aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic
diff options
context:
space:
mode:
authorGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2016-10-02 21:48:52 +0200
committerGravatar Hugo Herbelin <Hugo.Herbelin@inria.fr>2017-03-03 14:40:36 +0100
commit62ed11de4c528a496e0ece70a07062a1b6d4f7d8 (patch)
tree8c32a1e71bfc7e3d3ff27029f2c5588b141f72fa /theories/Logic
parentb453d0281db6de0c36cbd9f2c0a094946f4fcfd6 (diff)
Adding various properties and characterization of the extensional
axiom of choice (i.e. choice on setoids) and of the axiom selecting representatives in classes of equivalence. Also integrating suggestions from Théo.
Diffstat (limited to 'theories/Logic')
-rw-r--r--theories/Logic/ChoiceFacts.v425
1 files changed, 422 insertions, 3 deletions
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v
index 2ab851e29..3f17ba5a9 100644
--- a/theories/Logic/ChoiceFacts.v
+++ b/theories/Logic/ChoiceFacts.v
@@ -22,7 +22,14 @@ description principles
- AC! = functional relation reification
(known as axiom of unique choice in topos theory,
sometimes called principle of definite description in
- the context of constructive type theory)
+ the context of constructive type theory, sometimes
+ called axiom of no choice)
+
+- AC_fun_repr = functional choice of a representative in an equivalence class
+- AC_fun_setoid_gen = functional form of the general form of the (so-called
+ extensional) axiom of choice over setoids
+- AC_fun_setoid = functional form of the (so-called extensional) axiom of
+ choice from setoids
- GAC_rel = guarded relational form of the (non extensional) axiom of choice
- GAC_fun = guarded functional form of the (non extensional) axiom of choice
@@ -45,6 +52,11 @@ description principles
independence of premises)
- Drinker = drinker's paradox (small form)
(called Ex in Bell [[Bell]])
+- EM = excluded-middle
+
+- Ext_pred_repr = choice of a representative among extensional predicates
+- Ext_pred = extensionality of predicates
+- Ext_fun_prop_repr = choice of a representative among extensional functions to Prop
We let also
@@ -76,6 +88,10 @@ Table of contents
8. Choice -> Dependent choice -> Countable choice
+9.1. AC_fun_ext = AC_fun + Ext_fun_repr + EM
+
+9.2. AC_fun_ext = AC_fun + Ext_prop_fun_repr + PI
+
References:
[[Bell]] John L. Bell, Choice principles in intuitionistic set theory,
@@ -84,8 +100,13 @@ unpublished.
[[Bell93]] John L. Bell, Hilbert's Epsilon Operator in Intuitionistic
Type Theories, Mathematical Logic Quarterly, volume 39, 1993.
+[[Carlström04]] Jesper Carlström, EM + Ext_ + AC_int is equivalent to
+AC_ext, Mathematical Logic Quaterly, vol 50(3), pp 236-240, 2004.
+
[[Carlström05]] Jesper Carlström, Interpreting descriptions in
intentional type theory, Journal of Symbolic Logic 70(2):488-514, 2005.
+
+[[Werner97]] Benjamin Werner, Sets in Types, Types in Sets, TACS, 1997.
*)
Set Implicit Arguments.
@@ -108,8 +129,6 @@ Variables A B :Type.
Variable P:A->Prop.
-Variable R:A->B->Prop.
-
(** ** Constructive choice and description *)
(** AC_rel *)
@@ -121,6 +140,10 @@ Definition RelationalChoice_on :=
(** AC_fun *)
+(* Note: This is called Type-Theoretic Description Axiom (TTDA) in
+ [[Werner97]] (using a non-standard meaning of "description"). This
+ is called intensional axiom of choice (AC_int) in [[Carlström04]] *)
+
Definition FunctionalChoice_on :=
forall R:A->B->Prop,
(forall x : A, exists y : B, R x y) ->
@@ -148,6 +171,55 @@ Definition FunctionalRelReification_on :=
(forall x : A, exists! y : B, R x y) ->
(exists f : A->B, forall x : A, R x (f x)).
+(** AC_fun_repr *)
+
+(* Note: This is called Type-Theoretic Choice Axiom (TTCA) in
+ [[Werner97]] (by reference to the extensional set-theoretic
+ formulation of choice); Note also a typo in its intended
+ formulation in [[Werner97]]. *)
+
+Require Import RelationClasses Logic.
+
+Definition RepresentativeFunctionalChoice_on :=
+ forall R:A->A->Prop,
+ (Equivalence R) ->
+ (exists f : A->A, forall x : A, (R x (f x)) /\ forall y, R x y -> f x = f y).
+
+(** AC_fun_ext *)
+
+Definition SetoidFunctionalChoice_on :=
+ forall R : A -> A -> Prop,
+ forall T : A -> B -> Prop,
+ Equivalence R ->
+ (forall x x' y, R x x' -> T x y -> T x' y) ->
+ (forall x, exists y, T x y) ->
+ exists f : A -> B, forall x : A, T x (f x) /\ (forall y : A, R x y -> f x = f y).
+
+(** AC_fun_ext_gen *)
+
+(* Note: This is called extensional axiom of choice (AC_ext) in
+ [[Carlström04]]. *)
+
+Definition GeneralizedSetoidFunctionalChoice_on :=
+ forall R : A -> A -> Prop,
+ forall S : B -> B -> Prop,
+ forall T : A -> B -> Prop,
+ Equivalence R ->
+ Equivalence S ->
+ (forall x x' y y', R x x' -> S y y' -> T x y -> T x' y') ->
+ (forall x, exists y, T x y) ->
+ exists f : A -> B,
+ forall x : A, T x (f x) /\ (forall y : A, R x y -> S (f x) (f y)).
+
+(** AC_fun_ext_simple *)
+
+Definition SimpleSetoidFunctionalChoice_on A B :=
+ forall R : A -> A -> Prop,
+ forall T : A -> B -> Prop,
+ Equivalence R ->
+ (forall x, exists y, forall x', R x x' -> T x' y) ->
+ exists f : A -> B, forall x : A, T x (f x) /\ (forall x' : A, R x x' -> f x = f x').
+
(** ID_epsilon (constructive version of indefinite description;
combined with proof-irrelevance, it may be connected to
Carlström's type theory with a constructive indefinite description
@@ -234,6 +306,14 @@ Notation FunctionalChoiceOnInhabitedSet :=
(forall A B : Type, inhabited B -> FunctionalChoice_on A B).
Notation FunctionalRelReification :=
(forall A B : Type, FunctionalRelReification_on A B).
+Notation RepresentativeFunctionalChoice :=
+ (forall A : Type, RepresentativeFunctionalChoice_on A).
+Notation SetoidFunctionalChoice :=
+ (forall A B: Type, SetoidFunctionalChoice_on A B).
+Notation GeneralizedSetoidFunctionalChoice :=
+ (forall A B : Type, GeneralizedSetoidFunctionalChoice_on A B).
+Notation SimpleSetoidFunctionalChoice :=
+ (forall A B : Type, SimpleSetoidFunctionalChoice_on A B).
Notation GuardedRelationalChoice :=
(forall A B : Type, GuardedRelationalChoice_on A B).
@@ -271,6 +351,26 @@ Definition SmallDrinker'sParadox :=
forall (A:Type) (P:A -> Prop), inhabited A ->
exists x, (exists x, P x) -> P x.
+Definition ExcludedMiddle :=
+ forall P:Prop, P \/ ~ P.
+
+(** Extensional schemes *)
+
+Local Notation ExtensionalPropositionRepresentative :=
+ (forall (A:Type),
+ exists h : Prop -> Prop,
+ forall P : Prop, (P <-> h P) /\ forall Q, (P <-> Q) -> h P = h Q).
+
+Local Notation ExtensionalPredicateRepresentative :=
+ (forall (A:Type),
+ exists h : (A->Prop) -> (A->Prop),
+ forall (P : A -> Prop), (forall x, P x <-> h P x) /\ forall Q, (forall x, P x <-> Q x) -> h P = h Q).
+
+Local Notation ExtensionalFunctionRepresentative :=
+ (forall (A B:Type),
+ exists h : (A->B) -> (A->B),
+ forall (f : A -> B), (forall x, f x = h f x) /\ forall g, (forall x, f x = g x) -> h f = h g).
+
(**********************************************************************)
(** * AC_rel + AC! = AC_fun
@@ -871,3 +971,322 @@ Proof.
rewrite Heq in HR.
assumption.
Qed.
+
+(**********************************************************************)
+(** * About the axiom of choice over setoids *)
+
+Require Import ClassicalFacts PropExtensionalityFacts.
+
+(**********************************************************************)
+(** ** Consequences of the choice of a representative in an equivalence class *)
+
+Theorem repr_fun_choice_imp_ext_prop_repr :
+ RepresentativeFunctionalChoice -> ExtensionalPropositionRepresentative.
+Proof.
+ intros ReprFunChoice A.
+ pose (R P Q := P <-> Q).
+ assert (Hequiv:Equivalence R) by (split; firstorder).
+ apply (ReprFunChoice _ R Hequiv).
+Qed.
+
+Theorem repr_fun_choice_imp_ext_pred_repr :
+ RepresentativeFunctionalChoice -> ExtensionalPredicateRepresentative.
+Proof.
+ intros ReprFunChoice A.
+ pose (R P Q := forall x : A, P x <-> Q x).
+ assert (Hequiv:Equivalence R) by (split; firstorder).
+ apply (ReprFunChoice _ R Hequiv).
+Qed.
+
+Theorem repr_fun_choice_imp_ext_function_repr :
+ RepresentativeFunctionalChoice -> ExtensionalFunctionRepresentative.
+Proof.
+ intros ReprFunChoice A B.
+ pose (R (f g : A -> B) := forall x : A, f x = g x).
+ assert (Hequiv:Equivalence R).
+ { split; try easy. firstorder using eq_trans. }
+ apply (ReprFunChoice _ R Hequiv).
+Qed.
+
+(** *** This is a variant of Diaconescu and Goodman-Myhill theorems *)
+
+Theorem repr_fun_choice_imp_excluded_middle :
+ RepresentativeFunctionalChoice -> ExcludedMiddle.
+Proof.
+ intros ReprFunChoice.
+ apply representative_boolean_partition_imp_excluded_middle, ReprFunChoice.
+Qed.
+
+Theorem repr_fun_choice_imp_relational_choice :
+ RepresentativeFunctionalChoice -> RelationalChoice.
+Proof.
+ intros ReprFunChoice A B T Hexists.
+ pose (D := (A*B)%type).
+ pose (R (z z':D) :=
+ let x := fst z in
+ let x' := fst z' in
+ let y := snd z in
+ let y' := snd z' in
+ x = x' /\ (T x y -> y = y' \/ T x y') /\ (T x y' -> y = y' \/ T x y)).
+ assert (Hequiv : Equivalence R).
+ { split.
+ - split. easy. firstorder.
+ - intros (x,y) (x',y') (H1,(H2,H2')). split. easy. simpl fst in *. simpl snd in *.
+ subst x'. split; intro H.
+ + destruct (H2' H); firstorder.
+ + destruct (H2 H); firstorder.
+ - intros (x,y) (x',y') (x'',y'') (H1,(H2,H2')) (H3,(H4,H4')).
+ simpl fst in *. simpl snd in *. subst x'' x'. split. easy. split; intro H.
+ + simpl fst in *. simpl snd in *. destruct (H2 H) as [<-|H0].
+ * destruct (H4 H); firstorder.
+ * destruct (H2' H0), (H4 H0); try subst y'; try subst y''; try firstorder.
+ + simpl fst in *. simpl snd in *. destruct (H4' H) as [<-|H0].
+ * destruct (H2' H); firstorder.
+ * destruct (H2' H0), (H4 H0); try subst y'; try subst y''; try firstorder. }
+ destruct (ReprFunChoice D R Hequiv) as (g,Hg).
+ set (T' x y := T x y /\ exists y', T x y' /\ g (x,y') = (x,y)).
+ exists T'. split.
+ - intros x y (H,_); easy.
+ - intro x. destruct (Hexists x) as (y,Hy).
+ exists (snd (g (x,y))).
+ destruct (Hg (x,y)) as ((Heq1,(H',H'')),Hgxyuniq); clear Hg.
+ destruct (H' Hy) as [Heq2|Hgy]; clear H'.
+ + split. split.
+ * rewrite <- Heq2. assumption.
+ * exists y. destruct (g (x,y)) as (x',y'). simpl in Heq1, Heq2. subst; easy.
+ * intros y' (Hy',(y'',(Hy'',Heq))).
+ rewrite (Hgxyuniq (x,y'')), Heq. easy. split. easy.
+ split; right; easy.
+ + split. split.
+ * assumption.
+ * exists y. destruct (g (x,y)) as (x',y'). simpl in Heq1. subst x'; easy.
+ * intros y' (Hy',(y'',(Hy'',Heq))).
+ rewrite (Hgxyuniq (x,y'')), Heq. easy. split. easy.
+ split; right; easy.
+Qed.
+
+(**********************************************************************)
+(** ** AC_fun_setoid = AC_fun_setoid_gen *)
+
+Theorem gen_setoid_fun_choice_imp_setoid_fun_choice :
+ GeneralizedSetoidFunctionalChoice -> SetoidFunctionalChoice.
+Proof.
+ intros GenSetoidFunChoice A B R T Hequiv Hcompat Hex.
+ apply GenSetoidFunChoice; try easy.
+ apply eq_equivalence.
+ intros * H <-. firstorder.
+Qed.
+
+Theorem setoid_fun_choice_imp_gen_setoid_fun_choice :
+ SetoidFunctionalChoice -> GeneralizedSetoidFunctionalChoice.
+Proof.
+ intros SetoidFunChoice A B R S T HequivR HequivS Hcompat Hex.
+ destruct SetoidFunChoice with (R:=R) (T:=T) as (f,Hf); try easy.
+ { intros; apply (Hcompat x x' y y); try easy. }
+ exists f. intros x; specialize Hf with x as (Hf,Huniq). intuition. now erewrite Huniq.
+Qed.
+
+Theorem setoid_fun_choice_imp_simple_setoid_fun_choice :
+ SetoidFunctionalChoice -> SimpleSetoidFunctionalChoice.
+Proof.
+ intros SetoidFunChoice A B R T Hequiv Hexists.
+ pose (T' x y := forall x', R x x' -> T x' y).
+ assert (Hcompat : forall (x x' : A) (y : B), R x x' -> T' x y -> T' x' y) by firstorder.
+ destruct (SetoidFunChoice A B R T' Hequiv Hcompat Hexists) as (f,Hf).
+ exists f. firstorder.
+Qed.
+
+Theorem simple_setoid_fun_choice_imp_setoid_fun_choice :
+ SimpleSetoidFunctionalChoice -> SetoidFunctionalChoice.
+Proof.
+ intros SimpleSetoidFunChoice A B R T Hequiv Hcompat Hexists.
+ destruct (SimpleSetoidFunChoice A B R T Hequiv) as (f,Hf); firstorder.
+Qed.
+
+(**********************************************************************)
+(** ** AC_fun_setoid = AC! + AC_fun_repr *)
+
+Theorem setoid_fun_choice_imp_fun_choice :
+ SetoidFunctionalChoice -> FunctionalChoice.
+Proof.
+ intros SetoidFunChoice A B T Hexists.
+ destruct SetoidFunChoice with (R:=@eq A) (T:=T) as (f,Hf).
+ - apply eq_equivalence.
+ - now intros * ->.
+ - assumption.
+ - exists f. firstorder.
+Qed.
+
+Corollary setoid_fun_choice_imp_functional_rel_reification :
+ SetoidFunctionalChoice -> FunctionalRelReification.
+Proof.
+ intro SetoidFunChoice.
+ intros A B; apply fun_choice_imp_functional_rel_reification.
+ now apply setoid_fun_choice_imp_fun_choice.
+Qed.
+
+Theorem setoid_fun_choice_imp_repr_fun_choice :
+ SetoidFunctionalChoice -> RepresentativeFunctionalChoice.
+Proof.
+ intros SetoidFunChoice A R Hequiv.
+ apply SetoidFunChoice; firstorder.
+Qed.
+
+Theorem functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice :
+ FunctionalRelReification -> RepresentativeFunctionalChoice -> SetoidFunctionalChoice.
+Proof.
+ intros FunRelReify ReprFunChoice A B R T Hequiv Hcompat Hexists.
+ assert (FunChoice : FunctionalChoice).
+ { intros A' B'. apply functional_rel_reification_and_rel_choice_imp_fun_choice.
+ - apply FunRelReify.
+ - now apply repr_fun_choice_imp_relational_choice. }
+ destruct (FunChoice _ _ T Hexists) as (f,Hf).
+ destruct (ReprFunChoice A R Hequiv) as (g,Hg).
+ exists (fun a => f (g a)).
+ intro x. destruct (Hg x) as (Hgx,HRuniq).
+ split.
+ - eapply Hcompat. symmetry. apply Hgx. apply Hf.
+ - intros y Hxy. f_equal. auto.
+Qed.
+
+Theorem functional_rel_reification_and_repr_fun_choice_iff_setoid_fun_choice :
+ FunctionalRelReification /\ RepresentativeFunctionalChoice <-> SetoidFunctionalChoice.
+Proof.
+ split; intros.
+ - now apply functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice.
+ - split.
+ + now apply setoid_fun_choice_imp_functional_rel_reification.
+ + now apply setoid_fun_choice_imp_repr_fun_choice.
+Qed.
+
+(** Note: What characterization to give of
+RepresentativeFunctionalChoice? A formulation of it as a functional
+relation would certainly be equivalent to the formulation of
+SetoidFunctionalChoice as a functional relation, but in their
+functional forms, SetoidFunctionalChoice seems strictly stronger *)
+
+(**********************************************************************)
+(** * AC_fun_setoid = AC_fun + Ext_fun_repr + EM *)
+
+Import EqNotations.
+
+(** ** This is the main theorem in [[Carlström04]] *)
+
+(** Note: all ingredients have a computational meaning when taken in
+ separation. However, to compute with the functional choice,
+ existential quantification has to be thought as a strong
+ existential, which is incompatible with the computational content of
+ excluded-middle *)
+
+Theorem fun_choice_and_ext_functions_repr_and_excluded_middle_imp_setoid_fun_choice :
+ FunctionalChoice -> ExtensionalFunctionRepresentative -> ExcludedMiddle -> RepresentativeFunctionalChoice.
+Proof.
+ intros FunChoice SetoidFunRepr EM A R (Hrefl,Hsym,Htrans).
+ assert (H:forall P:Prop, exists b, b = true <-> P).
+ { intros P. destruct (EM P).
+ - exists true; firstorder.
+ - exists false; easy. }
+ destruct (FunChoice _ _ _ H) as (c,Hc).
+ pose (class_of a y := c (R a y)).
+ pose (isclass f := exists x:A, f x = true).
+ pose (class := {f:A -> bool | isclass f}).
+ pose (contains (c:class) (a:A) := proj1_sig c a = true).
+ destruct (FunChoice class A contains) as (f,Hf).
+ - intros f. destruct (proj2_sig f) as (x,Hx).
+ exists x. easy.
+ - destruct (SetoidFunRepr A bool) as (h,Hh).
+ assert (Hisclass:forall a, isclass (h (class_of a))).
+ { intro a. exists a. destruct (Hh (class_of a)) as (Ha,Huniqa).
+ rewrite <- Ha. apply Hc. apply Hrefl. }
+ pose (f':= fun a => exist _ (h (class_of a)) (Hisclass a) : class).
+ exists (fun a => f (f' a)).
+ intros x. destruct (Hh (class_of x)) as (Hx,Huniqx). split.
+ + specialize Hf with (f' x). unfold contains in Hf. simpl in Hf. rewrite <- Hx in Hf. apply Hc. assumption.
+ + intros y Hxy.
+ f_equal.
+ assert (Heq1: h (class_of x) = h (class_of y)).
+ { apply Huniqx. intro z. unfold class_of.
+ destruct (c (R x z)) eqn:Hxz.
+ - symmetry. apply Hc. apply -> Hc in Hxz. firstorder.
+ - destruct (c (R y z)) eqn:Hyz.
+ + apply -> Hc in Hyz. rewrite <- Hxz. apply Hc. firstorder.
+ + easy. }
+ assert (Heq2:rew Heq1 in Hisclass x = Hisclass y).
+ { apply proof_irrelevance_cci, EM. }
+ unfold f'.
+ rewrite <- Heq2.
+ rewrite <- Heq1.
+ reflexivity.
+Qed.
+
+Theorem setoid_functional_choice_first_characterization :
+ FunctionalChoice /\ ExtensionalFunctionRepresentative /\ ExcludedMiddle <-> SetoidFunctionalChoice.
+Proof.
+ split.
+ - intros (FunChoice & SetoidFunRepr & EM).
+ apply functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice.
+ + intros A B. apply fun_choice_imp_functional_rel_reification, FunChoice.
+ + now apply fun_choice_and_ext_functions_repr_and_excluded_middle_imp_setoid_fun_choice.
+ - intro SetoidFunChoice. repeat split.
+ + now apply setoid_fun_choice_imp_fun_choice.
+ + apply repr_fun_choice_imp_ext_function_repr.
+ now apply setoid_fun_choice_imp_repr_fun_choice.
+ + apply repr_fun_choice_imp_excluded_middle.
+ now apply setoid_fun_choice_imp_repr_fun_choice.
+Qed.
+
+(**********************************************************************)
+(** ** AC_fun_setoid = AC_fun + Ext_pred_repr + PI *)
+
+(** Note: all ingredients have a computational meaning when taken in
+ separation. However, to compute with the functional choice,
+ existential quantification has to be thought as a strong
+ existential, which is incompatible with proof-irrelevance which
+ requires existential quantification to be truncated *)
+
+Theorem fun_choice_and_ext_pred_ext_and_proof_irrel_imp_setoid_fun_choice :
+ FunctionalChoice -> ExtensionalPredicateRepresentative -> ProofIrrelevance -> RepresentativeFunctionalChoice.
+Proof.
+ intros FunChoice PredExtRepr PI A R (Hrefl,Hsym,Htrans).
+ pose (isclass P := exists x:A, P x).
+ pose (class := {P:A -> Prop | isclass P}).
+ pose (contains (c:class) (a:A) := proj1_sig c a).
+ pose (class_of a := R a).
+ destruct (FunChoice class A contains) as (f,Hf).
+ - intros c. apply proj2_sig.
+ - destruct (PredExtRepr A) as (h,Hh).
+ assert (Hisclass:forall a, isclass (h (class_of a))).
+ { intro a. exists a. destruct (Hh (class_of a)) as (Ha,Huniqa).
+ rewrite <- Ha; apply Hrefl. }
+ pose (f':= fun a => exist _ (h (class_of a)) (Hisclass a) : class).
+ exists (fun a => f (f' a)).
+ intros x. destruct (Hh (class_of x)) as (Hx,Huniqx). split.
+ + specialize Hf with (f' x). simpl in Hf. rewrite <- Hx in Hf. assumption.
+ + intros y Hxy.
+ f_equal.
+ assert (Heq1: h (class_of x) = h (class_of y)).
+ { apply Huniqx. intro z. unfold class_of. firstorder. }
+ assert (Heq2:rew Heq1 in Hisclass x = Hisclass y).
+ { apply PI. }
+ unfold f'.
+ rewrite <- Heq2.
+ rewrite <- Heq1.
+ reflexivity.
+Qed.
+
+Theorem setoid_functional_choice_second_characterization :
+ FunctionalChoice /\ ExtensionalPredicateRepresentative /\ ProofIrrelevance <-> SetoidFunctionalChoice.
+Proof.
+ split.
+ - intros (FunChoice & ExtPredRepr & PI).
+ apply functional_rel_reification_and_repr_fun_choice_imp_setoid_fun_choice.
+ + intros A B. now apply fun_choice_imp_functional_rel_reification.
+ + now apply fun_choice_and_ext_pred_ext_and_proof_irrel_imp_setoid_fun_choice.
+ - intro SetoidFunChoice. repeat split.
+ + now apply setoid_fun_choice_imp_fun_choice.
+ + apply repr_fun_choice_imp_ext_pred_repr.
+ now apply setoid_fun_choice_imp_repr_fun_choice.
+ + red. apply proof_irrelevance_cci.
+ apply repr_fun_choice_imp_excluded_middle.
+ now apply setoid_fun_choice_imp_repr_fun_choice.
+Qed.