aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-12-05 16:44:57 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-12-05 16:44:57 +0000
commit03e2f7a1bf6ee15608aceb455e0c30a2780eff56 (patch)
tree90ba261a7209cbcd0b259ca7108a8913cbbbd294 /theories/Logic
parentc3dd8fdb256b6a9367ddf75862daf5e3e7bb6b07 (diff)
MAJ changements ChoiceFacts
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@6401 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Logic')
-rw-r--r--theories/Logic/ClassicalChoice.v9
-rw-r--r--theories/Logic/Diaconescu.v8
2 files changed, 9 insertions, 8 deletions
diff --git a/theories/Logic/ClassicalChoice.v b/theories/Logic/ClassicalChoice.v
index 0bc491e20..69887a540 100644
--- a/theories/Logic/ClassicalChoice.v
+++ b/theories/Logic/ClassicalChoice.v
@@ -23,10 +23,11 @@ Require Import ChoiceFacts.
Theorem choice :
forall (A B:Type) (R:A -> B -> Prop),
- (forall x:A, exists y : B, R x y) ->
+ (forall x:A, exists y : B, R x y) ->
exists f : A -> B, (forall x:A, R x (f x)).
Proof.
+intros A B.
apply description_rel_choice_imp_funct_choice.
-exact description.
-exact relational_choice.
-Qed. \ No newline at end of file
+exact (description A B).
+exact (relational_choice A B).
+Qed.
diff --git a/theories/Logic/Diaconescu.v b/theories/Logic/Diaconescu.v
index d815b9dda..5f7112fd7 100644
--- a/theories/Logic/Diaconescu.v
+++ b/theories/Logic/Diaconescu.v
@@ -59,18 +59,18 @@ Qed.
Require Import ChoiceFacts.
-Variable rel_choice : RelationalChoice.
+Variable rel_choice : forall A B:Type, RelationalChoice A B.
Lemma guarded_rel_choice :
forall (A B:Type) (P:A -> Prop) (R:A -> B -> Prop),
(forall x:A, P x -> exists y : B, R x y) ->
- exists R' : A -> B -> Prop,
+ exists R' : A -> B -> Prop,
(forall x:A,
P x ->
exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')).
Proof.
- exact
- (rel_choice_and_proof_irrel_imp_guarded_rel_choice rel_choice proof_irrel).
+ apply
+ (rel_choice_and_proof_irrel_imp_guarded_rel_choice rel_choice proof_irrel).
Qed.
(** The form of choice we need: there is a functional relation which chooses