aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic
diff options
context:
space:
mode:
authorGravatar Jason Gross <jgross@mit.edu>2014-08-26 11:40:11 -0400
committerGravatar Jason Gross <jgross@mit.edu>2014-08-26 11:40:24 -0400
commit3ffdcc7183b2cfbf6c53dd4f1dd6e48da416f07d (patch)
tree4ca77f871f382294efc63659c46eb93d1a312fea /theories/Logic
parentd2958e26d0778ae624495a34fe47ba036439a44d (diff)
sed s'/_one_var/_on/g'
For consistency with ChoiceFacts
Diffstat (limited to 'theories/Logic')
-rw-r--r--theories/Logic/EqdepFacts.v76
-rw-r--r--theories/Logic/Eqdep_dec.v24
2 files changed, 50 insertions, 50 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index 8fefb7160..58b6d076c 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -237,39 +237,39 @@ Section Equivalences.
(** Invariance by Substitution of Reflexive Equality Proofs *)
- Definition Eq_rect_eq_one_var (p : U) (Q : U -> Type) (x : Q p) :=
+ Definition Eq_rect_eq_on (p : U) (Q : U -> Type) (x : Q p) :=
forall (h : p = p), x = eq_rect p Q x p h.
- Definition Eq_rect_eq := forall p Q x, Eq_rect_eq_one_var p Q x.
+ Definition Eq_rect_eq := forall p Q x, Eq_rect_eq_on p Q x.
(** Injectivity of Dependent Equality *)
- Definition Eq_dep_eq_one_var (P : U -> Type) (p : U) (x : P p) :=
+ Definition Eq_dep_eq_on (P : U -> Type) (p : U) (x : P p) :=
forall (y : P p), eq_dep p x p y -> x = y.
- Definition Eq_dep_eq := forall P p x, Eq_dep_eq_one_var P p x.
+ Definition Eq_dep_eq := forall P p x, Eq_dep_eq_on P p x.
(** Uniqueness of Identity Proofs (UIP) *)
- Definition UIP_one_var_ (x y : U) (p1 : x = y) :=
+ Definition UIP_on_ (x y : U) (p1 : x = y) :=
forall (p2 : x = y), p1 = p2.
- Definition UIP_ := forall x y p1, UIP_one_var_ x y p1.
+ Definition UIP_ := forall x y p1, UIP_on_ x y p1.
(** Uniqueness of Reflexive Identity Proofs *)
- Definition UIP_refl_one_var_ (x : U) :=
+ Definition UIP_refl_on_ (x : U) :=
forall (p : x = x), p = eq_refl x.
- Definition UIP_refl_ := forall x, UIP_refl_one_var_ x.
+ Definition UIP_refl_ := forall x, UIP_refl_on_ x.
(** Streicher's axiom K *)
- Definition Streicher_K_one_var_ (x : U) (P : x = x -> Prop) :=
+ Definition Streicher_K_on_ (x : U) (P : x = x -> Prop) :=
P (eq_refl x) -> forall p : x = x, P p.
- Definition Streicher_K_ := forall x P, Streicher_K_one_var_ x P.
+ Definition Streicher_K_ := forall x P, Streicher_K_on_ x P.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
- Lemma eq_rect_eq_one_var__eq_dep1_eq_one_var (p : U) (P : U -> Type) (y : P p) :
- Eq_rect_eq_one_var p P y -> forall (x : P p), eq_dep1 p x p y -> x = y.
+ Lemma eq_rect_eq_on__eq_dep1_eq_on (p : U) (P : U -> Type) (y : P p) :
+ Eq_rect_eq_on p P y -> forall (x : P p), eq_dep1 p x p y -> x = y.
Proof.
intro eq_rect_eq.
simple destruct 1; intro.
@@ -278,24 +278,24 @@ Section Equivalences.
Lemma eq_rect_eq__eq_dep1_eq :
Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
Proof (fun eq_rect_eq P p y x =>
- @eq_rect_eq_one_var__eq_dep1_eq_one_var p P x (eq_rect_eq p P x) y).
+ @eq_rect_eq_on__eq_dep1_eq_on p P x (eq_rect_eq p P x) y).
- Lemma eq_rect_eq_one_var__eq_dep_eq_one_var (p : U) (P : U -> Type) (x : P p) :
- Eq_rect_eq_one_var p P x -> Eq_dep_eq_one_var P p x.
+ Lemma eq_rect_eq_on__eq_dep_eq_on (p : U) (P : U -> Type) (x : P p) :
+ Eq_rect_eq_on p P x -> Eq_dep_eq_on P p x.
Proof.
intros eq_rect_eq; red; intros.
- symmetry; apply (eq_rect_eq_one_var__eq_dep1_eq_one_var _ _ _ eq_rect_eq).
+ symmetry; apply (eq_rect_eq_on__eq_dep1_eq_on _ _ _ eq_rect_eq).
apply eq_dep_sym in H; apply eq_dep_dep1; trivial.
Qed.
Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq.
Proof (fun eq_rect_eq P p x y =>
- @eq_rect_eq_one_var__eq_dep_eq_one_var p P x (eq_rect_eq p P x) y).
+ @eq_rect_eq_on__eq_dep_eq_on p P x (eq_rect_eq p P x) y).
(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)
- Lemma eq_dep_eq_one_var__UIP_one_var (x y : U) (p1 : x = y) :
- Eq_dep_eq_one_var (fun y => x = y) x eq_refl -> UIP_one_var_ x y p1.
+ Lemma eq_dep_eq_on__UIP_on (x y : U) (p1 : x = y) :
+ Eq_dep_eq_on (fun y => x = y) x eq_refl -> UIP_on_ x y p1.
Proof.
intro eq_dep_eq; red.
elim p1 using eq_indd.
@@ -305,37 +305,37 @@ Section Equivalences.
Qed.
Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_.
Proof (fun eq_dep_eq x y p1 =>
- @eq_dep_eq_one_var__UIP_one_var x y p1 (eq_dep_eq _ _ _)).
+ @eq_dep_eq_on__UIP_on x y p1 (eq_dep_eq _ _ _)).
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
- Lemma UIP_one_var__UIP_refl_one_var (x : U) :
- UIP_one_var_ x x eq_refl -> UIP_refl_one_var_ x.
+ Lemma UIP_on__UIP_refl_on (x : U) :
+ UIP_on_ x x eq_refl -> UIP_refl_on_ x.
Proof.
intro UIP; red; intros; symmetry; apply UIP.
Qed.
Lemma UIP__UIP_refl : UIP_ -> UIP_refl_.
Proof (fun UIP x p =>
- @UIP_one_var__UIP_refl_one_var x (UIP x x eq_refl) p).
+ @UIP_on__UIP_refl_on x (UIP x x eq_refl) p).
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
- Lemma UIP_refl_one_var__Streicher_K_one_var (x : U) (P : x = x -> Prop) :
- UIP_refl_one_var_ x -> Streicher_K_one_var_ x P.
+ Lemma UIP_refl_on__Streicher_K_on (x : U) (P : x = x -> Prop) :
+ UIP_refl_on_ x -> Streicher_K_on_ x P.
Proof.
intro UIP_refl; red; intros; rewrite UIP_refl; assumption.
Qed.
Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_.
Proof (fun UIP_refl x P =>
- @UIP_refl_one_var__Streicher_K_one_var x P (UIP_refl x)).
+ @UIP_refl_on__Streicher_K_on x P (UIP_refl x)).
(** We finally recover from K the Invariance by Substitution of
Reflexive Equality Proofs *)
- Lemma Streicher_K_one_var__eq_rect_eq_one_var (p : U) (P : U -> Type) (x : P p) :
- Streicher_K_one_var_ p (fun h => x = rew -> [P] h in x)
- -> Eq_rect_eq_one_var p P x.
+ Lemma Streicher_K_on__eq_rect_eq_on (p : U) (P : U -> Type) (x : P p) :
+ Streicher_K_on_ p (fun h => x = rew -> [P] h in x)
+ -> Eq_rect_eq_on p P x.
Proof.
intro Streicher_K; red; intros.
apply Streicher_K.
@@ -343,7 +343,7 @@ Section Equivalences.
Qed.
Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq.
Proof (fun Streicher_K p P x =>
- @Streicher_K_one_var__eq_rect_eq_one_var p P x (Streicher_K p _)).
+ @Streicher_K_on__eq_rect_eq_on p P x (Streicher_K p _)).
(** Remark: It is reasonable to think that [eq_rect_eq] is strictly
stronger than [eq_rec_eq] (which is [eq_rect_eq] restricted on [Set]):
@@ -363,8 +363,8 @@ End Equivalences.
proof of inclusion of h-level n into h-level n+1; see hlevelntosn
in https://github.com/vladimirias/Foundations.git). *)
-Theorem UIP_shift_one_var (X : Type) (x : X) :
- UIP_refl_one_var_ X x -> forall y : x = x, UIP_refl_one_var_ (x = x) y.
+Theorem UIP_shift_on (X : Type) (x : X) :
+ UIP_refl_on_ X x -> forall y : x = x, UIP_refl_on_ (x = x) y.
Proof.
intros UIP_refl y.
rewrite (UIP_refl y).
@@ -384,7 +384,7 @@ Proof.
Qed.
Theorem UIP_shift : forall U, UIP_refl_ U -> forall x:U, UIP_refl_ (x = x).
Proof (fun U UIP_refl x =>
- @UIP_shift_one_var U x (UIP_refl x)).
+ @UIP_shift_on U x (UIP_refl x)).
Section Corollaries.
@@ -393,12 +393,12 @@ Section Corollaries.
(** UIP implies the injectivity of equality on dependent pairs in Type *)
- Definition Inj_dep_pair_one_var (P : U -> Type) (p : U) (x : P p) :=
+ Definition Inj_dep_pair_on (P : U -> Type) (p : U) (x : P p) :=
forall (y : P p), existT P p x = existT P p y -> x = y.
- Definition Inj_dep_pair := forall P p x, Inj_dep_pair_one_var P p x.
+ Definition Inj_dep_pair := forall P p x, Inj_dep_pair_on P p x.
- Lemma eq_dep_eq_one_var__inj_pair2_one_var (P : U -> Type) (p : U) (x : P p) :
- Eq_dep_eq_one_var U P p x -> Inj_dep_pair_one_var P p x.
+ Lemma eq_dep_eq_on__inj_pair2_on (P : U -> Type) (p : U) (x : P p) :
+ Eq_dep_eq_on U P p x -> Inj_dep_pair_on P p x.
Proof.
intro eq_dep_eq; red; intros.
apply eq_dep_eq.
@@ -407,7 +407,7 @@ Section Corollaries.
Qed.
Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair.
Proof (fun eq_dep_eq P p x =>
- @eq_dep_eq_one_var__inj_pair2_one_var P p x (eq_dep_eq P p x)).
+ @eq_dep_eq_on__inj_pair2_on P p x (eq_dep_eq P p x)).
End Corollaries.
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v
index 154508bb5..9b4d99387 100644
--- a/theories/Logic/Eqdep_dec.v
+++ b/theories/Logic/Eqdep_dec.v
@@ -73,7 +73,7 @@ Section EqdepDec.
Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (eq_refl x)) v.
- Remark nu_left_inv_one_var : forall (y:A) (u:x = y), nu_inv (nu u) = u.
+ Remark nu_left_inv_on : forall (y:A) (u:x = y), nu_inv (nu u) = u.
Proof.
intros.
case u; unfold nu_inv.
@@ -81,20 +81,20 @@ Section EqdepDec.
Qed.
- Theorem eq_proofs_unicity_one_var : forall (y:A) (p1 p2:x = y), p1 = p2.
+ Theorem eq_proofs_unicity_on : forall (y:A) (p1 p2:x = y), p1 = p2.
Proof.
intros.
- elim nu_left_inv_one_var with (u := p1).
- elim nu_left_inv_one_var with (u := p2).
+ elim nu_left_inv_on with (u := p1).
+ elim nu_left_inv_on with (u := p2).
elim nu_constant with y p1 p2.
reflexivity.
Qed.
- Theorem K_dec_one_var :
+ Theorem K_dec_on :
forall P:x = x -> Prop, P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros.
- elim eq_proofs_unicity_one_var with x (eq_refl x) p.
+ elim eq_proofs_unicity_on with x (eq_refl x) p.
trivial.
Qed.
@@ -110,7 +110,7 @@ Section EqdepDec.
end.
- Theorem inj_right_pair_one_var :
+ Theorem inj_right_pair_on :
forall (P:A -> Prop) (y y':P x),
ex_intro P x y = ex_intro P x y' -> y = y'.
Proof.
@@ -118,7 +118,7 @@ Section EqdepDec.
cut (proj (ex_intro P x y) y = proj (ex_intro P x y') y).
simpl.
destruct (eq_dec x) as [Heq|Hneq].
- elim Heq using K_dec_one_var; trivial.
+ elim Heq using K_dec_on; trivial.
intros.
case Hneq; trivial.
@@ -140,16 +140,16 @@ End EqdepDec.
Theorem eq_proofs_unicity A (eq_dec : forall x y : A, x = y \/ x <> y) (x : A)
: forall (y:A) (p1 p2:x = y), p1 = p2.
-Proof (@eq_proofs_unicity_one_var A x (eq_dec x)).
+Proof (@eq_proofs_unicity_on A x (eq_dec x)).
Theorem K_dec A (eq_dec : forall x y : A, x = y \/ x <> y) (x : A)
: forall P:x = x -> Prop, P (eq_refl x) -> forall p:x = x, P p.
-Proof (@K_dec_one_var A x (eq_dec x)).
+Proof (@K_dec_on A x (eq_dec x)).
Theorem inj_right_pair A (eq_dec : forall x y : A, x = y \/ x <> y) (x : A)
: forall (P:A -> Prop) (y y':P x),
ex_intro P x y = ex_intro P x y' -> y = y'.
-Proof (@inj_right_pair_one_var A x (eq_dec x)).
+Proof (@inj_right_pair_on A x (eq_dec x)).
Require Import EqdepFacts.
@@ -340,7 +340,7 @@ Proof.
intros A eq_dec.
apply eq_dep_eq__inj_pair2.
apply eq_rect_eq__eq_dep_eq.
- unfold Eq_rect_eq, Eq_rect_eq_one_var.
+ unfold Eq_rect_eq, Eq_rect_eq_on.
intros; apply eq_rect_eq_dec.
apply eq_dec.
Qed.