+
+(* * Mapi *)
+
+Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' :=
+ match m with
+ | Leaf _ => Leaf _
+ | Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h
+ end.
+
+(** * Map with removal *)
+
+Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt)
+ : t elt' :=
+ match m with
+ | Leaf _ => Leaf _
+ | Node l x d r h =>
+ match f x d with
+ | Some d' => join (map_option f l) x d' (map_option f r)
+ | None => concat (map_option f l) (map_option f r)
+ end
+ end.
+
+(** * Generalized merge
+
+ Suggestion by B. Gregoire: a [merge] function with specialized
+ arguments that allows bypassing some tree traversal. Instead of one
+ [f0] of type [key -> option elt -> option elt' -> option elt''],
+ we ask here for:
+ - [f] which is a specialisation of [f0] when first option isn't [None]
+ - [mapl] treats a [tree elt] with [f0] when second option is [None]
+ - [mapr] treats a [tree elt'] with [f0] when first option is [None]
+
+ The idea is that [mapl] and [mapr] can be instantaneous (e.g.
+ the identity or some constant function).
+*)
+
+Section GMerge.
+Variable elt elt' elt'' : Type.
+Variable f : key -> elt -> option elt' -> option elt''.
+Variable mapl : t elt -> t elt''.
+Variable mapr : t elt' -> t elt''.
+
+Fixpoint gmerge m1 m2 :=
+ match m1, m2 with
+ | Leaf _, _ => mapr m2
+ | _, Leaf _ => mapl m1
+ | Node l1 x1 d1 r1 h1, _ =>
+ let (l2',o2,r2') := split x1 m2 in
+ match f x1 d1 o2 with
+ | Some e => join (gmerge l1 l2') x1 e (gmerge r1 r2')
+ | None => concat (gmerge l1 l2') (gmerge r1 r2')
+ end
+ end.
+
+End GMerge.
+
+(** * Map2
+
+ The [map2] function of the Map interface can be implemented
+ via [map2_opt] and [map_option].
+*)
+
+Section Merge.
+Variable elt elt' elt'' : Type.
+Variable f : key -> option elt -> option elt' -> option elt''.
+
+Definition merge : t elt -> t elt' -> t elt'' :=
+ gmerge
+ (fun k d o => f k (Some d) o)
+ (map_option (fun k d => f k (Some d) None))
+ (map_option (fun k d' => f k None (Some d'))).
+
+End Merge.
+
+
+
+(** * Invariants *)
+
+Section Invariants.
+Variable elt : Type.
+
+(** ** Occurrence in a tree *)
+
+Inductive MapsTo (x : key)(e : elt) : t elt -> Prop :=
+ | MapsRoot : forall l r h y,
+ X.eq x y -> MapsTo x e (Node l y e r h)
+ | MapsLeft : forall l r h y e',
+ MapsTo x e l -> MapsTo x e (Node l y e' r h)
+ | MapsRight : forall l r h y e',
+ MapsTo x e r -> MapsTo x e (Node l y e' r h).
+
+Inductive In (x : key) : t elt -> Prop :=
+ | InRoot : forall l r h y e,
+ X.eq x y -> In x (Node l y e r h)
+ | InLeft : forall l r h y e',
+ In x l -> In x (Node l y e' r h)
+ | InRight : forall l r h y e',
+ In x r -> In x (Node l y e' r h).
+
+Definition In0 k m := exists e:elt, MapsTo k e m.
+
+(** ** Binary search trees *)
+
+(** [Above x m] : [x] is strictly greater than any key in [m].
+ [Below x m] : [x] is strictly smaller than any key in [m]. *)
+
+Inductive Above (x:key) : t elt -> Prop :=
+ | AbLeaf : Above x (Leaf _)
+ | AbNode l r h y e : Above x l -> X.lt y x -> Above x r ->
+ Above x (Node l y e r h).
+
+Inductive Below (x:key) : t elt -> Prop :=
+ | BeLeaf : Below x (Leaf _)
+ | BeNode l r h y e : Below x l -> X.lt x y -> Below x r ->
+ Below x (Node l y e r h).
+
+Definition Apart (m1 m2 : t elt) : Prop :=
+ forall x1 x2, In x1 m1 -> In x2 m2 -> X.lt x1 x2.
+
+(** Alternative statements, equivalent with [LtTree] and [GtTree] *)
+
+Definition lt_tree x m := forall y, In y m -> X.lt y x.
+Definition gt_tree x m := forall y, In y m -> X.lt x y.
+
+(** [Bst t] : [t] is a binary search tree *)
+
+Inductive Bst : t elt -> Prop :=
+ | BSLeaf : Bst (Leaf _)
+ | BSNode : forall x e l r h, Bst l -> Bst r ->
+ Above x l -> Below x r -> Bst (Node l x e r h).
+
+End Invariants.
+
+
+(** * Correctness proofs, isolated in a sub-module *)
+
+Module Proofs.
+ Module MX := OrderedTypeFacts X.
+ Module PX := KeyOrderedType X.
+ Module L := MMapList.Raw X.
+
+Local Infix "∈" := In (at level 70).
+Local Infix "==" := X.eq (at level 70).
+Local Infix "<" := X.lt (at level 70).
+Local Infix "<<" := Below (at level 70).
+Local Infix ">>" := Above (at level 70).
+Local Infix "<<<" := Apart (at level 70).
+
+Scheme tree_ind := Induction for tree Sort Prop.
+Scheme Bst_ind := Induction for Bst Sort Prop.
+Scheme MapsTo_ind := Induction for MapsTo Sort Prop.
+Scheme In_ind := Induction for In Sort Prop.
+Scheme Above_ind := Induction for Above Sort Prop.
+Scheme Below_ind := Induction for Below Sort Prop.
+
+Functional Scheme mem_ind := Induction for mem Sort Prop.
+Functional Scheme find_ind := Induction for find Sort Prop.
+Functional Scheme bal_ind := Induction for bal Sort Prop.
+Functional Scheme add_ind := Induction for add Sort Prop.
+Functional Scheme remove_min_ind := Induction for remove_min Sort Prop.
+Functional Scheme merge0_ind := Induction for merge0 Sort Prop.
+Functional Scheme remove_ind := Induction for remove Sort Prop.
+Functional Scheme concat_ind := Induction for concat Sort Prop.
+Functional Scheme split_ind := Induction for split Sort Prop.
+Functional Scheme map_option_ind := Induction for map_option Sort Prop.
+Functional Scheme gmerge_ind := Induction for gmerge Sort Prop.
+
+(** * Automation and dedicated tactics. *)
+
+Local Hint Constructors tree MapsTo In Bst Above Below.
+Local Hint Unfold lt_tree gt_tree Apart.
+Local Hint Immediate MX.eq_sym.
+Local Hint Resolve MX.eq_refl MX.eq_trans MX.lt_trans.
+
+Tactic Notation "factornode" ident(s) :=
+ try clear s;
+ match goal with
+ | |- context [Node ?l ?x ?e ?r ?h] =>
+ set (s:=Node l x e r h) in *; clearbody s; clear l x e r h
+ | _ : context [Node ?l ?x ?e ?r ?h] |- _ =>
+ set (s:=Node l x e r h) in *; clearbody s; clear l x e r h
+ end.
+
+(** A tactic for cleaning hypothesis after use of functional induction. *)
+
+Ltac cleanf :=
+ match goal with
+ | H : X.compare _ _ = Eq |- _ =>
+ rewrite ?H; apply MX.compare_eq in H; cleanf
+ | H : X.compare _ _ = Lt |- _ =>
+ rewrite ?H; apply MX.compare_lt_iff in H; cleanf
+ | H : X.compare _ _ = Gt |- _ =>
+ rewrite ?H; apply MX.compare_gt_iff in H; cleanf
+ | _ => idtac
+ end.
+
+
+(** A tactic to repeat [inversion_clear] on all hyps of the
+ form [(f (Node ...))] *)
+
+Ltac inv f :=
+ match goal with
+ | H:f (Leaf _) |- _ => inversion_clear H; inv f
+ | H:f _ (Leaf _) |- _ => inversion_clear H; inv f
+ | H:f _ _ (Leaf _) |- _ => inversion_clear H; inv f
+ | H:f _ _ _ (Leaf _) |- _ => inversion_clear H; inv f
+ | H:f (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
+ | H:f _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
+ | H:f _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
+ | H:f _ _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
+ | _ => idtac
+ end.
+
+Ltac inv_all f :=
+ match goal with
+ | H: f _ |- _ => inversion_clear H; inv f
+ | H: f _ _ |- _ => inversion_clear H; inv f
+ | H: f _ _ _ |- _ => inversion_clear H; inv f
+ | H: f _ _ _ _ |- _ => inversion_clear H; inv f
+ | _ => idtac
+ end.
+
+Ltac intuition_in := repeat (intuition; inv In; inv MapsTo).
+
+(* Function/Functional Scheme can't deal with internal fix.
+ Let's do its job by hand: *)
+
+Ltac join_tac l x d r :=
+ revert x d r;
+ induction l as [| ll _ lx ld lr Hlr lh];
+ [ | intros x d r; induction r as [| rl Hrl rx rd rr _ rh]; unfold join;
+ [ | destruct (rh+2 <? lh) eqn:LT;
+ [ match goal with |- context [ bal ?u ?v ?w ?z ] =>
+ replace (bal u v w z)
+ with (bal ll lx ld (join lr x d (Node rl rx rd rr rh))); [ | auto]
+ end
+ | destruct (lh+2 <? rh) eqn:LT';
+ [ match goal with |- context [ bal ?u ?v ?w ?z ] =>
+ replace (bal u v w z)
+ with (bal (join (Node ll lx ld lr lh) x d rl) rx rd rr); [ | auto]
+ end
+ | ] ] ] ]; intros.
+
+Ltac cleansplit :=
+ simpl; cleanf; inv Bst;
+ match goal with
+ | E:split _ _ = 〚 ?l, ?o, ?r 〛 |- _ =>
+ change l with (〚l,o,r〛#l); rewrite <- ?E;
+ change o with (〚l,o,r〛#o); rewrite <- ?E;
+ change r with (〚l,o,r〛#r); rewrite <- ?E
+ | _ => idtac
+ end.
+
+(** * Basic results about [MapsTo], [In], [lt_tree], [gt_tree], [height] *)
+
+(** Facts about [MapsTo] and [In]. *)
+
+Lemma MapsTo_In {elt} k (e:elt) m : MapsTo k e m -> k ∈ m.
+Proof.
+ induction 1; auto.
+Qed.
+Local Hint Resolve MapsTo_In.
+
+Lemma In_MapsTo {elt} k m : k ∈ m -> exists (e:elt), MapsTo k e m.
+Proof.
+ induction 1; try destruct IHIn as (e,He); exists e; auto.
+Qed.
+
+Lemma In_alt {elt} k (m:t elt) : In0 k m <-> k ∈ m.
+Proof.
+ split.
+ intros (e,H); eauto.
+ unfold In0; apply In_MapsTo; auto.
+Qed.
+
+Lemma MapsTo_1 {elt} m x y (e:elt) :
+ x == y -> MapsTo x e m -> MapsTo y e m.
+Proof.
+ induction m; simpl; intuition_in; eauto.
+Qed.
+Hint Immediate MapsTo_1.
+
+Instance MapsTo_compat {elt} :
+ Proper (X.eq==>Logic.eq==>Logic.eq==>iff) (@MapsTo elt).
+Proof.
+ intros x x' Hx e e' He m m' Hm. subst.
+ split; now apply MapsTo_1.
+Qed.
+
+Instance In_compat {elt} :
+ Proper (X.eq==>Logic.eq==>iff) (@In elt).
+Proof.
+ intros x x' H m m' <-.
+ induction m; simpl; intuition_in; eauto.
+Qed.
+
+Lemma In_node_iff {elt} l x (e:elt) r h y :
+ y ∈ (Node l x e r h) <-> y ∈ l \/ y == x \/ y ∈ r.
+Proof.
+ intuition_in.
+Qed.
+
+(** Results about [Above] and [Below] *)
+
+Lemma above {elt} (m:t elt) x :
+ x >> m <-> forall y, y ∈ m -> y < x.
+Proof.
+ split.
+ - induction 1; intuition_in; MX.order.
+ - induction m; constructor; auto.
+Qed.
+
+Lemma below {elt} (m:t elt) x :
+ x << m <-> forall y, y ∈ m -> x < y.
+Proof.
+ split.
+ - induction 1; intuition_in; MX.order.
+ - induction m; constructor; auto.
+Qed.
+
+Lemma AboveLt {elt} (m:t elt) x y : x >> m -> y ∈ m -> y < x.
+Proof.
+ rewrite above; intuition.
+Qed.
+
+Lemma BelowGt {elt} (m:t elt) x y : x << m -> y ∈ m -> x < y.
+Proof.
+ rewrite below; intuition.
+Qed.
+
+Lemma Above_not_In {elt} (m:t elt) x : x >> m -> ~ x ∈ m.
+Proof.
+ induction 1; intuition_in; MX.order.
+Qed.
+
+Lemma Below_not_In {elt} (m:t elt) x : x << m -> ~ x ∈ m.
+Proof.
+ induction 1; intuition_in; MX.order.
+Qed.
+
+Lemma Above_trans {elt} (m:t elt) x y : x < y -> x >> m -> y >> m.
+Proof.
+ induction 2; constructor; trivial; MX.order.
+Qed.
+
+Lemma Below_trans {elt} (m:t elt) x y : y < x -> x << m -> y << m.
+Proof.
+ induction 2; constructor; trivial; MX.order.
+Qed.
+
+Local Hint Resolve
+ AboveLt Above_not_In Above_trans
+ BelowGt Below_not_In Below_trans.
+
+(** Helper tactic concerning order of elements. *)
+
+Ltac order := match goal with
+ | U: _ >> ?m, V: _ ∈ ?m |- _ =>
+ generalize (AboveLt U V); clear U; order
+ | U: _ << ?m, V: _ ∈ ?m |- _ =>
+ generalize (BelowGt U V); clear U; order
+ | U: _ >> ?m, V: MapsTo _ _ ?m |- _ =>
+ generalize (AboveLt U (MapsTo_In V)); clear U; order
+ | U: _ << ?m, V: MapsTo _ _ ?m |- _ =>
+ generalize (BelowGt U (MapsTo_In V)); clear U; order
+ | _ => MX.order
+end.
+
+Section Elt.
+Variable elt:Type.
+Implicit Types m r : t elt.
+
+(** * Membership *)
+
+Lemma find_1 m x e : Bst m -> MapsTo x e m -> find x m = Some e.
+Proof.
+ functional induction (find x m); cleanf;
+ intros; inv Bst; intuition_in; order.
+Qed.
+
+Lemma find_2 m x e : find x m = Some e -> MapsTo x e m.
+Proof.
+ functional induction (find x m); cleanf; subst; intros; auto.
+ - discriminate.
+ - injection H as ->. auto.
+Qed.
+
+Lemma find_spec m x e : Bst m ->
+ (find x m = Some e <-> MapsTo x e m).
+Proof.
+ split; auto using find_1, find_2.
+Qed.
+
+Lemma find_in m x : find x m <> None -> x ∈ m.
+Proof.
+ destruct (find x m) eqn:F; intros H.
+ - apply MapsTo_In with e. now apply find_2.
+ - now elim H.
+Qed.
+
+Lemma in_find m x : Bst m -> x ∈ m -> find x m <> None.
+Proof.
+ intros H H'.
+ destruct (In_MapsTo H') as (d,Hd).
+ now rewrite (find_1 H Hd).
+Qed.
+
+Lemma find_in_iff m x : Bst m ->
+ (find x m <> None <-> x ∈ m).
+Proof.
+ split; auto using find_in, in_find.
+Qed.
+
+Lemma not_find_iff m x : Bst m ->
+ (find x m = None <-> ~ x ∈ m).
+Proof.
+ intros H. rewrite <- find_in_iff; trivial.
+ destruct (find x m); split; try easy. now destruct 1.
+Qed.
+
+Lemma eq_option_alt (o o':option elt) :
+ o=o' <-> (forall e, o=Some e <-> o'=Some e).
+Proof.
+split; intros.
+- now subst.
+- destruct o, o'; rewrite ?H; auto. symmetry; now apply H.
+Qed.
+
+Lemma find_mapsto_equiv : forall m m' x, Bst m -> Bst m' ->
+ (find x m = find x m' <->
+ (forall d, MapsTo x d m <-> MapsTo x d m')).
+Proof.
+ intros m m' x Hm Hm'. rewrite eq_option_alt.
+ split; intros H d. now rewrite <- 2 find_spec. now rewrite 2 find_spec.
+Qed.
+
+Lemma find_in_equiv : forall m m' x, Bst m -> Bst m' ->
+ find x m = find x m' ->
+ (x ∈ m <-> x ∈ m').
+Proof.
+ split; intros; apply find_in; [ rewrite <- H1 | rewrite H1 ];
+ apply in_find; auto.
+Qed.
+
+Lemma find_compat m x x' : Bst m -> X.eq x x' -> find x m = find x' m.
+Proof.
+ intros B E.
+ destruct (find x' m) eqn:H.
+ - apply find_1; trivial. rewrite E. now apply find_2.
+ - rewrite not_find_iff in *; trivial. now rewrite E.
+Qed.
+
+Lemma mem_spec m x : Bst m -> mem x m = true <-> x ∈ m.
+Proof.
+ functional induction (mem x m); auto; intros; cleanf;
+ inv Bst; intuition_in; try discriminate; order.
+Qed.
+
+(** * Empty map *)
+
+Lemma empty_bst : Bst (empty elt).
+Proof.
+ constructor.
+Qed.
+
+Lemma empty_spec x : find x (empty elt) = None.
+Proof.
+ reflexivity.
+Qed.
+
+(** * Emptyness test *)
+
+Lemma is_empty_spec m : is_empty m = true <-> forall x, find x m = None.
+Proof.
+ destruct m as [|r x e l h]; simpl; split; try easy.
+ intros H. specialize (H x). now rewrite MX.compare_refl in H.
+Qed.
+
+(** * Helper functions *)
+
+Lemma create_bst l x e r :
+ Bst l -> Bst r -> x >> l -> x << r -> Bst (create l x e r).
+Proof.
+ unfold create; auto.
+Qed.
+Hint Resolve create_bst.
+
+Lemma create_in l x e r y :
+ y ∈ (create l x e r) <-> y == x \/ y ∈ l \/ y ∈ r.
+Proof.
+ unfold create; split; [ inversion_clear 1 | ]; intuition.
+Qed.
+
+Lemma bal_bst l x e r : Bst l -> Bst r ->
+ x >> l -> x << r -> Bst (bal l x e r).
+Proof.
+ functional induction (bal l x e r); intros; cleanf;
+ inv Bst; inv Above; inv Below;
+ repeat apply create_bst; auto; unfold create; constructor; eauto.
+Qed.
+Hint Resolve bal_bst.
+
+Lemma bal_in l x e r y :
+ y ∈ (bal l x e r) <-> y == x \/ y ∈ l \/ y ∈ r.
+Proof.
+ functional induction (bal l x e r); intros; cleanf;
+ rewrite !create_in; intuition_in.
+Qed.
+
+Lemma bal_mapsto l x e r y e' :
+ MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r).
+Proof.
+ functional induction (bal l x e r); intros; cleanf;
+ unfold assert_false, create; intuition_in.
+Qed.
+
+Lemma bal_find l x e r y :
+ Bst l -> Bst r -> x >> l -> x << r ->
+ find y (bal l x e r) = find y (create l x e r).
+Proof.
+ functional induction (bal l x e r); intros; cleanf; trivial;
+ inv Bst; inv Above; inv Below;
+ simpl; repeat case X.compare_spec; intuition; order.
+Qed.
+
+(** * Insertion *)
+
+Lemma add_in m x y e :
+ y ∈ (add x e m) <-> y == x \/ y ∈ m.
+Proof.
+ functional induction (add x e m); auto; intros; cleanf;
+ rewrite ?bal_in; intuition_in. setoid_replace y with x; auto.
+Qed.
+
+Lemma add_lt m x e y : y >> m -> x < y -> y >> add x e m.
+Proof.
+ intros. apply above. intros z. rewrite add_in. destruct 1; order.
+Qed.
+
+Lemma add_gt m x e y : y << m -> y < x -> y << add x e m.
+Proof.
+ intros. apply below. intros z. rewrite add_in. destruct 1; order.
+Qed.
+
+Lemma add_bst m x e : Bst m -> Bst (add x e m).
+Proof.
+ functional induction (add x e m); intros; cleanf;
+ inv Bst; try apply bal_bst; auto using add_lt, add_gt.
+Qed.
+Hint Resolve add_lt add_gt add_bst.
+
+Lemma add_spec1 m x e : Bst m -> find x (add x e m) = Some e.
+Proof.
+ functional induction (add x e m); simpl; intros; cleanf; trivial.
+ - now rewrite MX.compare_refl.
+ - inv Bst. rewrite bal_find; auto.
+ simpl. case X.compare_spec; try order; auto.
+ - inv Bst. rewrite bal_find; auto.
+ simpl. case X.compare_spec; try order; auto.
+Qed.
+
+Lemma add_spec2 m x y e : Bst m -> ~ x == y ->
+ find y (add x e m) = find y m.
+Proof.
+ functional induction (add x e m); simpl; intros; cleanf; trivial.
+ - case X.compare_spec; trivial; order.
+ - case X.compare_spec; trivial; order.
+ - inv Bst. rewrite bal_find by auto. simpl. now rewrite IHt.
+ - inv Bst. rewrite bal_find by auto. simpl. now rewrite IHt.
+Qed.
+
+Lemma add_find m x y e : Bst m ->
+ find y (add x e m) =
+ match X.compare y x with Eq => Some e | _ => find y m end.
+Proof.
+ intros.
+ case X.compare_spec; intros.
+ - apply find_spec; auto. rewrite H0. apply find_spec; auto.
+ now apply add_spec1.
+ - apply add_spec2; trivial; order.
+ - apply add_spec2; trivial; order.
+Qed.
+
+(** * Extraction of minimum binding *)
+
+Definition RemoveMin m res :=
+ match m with
+ | Leaf _ => False
+ | Node l x e r h => remove_min l x e r = res
+ end.
+
+Lemma RemoveMin_step l x e r h m' p :
+ RemoveMin (Node l x e r h) (m',p) ->
+ (l = Leaf _ /\ m' = r /\ p = (x,e) \/
+ exists m0, RemoveMin l (m0,p) /\ m' = bal m0 x e r).
+Proof.
+ simpl. destruct l as [|ll lx le lr lh]; simpl.
+ - intros [= -> ->]. now left.
+ - destruct (remove_min ll lx le lr) as (l',p').
+ intros [= <- <-]. right. now exists l'.
+Qed.
+
+Lemma remove_min_mapsto m m' p : RemoveMin m (m',p) ->
+ forall y e,
+ MapsTo y e m <-> (y == p#1 /\ e = p#2) \/ MapsTo y e m'.
+Proof.
+ revert m'.
+ induction m as [|l IH x d r _ h]; [destruct 1|].
+ intros m' R. apply RemoveMin_step in R.
+ destruct R as [(->,(->,->))|[m0 (R,->)]]; intros y e; simpl.
+ - intuition_in. subst. now constructor.
+ - rewrite bal_mapsto. unfold create. specialize (IH _ R y e).
+ intuition_in.
+Qed.
+
+Lemma remove_min_in m m' p : RemoveMin m (m',p) ->
+ forall y, y ∈ m <-> y == p#1 \/ y ∈ m'.
+Proof.
+ revert m'.
+ induction m as [|l IH x e r _ h]; [destruct 1|].
+ intros m' R y. apply RemoveMin_step in R.
+ destruct R as [(->,(->,->))|[m0 (R,->)]].
+ + intuition_in.
+ + rewrite bal_in, In_node_iff, (IH _ R); intuition.
+Qed.
+
+Lemma remove_min_lt m m' p : RemoveMin m (m',p) ->
+ forall y, y >> m -> y >> m'.
+Proof.
+ intros R y L. apply above. intros z Hz.
+ apply (AboveLt L).
+ apply (remove_min_in R). now right.
+Qed.
+
+Lemma remove_min_gt m m' p : RemoveMin m (m',p) ->
+ Bst m -> p#1 << m'.
+Proof.
+ revert m'.
+ induction m as [|l IH x e r _ h]; [destruct 1|].
+ intros m' R H. inv Bst. apply RemoveMin_step in R.
+ destruct R as [(_,(->,->))|[m0 (R,->)]]; auto.
+ assert (p#1 << m0) by now apply IH.
+ assert (In p#1 l) by (apply (remove_min_in R); now left).
+ apply below. intros z. rewrite bal_in.
+ intuition_in; order.
+Qed.
+
+Lemma remove_min_bst m m' p : RemoveMin m (m',p) ->
+ Bst m -> Bst m'.
+Proof.
+ revert m'.
+ induction m as [|l IH x e r _ h]; [destruct 1|].
+ intros m' R H. inv Bst. apply RemoveMin_step in R.
+ destruct R as [(_,(->,->))|[m0 (R,->)]]; auto.
+ apply bal_bst; eauto using remove_min_lt.
+Qed.
+
+Lemma remove_min_find m m' p : RemoveMin m (m',p) ->
+ Bst m ->
+ forall y,
+ find y m =
+ match X.compare y p#1 with
+ | Eq => Some p#2
+ | Lt => None
+ | Gt => find y m'
+ end.
+Proof.
+ revert m'.
+ induction m as [|l IH x e r _ h]; [destruct 1|].
+ intros m' R B y. inv Bst. apply RemoveMin_step in R.
+ destruct R as [(->,(->,->))|[m0 (R,->)]]; auto.
+ assert (Bst m0) by now apply (remove_min_bst R).
+ assert (p#1 << m0) by now apply (remove_min_gt R).
+ assert (x >> m0) by now apply (remove_min_lt R).
+ assert (In p#1 l) by (apply (remove_min_in R); now left).
+ simpl in *.
+ rewrite (IH _ R), bal_find by trivial. clear IH. simpl.
+ do 2 case X.compare_spec; trivial; try order.
+Qed.
+
+(** * Merging two trees *)
+
+Ltac factor_remove_min m R := match goal with
+ | h:int, H:remove_min ?l ?x ?e ?r = ?p |- _ =>
+ assert (R:RemoveMin (Node l x e r h) p) by exact H;
+ set (m:=Node l x e r h) in *; clearbody m; clear H l x e r
+end.
+
+Lemma merge0_in m1 m2 y :
+ y ∈ (merge0 m1 m2) <-> y ∈ m1 \/ y ∈ m2.
+Proof.
+ functional induction (merge0 m1 m2); intros; try factornode m1.
+ - intuition_in.
+ - intuition_in.
+ - factor_remove_min l R. rewrite bal_in, (remove_min_in R).
+ simpl; intuition.
+Qed.
+
+Lemma merge0_mapsto m1 m2 y e :
+ MapsTo y e (merge0 m1 m2) <-> MapsTo y e m1 \/ MapsTo y e m2.
+Proof.
+ functional induction (merge0 m1 m2); intros; try factornode m1.
+ - intuition_in.
+ - intuition_in.
+ - factor_remove_min l R. rewrite bal_mapsto, (remove_min_mapsto R).
+ simpl. unfold create; intuition_in. subst. now constructor.
+Qed.
+
+Lemma merge0_bst m1 m2 : Bst m1 -> Bst m2 -> m1 <<< m2 ->
+ Bst (merge0 m1 m2).
+Proof.
+ functional induction (merge0 m1 m2); intros B1 B2 B12; trivial.
+ factornode m1. factor_remove_min l R.
+ apply bal_bst; auto.
+ - eapply remove_min_bst; eauto.
+ - apply above. intros z Hz. apply B12; trivial.
+ rewrite (remove_min_in R). now left.
+ - now apply (remove_min_gt R).
+Qed.
+Hint Resolve merge0_bst.
+
+(** * Deletion *)
+
+Lemma remove_in m x y : Bst m ->
+ (y ∈ remove x m <-> ~ y == x /\ y ∈ m).
+Proof.
+ functional induction (remove x m); simpl; intros; cleanf; inv Bst;
+ rewrite ?merge0_in, ?bal_in, ?IHt; intuition_in; order.
+Qed.
+
+Lemma remove_lt m x y : Bst m -> y >> m -> y >> remove x m.
+Proof.
+ intros. apply above. intro. rewrite remove_in by trivial.
+ destruct 1; order.
+Qed.
+
+Lemma remove_gt m x y : Bst m -> y << m -> y << remove x m.
+Proof.
+ intros. apply below. intro. rewrite remove_in by trivial.
+ destruct 1; order.
+Qed.
+
+Lemma remove_bst m x : Bst m -> Bst (remove x m).
+Proof.
+ functional induction (remove x m); simpl; intros; cleanf; inv Bst.
+ - trivial.
+ - apply merge0_bst; eauto.
+ - apply bal_bst; auto using remove_lt.
+ - apply bal_bst; auto using remove_gt.
+Qed.
+Hint Resolve remove_bst remove_gt remove_lt.
+
+Lemma remove_spec1 m x : Bst m -> find x (remove x m) = None.
+Proof.
+ intros. apply not_find_iff; auto. rewrite remove_in; intuition.
+Qed.
+
+Lemma remove_spec2 m x y : Bst m -> ~ x == y ->
+ find y (remove x m) = find y m.
+Proof.
+ functional induction (remove x m); simpl; intros; cleanf; inv Bst.
+ - trivial.
+ - case X.compare_spec; intros; try order;
+ rewrite find_mapsto_equiv; auto.
+ + intros. rewrite merge0_mapsto; intuition; order.
+ + apply merge0_bst; auto. red; intros; transitivity y0; order.
+ + intros. rewrite merge0_mapsto; intuition; order.
+ + apply merge0_bst; auto. red; intros; transitivity y0; order.
+ - rewrite bal_find by auto. simpl. case X.compare_spec; auto.
+ - rewrite bal_find by auto. simpl. case X.compare_spec; auto.
+Qed.
+
+(** * join *)
+
+Lemma join_in l x d r y :
+ y ∈ (join l x d r) <-> y == x \/ y ∈ l \/ y ∈ r.
+Proof.
+ join_tac l x d r.
+ - simpl join. rewrite add_in. intuition_in.
+ - rewrite add_in. intuition_in.
+ - rewrite bal_in, Hlr. clear Hlr Hrl. intuition_in.
+ - rewrite bal_in, Hrl; clear Hlr Hrl; intuition_in.
+ - apply create_in.
+Qed.
+
+Lemma join_bst l x d r :
+ Bst (create l x d r) -> Bst (join l x d r).
+Proof.
+ join_tac l x d r; unfold create in *;
+ inv Bst; inv Above; inv Below; auto.
+ - simpl. auto.
+ - apply bal_bst; auto.
+ apply below. intro. rewrite join_in. intuition_in; order.
+ - apply bal_bst; auto.
+ apply above. intro. rewrite join_in. intuition_in; order.
+Qed.
+Hint Resolve join_bst.
+
+Lemma join_find l x d r y :
+ Bst (join l x d r) ->
+ find y (join l x d r) = find y (create l x d r).
+Proof.
+Admitted.
+(*
+join_tac l x d r.
+ - simpl in *.
+ rewrite add_find.
+ case X.compare_spec; intros; trivial.
+ apply not_find_iff; auto. intro. order.
+ - clear Hlr. factornode l. simpl.
+ rewrite add_find by auto.
+ case X.compare_spec; intros; trivial.
+ apply not_find_iff; auto. intro. order.
+ - clear Hrl LT. factornode r. inv Bst; inv Above; inv Below.
+ rewrite bal_find; auto; simpl.
+ + rewrite Hlr; auto; simpl.
+ repeat (case X.compare_spec; trivial; try order).
+ + apply below. intro. rewrite join_in. intuition_in; order.
+ - clear Hlr LT LT'. factornode l. inv Bst; inv Above; inv Below.
+ rewrite bal_find; auto; simpl.
+ + rewrite Hrl; auto; simpl.
+ repeat (case X.compare_spec; trivial; try order).
+ + apply above. intro. rewrite join_in. intuition_in; order.
+Qed.
+ *)
+
+(** * split *)
+
+Lemma split_in_l0 m x y : y ∈ (split x m)#l -> y ∈ m.
+Proof.
+ functional induction (split x m); cleansplit;
+ rewrite ?join_in; intuition.
+Qed.
+
+Lemma split_in_r0 m x y : y ∈ (split x m)#r -> y ∈ m.
+Proof.
+ functional induction (split x m); cleansplit;
+ rewrite ?join_in; intuition.
+Qed.
+
+Lemma split_in_l m x y : Bst m ->
+ (y ∈ (split x m)#l <-> y ∈ m /\ y < x).
+Proof.
+ functional induction (split x m); intros; cleansplit;
+ rewrite ?join_in, ?IHt; intuition_in; order.
+Qed.
+
+Lemma split_in_r m x y : Bst m ->
+ (y ∈ (split x m)#r <-> y ∈ m /\ x < y).
+Proof.
+ functional induction (split x m); intros; cleansplit;
+ rewrite ?join_in, ?IHt; intuition_in; order.
+Qed.
+
+Lemma split_in_o m x : (split x m)#o = find x m.
+Proof.
+ functional induction (split x m); intros; cleansplit; auto.
+Qed.
+
+Lemma split_lt_l m x : Bst m -> x >> (split x m)#l.
+Proof.
+ intro. apply above. intro. rewrite split_in_l; intuition; order.
+Qed.
+
+Lemma split_lt_r m x y : y >> m -> y >> (split x m)#r.
+Proof.
+ intro. apply above. intros z Hz. apply split_in_r0 in Hz. order.
+Qed.
+
+Lemma split_gt_r m x : Bst m -> x << (split x m)#r.
+Proof.
+ intro. apply below. intro. rewrite split_in_r; intuition; order.
+Qed.
+
+Lemma split_gt_l m x y : y << m -> y << (split x m)#l.
+Proof.
+ intro. apply below. intros z Hz. apply split_in_l0 in Hz. order.
+Qed.
+
+Lemma split_bst m x : Bst m ->
+ Bst (split x m)#l /\ Bst (split x m)#r.
+Proof.
+ functional induction (split x m); intros; cleansplit; intuition;
+ auto using join_bst, split_lt_r, split_gt_l.
+Qed.
+
+Lemma split_find m x y : Bst m ->
+ find y m = match X.compare y x with
+ | Eq => (split x m)#o
+ | Lt => find y (split x m)#l
+ | Gt => find y (split x m)#r
+ end.
+Proof.
+ functional induction (split x m); intros; cleansplit.
+ - now case X.compare.
+ - repeat case X.compare_spec; trivial; order.
+ - simpl in *. rewrite join_find, IHt; trivial.
+ + simpl. repeat case X.compare_spec; trivial; order.
+ + apply join_bst, create_bst; auto.
+ * now apply split_bst.
+ * now apply split_lt_r.
+ - rewrite join_find, IHt; auto.
+ + simpl; repeat case X.compare_spec; trivial; order.
+ + apply join_bst, create_bst; auto.
+ * now apply split_bst.
+ * now apply split_gt_l.
+Qed.
+
+(** * Concatenation *)
+
+Lemma concat_in m1 m2 y :
+ y ∈ (concat m1 m2) <-> y ∈ m1 \/ y ∈ m2.
+Proof.
+ functional induction (concat m1 m2); intros; try factornode m1.
+ - intuition_in.
+ - intuition_in.
+ - factor_remove_min m2 R.
+ rewrite join_in, (remove_min_in R); simpl; intuition.
+Qed.
+
+Lemma concat_bst m1 m2 : Bst m1 -> Bst m2 -> m1 <<< m2 ->
+ Bst (concat m1 m2).
+Proof.
+ functional induction (concat m1 m2); intros B1 B2 LT; auto;
+ try factornode m1.
+ factor_remove_min m2 R.
+ apply join_bst, create_bst; auto.
+ - now apply (remove_min_bst R).
+ - apply above. intros y Hy. apply LT; trivial.
+ rewrite (remove_min_in R); now left.
+ - now apply (remove_min_gt R).
+Qed.
+Hint Resolve concat_bst.
+
+Definition oelse {A} (o1 o2:option A) :=
+ match o1 with
+ | Some x => Some x
+ | None => o2
+ end.
+
+Lemma concat_find m1 m2 y : Bst m1 -> Bst m2 -> m1 <<< m2 ->
+ find y (concat m1 m2) = oelse (find y m2) (find y m1).
+Proof.
+ functional induction (concat m1 m2); intros B1 B2 B; auto; try factornode m1.
+ - destruct (find y m2); auto.
+ - factor_remove_min m2 R.
+ assert (xd#1 >> m1).
+ { apply above. intros z Hz. apply B; trivial.
+ rewrite (remove_min_in R). now left. }
+ rewrite join_find; simpl; auto.
+ + rewrite (remove_min_find R B2 y).
+ case X.compare_spec; intros; auto.
+ destruct (find y m2'); trivial.
+ simpl. symmetry. apply not_find_iff; eauto.
+ + apply join_bst, create_bst; auto.
+ * now apply (remove_min_bst R).
+ * now apply (remove_min_gt R).
+Qed.
+
+
+(** * Elements *)
+
+Notation eqk := (PX.eqk (elt:= elt)).
+Notation eqke := (PX.eqke (elt:= elt)).
+Notation ltk := (PX.ltk (elt:= elt)).
+
+Lemma bindings_aux_mapsto : forall (s:t elt) acc x e,
+ InA eqke (x,e) (bindings_aux acc s) <-> MapsTo x e s \/ InA eqke (x,e) acc.
+Proof.
+ induction s as [ | l Hl x e r Hr h ]; simpl; auto.
+ intuition.
+ inversion H0.
+ intros.
+ rewrite Hl.
+ destruct (Hr acc x0 e0); clear Hl Hr.
+ intuition; inversion_clear H3; intuition.
+ compute in H0. destruct H0; simpl in *; subst; intuition.
+Qed.
+
+Lemma bindings_mapsto : forall (s:t elt) x e,
+ InA eqke (x,e) (bindings s) <-> MapsTo x e s.
+Proof.
+ intros; generalize (bindings_aux_mapsto s nil x e); intuition.
+ inversion_clear H0.
+Qed.
+
+Lemma bindings_in : forall (s:t elt) x, L.PX.In x (bindings s) <-> x ∈ s.
+Proof.
+ intros.
+ unfold L.PX.In.
+ rewrite <- In_alt; unfold In0.
+ split; intros (y,H); exists y.
+ - now rewrite <- bindings_mapsto.
+ - unfold L.PX.MapsTo; now rewrite bindings_mapsto.
+Qed.
+
+Lemma bindings_aux_sort : forall (s:t elt) acc,
+ Bst s -> sort ltk acc ->
+ (forall x e y, InA eqke (x,e) acc -> y ∈ s -> y < x) ->
+ sort ltk (bindings_aux acc s).
+Proof.
+ induction s as [ | l Hl y e r Hr h]; simpl; intuition.
+ inv Bst.
+ apply Hl; auto.
+ - constructor.
+ + apply Hr; eauto.
+ + clear Hl Hr.
+ apply InA_InfA with (eqA:=eqke); auto with *.
+ intros (y',e') Hy'.
+ apply bindings_aux_mapsto in Hy'. compute. intuition; eauto.
+ - clear Hl Hr. intros x e' y' Hx Hy'.
+ inversion_clear Hx.
+ + compute in H. destruct H; simpl in *. order.
+ + apply bindings_aux_mapsto in H. intuition eauto.
+Qed.
+
+Lemma bindings_sort : forall s : t elt, Bst s -> sort ltk (bindings s).
+Proof.
+ intros; unfold bindings; apply bindings_aux_sort; auto.
+ intros; inversion H0.
+Qed.
+Hint Resolve bindings_sort.
+
+Lemma bindings_nodup : forall s : t elt, Bst s -> NoDupA eqk (bindings s).
+Proof.
+ intros; apply PX.Sort_NoDupA; auto.
+Qed.
+
+Lemma bindings_aux_cardinal m acc :
+ (length acc + cardinal m)%nat = length (bindings_aux acc m).
+Proof.
+ revert acc. induction m; simpl; intuition.
+ rewrite <- IHm1; simpl.
+ rewrite <- IHm2. rewrite Nat.add_succ_r, <- Nat.add_assoc.
+ f_equal. f_equal. apply Nat.add_comm.
+Qed.
+
+Lemma bindings_cardinal m : cardinal m = length (bindings m).
+Proof.
+ exact (bindings_aux_cardinal m nil).
+Qed.
+
+Lemma bindings_app :
+ forall (s:t elt) acc, bindings_aux acc s = bindings s ++ acc.
+Proof.
+ induction s; simpl; intros; auto.
+ rewrite IHs1, IHs2.
+ unfold bindings; simpl.
+ rewrite 2 IHs1, IHs2, !app_nil_r, !app_ass; auto.
+Qed.
+
+Lemma bindings_node :
+ forall (t1 t2:t elt) x e z l,
+ bindings t1 ++ (x,e) :: bindings t2 ++ l =
+ bindings (Node t1 x e t2 z) ++ l.
+Proof.
+ unfold bindings; simpl; intros.
+ rewrite !bindings_app, !app_nil_r, !app_ass; auto.
+Qed.
+
+(** * Fold *)
+
+Definition fold' {A} (f : key -> elt -> A -> A)(s : t elt) :=
+ L.fold f (bindings s).
+
+Lemma fold_equiv_aux {A} (s : t elt) (f : key -> elt -> A -> A) (a : A) acc :
+ L.fold f (bindings_aux acc s) a = L.fold f acc (fold f s a).
+Proof.
+ revert a acc.
+ induction s; simpl; trivial.
+ intros. rewrite IHs1. simpl. apply IHs2.
+Qed.
+
+Lemma fold_equiv {A} (s : t elt) (f : key -> elt -> A -> A) (a : A) :
+ fold f s a = fold' f s a.
+Proof.
+ unfold fold', bindings. now rewrite fold_equiv_aux.
+Qed.
+
+Lemma fold_spec (s:t elt)(Hs:Bst s){A}(i:A)(f : key -> elt -> A -> A) :
+ fold f s i = fold_left (fun a p => f p#1 p#2 a) (bindings s) i.
+Proof.
+ rewrite fold_equiv. unfold fold'. now rewrite L.fold_spec.
+Qed.
+
+(** * Comparison *)
+
+(** [flatten_e e] returns the list of bindings of the enumeration [e]
+ i.e. the list of bindings actually compared *)
+
+Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with
+ | End _ => nil
+ | More x e t r => (x,e) :: bindings t ++ flatten_e r
+ end.
+
+Lemma flatten_e_bindings :
+ forall (l:t elt) r x d z e,
+ bindings l ++ flatten_e (More x d r e) =
+ bindings (Node l x d r z) ++ flatten_e e.
+Proof.
+ intros; apply bindings_node.
+Qed.
+
+Lemma cons_1 : forall (s:t elt) e,
+ flatten_e (cons s e) = bindings s ++ flatten_e e.
+Proof.
+ induction s; auto; intros.
+ simpl flatten_e; rewrite IHs1; apply flatten_e_bindings; auto.
+Qed.
+
+(** Proof of correction for the comparison *)
+
+Variable cmp : elt->elt->bool.
+
+Definition IfEq b l1 l2 := L.equal cmp l1 l2 = b.
+
+Lemma cons_IfEq : forall b x1 x2 d1 d2 l1 l2,
+ X.eq x1 x2 -> cmp d1 d2 = true ->
+ IfEq b l1 l2 ->
+ IfEq b ((x1,d1)::l1) ((x2,d2)::l2).
+Proof.
+ unfold IfEq; destruct b; simpl; intros; case X.compare_spec; simpl;
+ try rewrite H0; auto; order.
+Qed.
+
+Lemma equal_end_IfEq : forall e2,
+ IfEq (equal_end e2) nil (flatten_e e2).
+Proof.
+ destruct e2; red; auto.
+Qed.
+
+Lemma equal_more_IfEq :
+ forall x1 d1 (cont:enumeration elt -> bool) x2 d2 r2 e2 l,
+ IfEq (cont (cons r2 e2)) l (bindings r2 ++ flatten_e e2) ->
+ IfEq (equal_more cmp x1 d1 cont (More x2 d2 r2 e2)) ((x1,d1)::l)
+ (flatten_e (More x2 d2 r2 e2)).
+Proof.
+ unfold IfEq; simpl; intros; destruct X.compare; simpl; auto.
+ rewrite <-andb_lazy_alt; f_equal; auto.
+Qed.
+
+Lemma equal_cont_IfEq : forall m1 cont e2 l,
+ (forall e, IfEq (cont e) l (flatten_e e)) ->
+ IfEq (equal_cont cmp m1 cont e2) (bindings m1 ++ l) (flatten_e e2).
+Proof.
+ induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
+ rewrite <- bindings_node; simpl.
+ apply Hl1; auto.
+ clear e2; intros [|x2 d2 r2 e2].
+ simpl; red; auto.
+ apply equal_more_IfEq.
+ rewrite <- cons_1; auto.
+Qed.
+
+Lemma equal_IfEq : forall (m1 m2:t elt),
+ IfEq (equal cmp m1 m2) (bindings m1) (bindings m2).
+Proof.
+ intros; unfold equal.
+ rewrite <- (app_nil_r (bindings m1)).
+ replace (bindings m2) with (flatten_e (cons m2 (End _)))
+ by (rewrite cons_1; simpl; rewrite app_nil_r; auto).
+ apply equal_cont_IfEq.
+ intros.
+ apply equal_end_IfEq; auto.
+Qed.
+
+Definition Equivb m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
+
+Lemma Equivb_bindings : forall s s',
+ Equivb s s' <-> L.Equivb cmp (bindings s) (bindings s').
+Proof.
+unfold Equivb, L.Equivb; split; split; intros.
+do 2 rewrite bindings_in; firstorder.
+destruct H.
+apply (H2 k); rewrite <- bindings_mapsto; auto.
+do 2 rewrite <- bindings_in; firstorder.
+destruct H.
+apply (H2 k); unfold L.PX.MapsTo; rewrite bindings_mapsto; auto.
+Qed.
+
+Lemma equal_Equivb : forall (s s': t elt), Bst s -> Bst s' ->
+ (equal cmp s s' = true <-> Equivb s s').
+Proof.
+ intros s s' B B'.
+ rewrite Equivb_bindings, <- equal_IfEq.
+ split; [apply L.equal_2|apply L.equal_1]; auto.
+Qed.
+
+End Elt.
+
+Section Map.
+Variable elt elt' : Type.
+Variable f : elt -> elt'.
+
+Lemma map_spec m x :
+ find x (map f m) = option_map f (find x m).
+Proof.
+induction m; simpl; trivial. case X.compare_spec; auto.
+Qed.
+
+Lemma map_in m x : x ∈ (map f m) <-> x ∈ m.
+Proof.
+induction m; simpl; intuition_in.
+Qed.
+
+Lemma map_bst m : Bst m -> Bst (map f m).
+Proof.
+induction m; simpl; auto. intros; inv Bst; constructor; auto.
+- apply above. intro. rewrite map_in. intros. order.
+- apply below. intro. rewrite map_in. intros. order.
+Qed.
+
+End Map.
+Section Mapi.
+Variable elt elt' : Type.
+Variable f : key -> elt -> elt'.
+
+Lemma mapi_spec m x :
+ exists y:key,
+ X.eq y x /\ find x (mapi f m) = option_map (f y) (find x m).
+Proof.
+ induction m; simpl.
+ - now exists x.
+ - case X.compare_spec; simpl; auto. intros. now exists k.
+Qed.
+
+Lemma mapi_in m x : x ∈ (mapi f m) <-> x ∈ m.
+Proof.
+induction m; simpl; intuition_in.
+Qed.
+
+Lemma mapi_bst m : Bst m -> Bst (mapi f m).
+Proof.
+induction m; simpl; auto. intros; inv Bst; constructor; auto.
+- apply above. intro. rewrite mapi_in. intros. order.
+- apply below. intro. rewrite mapi_in. intros. order.
+Qed.
+
+End Mapi.
+
+Section Map_option.
+Variable elt elt' : Type.
+Variable f : key -> elt -> option elt'.
+
+Lemma map_option_in m x :
+ x ∈ (map_option f m) ->
+ exists y d, X.eq y x /\ MapsTo x d m /\ f y d <> None.
+Proof.
+functional induction (map_option f m); simpl; auto; intro H.
+- inv In.
+- rewrite join_in in H; destruct H as [H|[H|H]].
+ + exists x0, d. do 2 (split; auto). congruence.
+ + destruct (IHt H) as (y & e & ? & ? & ?). exists y, e. auto.
+ + destruct (IHt0 H) as (y & e & ? & ? & ?). exists y, e. auto.
+- rewrite concat_in in H; destruct H as [H|H].
+ + destruct (IHt H) as (y & e & ? & ? & ?). exists y, e. auto.
+ + destruct (IHt0 H) as (y & e & ? & ? & ?). exists y, e. auto.
+Qed.
+
+Lemma map_option_apart m m' x :
+ x >> m -> x << m' -> (map_option f m) <<< (map_option f m').
+Proof.
+ intros H H' y1 y2 Hy1 Hy2.
+ destruct (map_option_in Hy1) as (y1' & e1 & ? & ? & ?).
+ destruct (map_option_in Hy2) as (y2' & e2 & ? & ? & ?).
+ order.
+Qed.
+
+Lemma map_option_bst m : Bst m -> Bst (map_option f m).
+Proof.
+functional induction (map_option f m); simpl; auto; intro H;
+ inv Bst.
+- apply join_bst, create_bst; auto.
+ + apply above. intros y Hy.
+ destruct (map_option_in Hy) as (y' & e & ? & ? & ?). order.
+ + apply below. intros y Hy.
+ destruct (map_option_in Hy) as (y' & e & ? & ? & ?). order.
+- apply concat_bst; auto. eapply map_option_apart; eauto.
+Qed.
+Hint Resolve map_option_bst.
+
+Ltac nonify e :=
+ replace e with (@None elt) by
+ (symmetry; rewrite not_find_iff; auto; intro; order).
+
+Definition obind {A B} (o:option A) (f:A->option B) :=
+ match o with Some a => f a | None => None end.
+
+Lemma map_option_find m x :
+ Bst m ->
+ exists y, X.eq y x /\
+ find x (map_option f m) = obind (find x m) (f y).
+Proof.
+intros B. generalize (map_option_bst B). revert B.
+functional induction (map_option f m); simpl; auto; intros B B';
+ inv Bst.
+- now exists x.
+- rewrite join_find; auto.
+ + simpl. case X.compare_spec; simpl; intros.
+ * now exists x0.
+ * destruct IHt as (y' & ? & ?); auto.
+ exists y'; split; trivial.
+ * destruct IHt0 as (y' & ? & ?); auto.
+ exists y'; split; trivial.
+- rewrite concat_find; auto.
+ + destruct IHt0 as (y' & ? & ->); auto.
+ destruct IHt as (y'' & ? & ->); auto.
+ case X.compare_spec; simpl; intros.
+ * nonify (find x r). nonify (find x l). simpl. now exists x0.
+ * nonify (find x r). now exists y''.
+ * nonify (find x l). exists y'. split; trivial.
+ destruct (find x r); simpl; trivial.
+ now destruct (f y' e).
+ + eapply map_option_apart; eauto.
+Qed.
+
+End Map_option.
+
+Section Gmerge.
+Variable elt elt' elt'' : Type.
+Variable f0 : key -> option elt -> option elt' -> option elt''.
+Variable f : key -> elt -> option elt' -> option elt''.
+Variable mapl : t elt -> t elt''.
+Variable mapr : t elt' -> t elt''.
+Hypothesis f0_f : forall x d o, f x d o = f0 x (Some d) o.
+Hypothesis mapl_bst : forall m, Bst m -> Bst (mapl m).
+Hypothesis mapr_bst : forall m', Bst m' -> Bst (mapr m').
+Hypothesis mapl_f0 : forall x m, Bst m ->
+ exists y, X.eq y x /\
+ find x (mapl m) = obind (find x m) (fun d => f0 y (Some d) None).
+Hypothesis mapr_f0 : forall x m, Bst m ->
+ exists y, X.eq y x /\
+ find x (mapr m) = obind (find x m) (fun d => f0 y None (Some d)).
+
+Notation gmerge := (gmerge f mapl mapr).
+
+Lemma gmerge_in m m' y : Bst m -> Bst m' ->
+ y ∈ (gmerge m m') -> y ∈ m \/ y ∈ m'.
+Proof.
+ functional induction (gmerge m m'); intros B1 B2 H;
+ try factornode m2; inv Bst.
+ - right. apply find_in.
+ generalize (in_find (mapr_bst B2) H).
+ destruct (@mapr_f0 y m2) as (y' & ? & ->); trivial.
+ intros A B. rewrite B in A. now elim A.
+ - left. apply find_in.
+ generalize (in_find (mapl_bst B1) H).
+ destruct (@mapl_f0 y m2) as (y' & ? & ->); trivial.
+ intros A B. rewrite B in A. now elim A.
+ - rewrite join_in in *. revert IHt1 IHt0 H. cleansplit.
+ destruct (split_bst x1 B2).
+ rewrite split_in_r, split_in_l; intuition_in.
+ - rewrite concat_in in *. revert IHt1 IHt0 H; cleansplit.
+ destruct (split_bst x1 B2).
+ rewrite split_in_r, split_in_l; intuition_in.
+Qed.
+
+Lemma gmerge_bst m m' : Bst m -> Bst m' -> Bst (gmerge m m').
+Proof.
+ functional induction (gmerge m m'); intros B1 B2; auto;
+ factornode m2; inv Bst; destruct (split_bst x1 B2);
+ (apply join_bst, create_bst || apply concat_bst);
+ revert IHt1 IHt0; cleansplit; intuition.
+ - apply above. intros y Hy.
+ apply gmerge_in in Hy; trivial.
+ rewrite split_in_l in Hy; trivial.
+ intuition_in. order.
+ - apply below. intros y Hy; trivial.
+ apply gmerge_in in Hy; trivial.
+ rewrite split_in_r in Hy; trivial.
+ intuition_in. order.
+ - intros y y' Hy Hy'.
+ apply gmerge_in in Hy; trivial.
+ apply gmerge_in in Hy'; trivial.
+ rewrite split_in_l in Hy; trivial.
+ rewrite split_in_r in Hy'; trivial.
+ intuition_in; order.
+Qed.
+Hint Resolve gmerge_bst.
+
+Lemma oelse_none_r {A} (o:option A) : oelse o None = o.
+Proof. now destruct o. Qed.
+
+Ltac nonify e :=
+ let E := fresh "E" in
+ assert (E : e = None);
+ [ rewrite not_find_iff; auto; intro U;
+ try apply gmerge_in in U; intuition_in; order
+ | rewrite E; clear E ].
+
+Lemma gmerge_find m m' x : Bst m -> Bst m' ->
+ In x m \/ In x m' ->
+ exists y, X.eq y x /\
+ find x (gmerge m m') = f0 y (find x m) (find x m').
+Proof.
+ intros B B'. generalize (gmerge_bst B B'). revert B B'.
+ functional induction (gmerge m m'); intros B1 B2 B H;
+ try factornode m2; inv Bst.
+ - destruct H; [ intuition_in | ].
+ destruct (@mapr_f0 x m2) as (y,(Hy,E)); trivial.
+ exists y; split; trivial.
+ rewrite E. simpl. apply in_find in H; trivial.
+ destruct (find x m2); simpl; intuition.
+ - destruct H; [ | intuition_in ].
+ destruct (@mapl_f0 x m2) as (y,(Hy,E)); trivial.
+ exists y; split; trivial.
+ rewrite E. simpl. apply in_find in H; trivial.
+ destruct (find x m2); simpl; intuition.
+ - destruct (split_bst x1 B2).
+ rewrite (split_find x1 x B2).
+ rewrite e1 in *; simpl in *.
+ rewrite join_find; auto.
+ simpl. case X.compare_spec; intros.
+ + exists x1. split; auto. now rewrite <- e3, f0_f.
+ + apply IHt1; auto. clear IHt1 IHt0.
+ cleansplit; rewrite split_in_l; trivial.
+ intuition_in; order.
+ + apply IHt0; auto. clear IHt1 IHt0.
+ cleansplit; rewrite split_in_r; trivial.
+ intuition_in; order.
+ - destruct (split_bst x1 B2).
+ rewrite (split_find x1 x B2).
+ pose proof (split_lt_l x1 B2).
+ pose proof (split_gt_r x1 B2).
+ rewrite e1 in *; simpl in *.
+ rewrite concat_find; auto.
+ + case X.compare_spec; intros.
+ * clear IHt0 IHt1.
+ exists x1. split; auto. rewrite <- f0_f, e2.
+ nonify (find x (gmerge r1 r2')).
+ nonify (find x (gmerge l1 l2')). trivial.
+ * nonify (find x (gmerge r1 r2')).
+ simpl. apply IHt1; auto. clear IHt1 IHt0.
+ intuition_in; try order.
+ right. cleansplit. now apply split_in_l.
+ * nonify (find x (gmerge l1 l2')). simpl.
+ rewrite oelse_none_r.
+ apply IHt0; auto. clear IHt1 IHt0.
+ intuition_in; try order.
+ right. cleansplit. now apply split_in_r.
+ + cleansplit. intros y y' Hy Hy'.
+ destruct (split_bst x1 B2).
+ apply gmerge_in in Hy; auto.
+ apply gmerge_in in Hy'; auto.
+ rewrite split_in_l in Hy; auto.
+ rewrite split_in_r in Hy'; auto.
+ intuition_in; order.
+Qed.
+
+End Gmerge.
+
+Section Merge.
+Variable elt elt' elt'' : Type.
+Variable f : key -> option elt -> option elt' -> option elt''.
+
+Lemma merge_bst m m' : Bst m -> Bst m' -> Bst (merge f m m').
+Proof.
+unfold merge; intros.
+apply gmerge_bst with f;
+ auto using map_option_bst, map_option_find.
+Qed.
+
+Lemma merge_spec1 m m' x : Bst m -> Bst m' ->
+ In x m \/ In x m' ->
+ exists y, X.eq y x /\
+ find x (merge f m m') = f y (find x m) (find x m').
+Proof.
+ unfold merge; intros.
+ edestruct (gmerge_find (f0:=f)) as (y,(Hy,E));
+ eauto using map_option_bst.
+ - reflexivity.
+ - intros. now apply map_option_find.
+ - intros. now apply map_option_find.
+Qed.
+
+Lemma merge_spec2 m m' x : Bst m -> Bst m' ->
+ In x (merge f m m') -> In x m \/ In x m'.
+Proof.
+unfold merge; intros.
+eapply gmerge_in with (f0:=f); try eassumption;
+ auto using map_option_bst, map_option_find.
+Qed.
+
+End Merge.
+End Proofs.
+End Raw.
+
+(** * Encapsulation
+
+ Now, in order to really provide a functor implementing [S], we
+ need to encapsulate everything into a type of balanced binary search trees. *)
+
+Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
+
+ Module E := X.
+ Module Raw := Raw I X.
+ Import Raw.Proofs.
+
+ Record tree (elt:Type) :=
+ Mk {this :> Raw.tree elt; is_bst : Raw.Bst this}.
+
+ Definition t := tree.
+ Definition key := E.t.
+
+ Section Elt.
+ Variable elt elt' elt'': Type.
+
+ Implicit Types m : t elt.
+ Implicit Types x y : key.
+ Implicit Types e : elt.
+
+ Definition empty : t elt := Mk (empty_bst elt).
+ Definition is_empty m : bool := Raw.is_empty m.(this).
+ Definition add x e m : t elt := Mk (add_bst x e m.(is_bst)).
+ Definition remove x m : t elt := Mk (remove_bst x m.(is_bst)).
+ Definition mem x m : bool := Raw.mem x m.(this).
+ Definition find x m : option elt := Raw.find x m.(this).
+ Definition map f m : t elt' := Mk (map_bst f m.(is_bst)).
+ Definition mapi (f:key->elt->elt') m : t elt' :=
+ Mk (mapi_bst f m.(is_bst)).
+ Definition merge f m (m':t elt') : t elt'' :=
+ Mk (merge_bst f m.(is_bst) m'.(is_bst)).
+ Definition bindings m : list (key*elt) := Raw.bindings m.(this).
+ Definition cardinal m := Raw.cardinal m.(this).
+ Definition fold {A} (f:key->elt->A->A) m i := Raw.fold (A:=A) f m.(this) i.
+ Definition equal cmp m m' : bool := Raw.equal cmp m.(this) m'.(this).
+
+ Definition MapsTo x e m : Prop := Raw.MapsTo x e m.(this).
+ Definition In x m : Prop := Raw.In0 x m.(this).
+
+ Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
+ Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
+ Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
+
+ Instance MapsTo_compat :
+ Proper (E.eq==>Logic.eq==>Logic.eq==>iff) MapsTo.
+ Proof.
+ intros k k' Hk e e' He m m' Hm. unfold MapsTo; simpl.
+ now rewrite Hk, He, Hm.
+ Qed.
+
+ Lemma find_spec m x e : find x m = Some e <-> MapsTo x e m.
+ Proof. apply find_spec. apply is_bst. Qed.
+
+ Lemma mem_spec m x : mem x m = true <-> In x m.
+ Proof.
+ unfold In, mem; rewrite In_alt. apply mem_spec. apply is_bst.
+ Qed.
+
+ Lemma empty_spec x : find x empty = None.
+ Proof. apply empty_spec. Qed.
+
+ Lemma is_empty_spec m : is_empty m = true <-> forall x, find x m = None.
+ Proof. apply is_empty_spec. Qed.
+
+ Lemma add_spec1 m x e : find x (add x e m) = Some e.
+ Proof. apply add_spec1. apply is_bst. Qed.
+ Lemma add_spec2 m x y e : ~ E.eq x y -> find y (add x e m) = find y m.
+ Proof. apply add_spec2. apply is_bst. Qed.
+
+ Lemma remove_spec1 m x : find x (remove x m) = None.
+ Proof. apply remove_spec1. apply is_bst. Qed.
+ Lemma remove_spec2 m x y : ~E.eq x y -> find y (remove x m) = find y m.
+ Proof. apply remove_spec2. apply is_bst. Qed.
+
+ Lemma bindings_spec1 m x e :
+ InA eq_key_elt (x,e) (bindings m) <-> MapsTo x e m.
+ Proof. apply bindings_mapsto. Qed.
+
+ Lemma bindings_spec2 m : sort lt_key (bindings m).
+ Proof. apply bindings_sort. apply is_bst. Qed.
+
+ Lemma bindings_spec2w m : NoDupA eq_key (bindings m).
+ Proof. apply bindings_nodup. apply is_bst. Qed.
+
+ Lemma fold_spec m {A} (i : A) (f : key -> elt -> A -> A) :
+ fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i.
+ Proof. apply fold_spec. apply is_bst. Qed.
+
+ Lemma cardinal_spec m : cardinal m = length (bindings m).
+ Proof. apply bindings_cardinal. Qed.
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb cmp := Equiv (Cmp cmp).
+
+ Lemma Equivb_Equivb cmp m m' :
+ Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
+ Proof.
+ unfold Equivb, Equiv, Raw.Proofs.Equivb, In. intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ Qed.
+
+ Lemma equal_spec m m' cmp :
+ equal cmp m m' = true <-> Equivb cmp m m'.
+ Proof. rewrite Equivb_Equivb. apply equal_Equivb; apply is_bst. Qed.
+
+ End Elt.
+
+ Lemma map_spec {elt elt'} (f:elt->elt') m x :
+ find x (map f m) = option_map f (find x m).
+ Proof. apply map_spec. Qed.
+
+ Lemma mapi_spec {elt elt'} (f:key->elt->elt') m x :
+ exists y:key, E.eq y x /\ find x (mapi f m) = option_map (f y) (find x m).
+ Proof. apply mapi_spec. Qed.
+
+ Lemma merge_spec1 {elt elt' elt''}
+ (f:key->option elt->option elt'->option elt'') m m' x :
+ In x m \/ In x m' ->
+ exists y:key, E.eq y x /\
+ find x (merge f m m') = f y (find x m) (find x m').
+ Proof.
+ unfold In. rewrite !In_alt. apply merge_spec1; apply is_bst.
+ Qed.
+
+ Lemma merge_spec2 {elt elt' elt''}
+ (f:key -> option elt->option elt'->option elt'') m m' x :
+ In x (merge f m m') -> In x m \/ In x m'.
+ Proof.
+ unfold In. rewrite !In_alt. apply merge_spec2; apply is_bst.
+ Qed.
+
+End IntMake.
+
+
+Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
+ Sord with Module Data := D
+ with Module MapS.E := X.
+
+ Module Data := D.
+ Module Import MapS := IntMake(I)(X).
+ Module LO := MMapList.Make_ord(X)(D).
+ Module R := Raw.
+ Module P := Raw.Proofs.
+
+ Definition t := MapS.t D.t.
+
+ Definition cmp e e' :=
+ match D.compare e e' with Eq => true | _ => false end.
+
+ (** One step of comparison of bindings *)
+
+ Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 :=
+ match e2 with
+ | R.End _ => Gt
+ | R.More x2 d2 r2 e2 =>
+ match X.compare x1 x2 with
+ | Eq => match D.compare d1 d2 with
+ | Eq => cont (R.cons r2 e2)
+ | Lt => Lt
+ | Gt => Gt
+ end
+ | Lt => Lt
+ | Gt => Gt
+ end
+ end.
+
+ (** Comparison of left tree, middle element, then right tree *)
+
+ Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 :=
+ match s1 with
+ | R.Leaf _ => cont e2
+ | R.Node l1 x1 d1 r1 _ =>
+ compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2
+ end.
+
+ (** Initial continuation *)
+
+ Definition compare_end (e2:R.enumeration D.t) :=
+ match e2 with R.End _ => Eq | _ => Lt end.
+
+ (** The complete comparison *)
+
+ Definition compare m1 m2 :=
+ compare_cont m1.(this) compare_end (R.cons m2 .(this) (Raw.End _)).
+
+ (** Correctness of this comparison *)
+
+ Definition Cmp c :=
+ match c with
+ | Eq => LO.eq_list
+ | Lt => LO.lt_list
+ | Gt => (fun l1 l2 => LO.lt_list l2 l1)
+ end.
+
+ Lemma cons_Cmp c x1 x2 d1 d2 l1 l2 :
+ X.eq x1 x2 -> D.eq d1 d2 ->
+ Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
+ Proof.
+ destruct c; simpl; intros; case X.compare_spec; auto; try P.MX.order.
+ intros. right. split; auto. now symmetry.
+ Qed.
+ Hint Resolve cons_Cmp.
+
+ Lemma compare_end_Cmp e2 :
+ Cmp (compare_end e2) nil (P.flatten_e e2).
+ Proof.
+ destruct e2; simpl; auto.
+ Qed.
+
+ Lemma compare_more_Cmp x1 d1 cont x2 d2 r2 e2 l :
+ Cmp (cont (R.cons r2 e2)) l (R.bindings r2 ++ P.flatten_e e2) ->
+ Cmp (compare_more x1 d1 cont (R.More x2 d2 r2 e2)) ((x1,d1)::l)
+ (P.flatten_e (R.More x2 d2 r2 e2)).
+ Proof.
+ simpl; case X.compare_spec; simpl;
+ try case D.compare_spec; simpl; auto;
+ case X.compare_spec; try P.MX.order; auto.
+ Qed.
+
+ Lemma compare_cont_Cmp : forall s1 cont e2 l,
+ (forall e, Cmp (cont e) l (P.flatten_e e)) ->
+ Cmp (compare_cont s1 cont e2) (R.bindings s1 ++ l) (P.flatten_e e2).
+ Proof.
+ induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1] using P.tree_ind;
+ intros; auto.
+ rewrite <- P.bindings_node; simpl.
+ apply Hl1; auto. clear e2. intros [|x2 d2 r2 e2].
+ simpl; auto.
+ apply compare_more_Cmp.
+ rewrite <- P.cons_1; auto.
+ Qed.
+
+ Lemma compare_Cmp m1 m2 :
+ Cmp (compare m1 m2) (bindings m1) (bindings m2).
+ Proof.
+ destruct m1 as (s1,H1), m2 as (s2,H2).
+ unfold compare, bindings; simpl.
+ rewrite <- (app_nil_r (R.bindings s1)).
+ replace (R.bindings s2) with (P.flatten_e (R.cons s2 (R.End _))) by
+ (rewrite P.cons_1; simpl; rewrite app_nil_r; auto).
+ auto using compare_cont_Cmp, compare_end_Cmp.
+ Qed.
+
+ Definition eq (m1 m2 : t) := LO.eq_list (bindings m1) (bindings m2).
+ Definition lt (m1 m2 : t) := LO.lt_list (bindings m1) (bindings m2).
+
+ Lemma compare_spec m1 m2 : CompSpec eq lt m1 m2 (compare m1 m2).
+ Proof.
+ assert (H := compare_Cmp m1 m2).
+ unfold Cmp in H.
+ destruct (compare m1 m2); auto.
+ Qed.
+
+ (* Proofs about [eq] and [lt] *)
+
+ Definition sbindings (m1 : t) :=
+ LO.MapS.Mk (P.bindings_sort m1.(is_bst)).
+
+ Definition seq (m1 m2 : t) := LO.eq (sbindings m1) (sbindings m2).
+ Definition slt (m1 m2 : t) := LO.lt (sbindings m1) (sbindings m2).
+
+ Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
+ Proof.
+ unfold eq, seq, sbindings, bindings, LO.eq; intuition.
+ Qed.
+
+ Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
+ Proof.
+ unfold lt, slt, sbindings, bindings, LO.lt; intuition.
+ Qed.
+
+ Lemma eq_spec m m' : eq m m' <-> Equivb cmp m m'.
+ Proof.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite P.Equivb_bindings. apply LO.eq_spec.
+ Qed.
+
+ Instance eq_equiv : Equivalence eq.
+ Proof.
+ constructor; red; [intros x|intros x y| intros x y z];
+ rewrite !eq_seq; apply LO.eq_equiv.
+ Qed.
+
+ Instance lt_compat : Proper (eq ==> eq ==> iff) lt.
+ Proof.
+ intros m1 m2 H1 m1' m2' H2. rewrite !lt_slt. rewrite eq_seq in *.
+ now apply LO.lt_compat.
+ Qed.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ constructor; red; [intros x; red|intros x y z];
+ rewrite !lt_slt; apply LO.lt_strorder.
+ Qed.
+
+End IntMake_ord.
+
+(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
+
+Module Make (X: OrderedType) <: S with Module E := X
+ :=IntMake(Z_as_Int)(X).
+
+Module Make_ord (X: OrderedType)(D: OrderedType)
+ <: Sord with Module Data := D
+ with Module MapS.E := X
+ :=IntMake_ord(Z_as_Int)(X)(D).
diff --git a/theories/MMaps/vo.itarget b/theories/MMaps/vo.itarget
index d4861cb06..a7bbd266e 100644
--- a/theories/MMaps/vo.itarget
+++ b/theories/MMaps/vo.itarget
@@ -4,3 +4,4 @@ MMapWeakList.vo
MMapList.vo
MMapPositive.vo
MMaps.vo
+MMapAVL.vo \ No newline at end of file