aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic/EqdepFacts.v
diff options
context:
space:
mode:
authorGravatar Jason Gross <jgross@mit.edu>2013-12-12 12:19:16 -0500
committerGravatar Jason Gross <jgross@mit.edu>2014-08-26 11:39:00 -0400
commitd2958e26d0778ae624495a34fe47ba036439a44d (patch)
treeaae509a26d8be468b6a2a94ae076c5f52ad8e2b1 /theories/Logic/EqdepFacts.v
parent9ef5dbb1f340971036aa0c7d4d7a0986188fd971 (diff)
Generalize EqdepFacts
The generalized versions are names *_one_var. We preserve backwards compatibility by defining the old versions in terms of the generalized ones. This closes the rest of Bug 3019, and closes pull request #6.
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r--theories/Logic/EqdepFacts.v105
1 files changed, 73 insertions, 32 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index 0d202eab5..8fefb7160 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -168,7 +168,7 @@ Qed.
Set Implicit Arguments.
-Lemma eq_sigT_sig_eq : forall X P (x1 x2:X) H1 H2, existT P x1 H1 = existT P x2 H2 <->
+Lemma eq_sigT_sig_eq : forall X P (x1 x2:X) H1 H2, existT P x1 H1 = existT P x2 H2 <->
{H:x1=x2 | rew H in H1 = H2}.
Proof.
intros; split; intro H.
@@ -194,7 +194,7 @@ Lemma eq_sigT_snd :
forall X P (x1 x2:X) H1 H2 (H:existT P x1 H1 = existT P x2 H2), rew (eq_sigT_fst H) in H1 = H2.
Proof.
intros.
- unfold eq_sigT_fst.
+ unfold eq_sigT_fst.
change x2 with (projT1 (existT P x2 H2)).
change H2 with (projT2 (existT P x2 H2)) at 3.
destruct H.
@@ -237,82 +237,113 @@ Section Equivalences.
(** Invariance by Substitution of Reflexive Equality Proofs *)
- Definition Eq_rect_eq :=
- forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
+ Definition Eq_rect_eq_one_var (p : U) (Q : U -> Type) (x : Q p) :=
+ forall (h : p = p), x = eq_rect p Q x p h.
+ Definition Eq_rect_eq := forall p Q x, Eq_rect_eq_one_var p Q x.
(** Injectivity of Dependent Equality *)
- Definition Eq_dep_eq :=
- forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y.
+ Definition Eq_dep_eq_one_var (P : U -> Type) (p : U) (x : P p) :=
+ forall (y : P p), eq_dep p x p y -> x = y.
+ Definition Eq_dep_eq := forall P p x, Eq_dep_eq_one_var P p x.
(** Uniqueness of Identity Proofs (UIP) *)
- Definition UIP_ :=
- forall (x y:U) (p1 p2:x = y), p1 = p2.
+ Definition UIP_one_var_ (x y : U) (p1 : x = y) :=
+ forall (p2 : x = y), p1 = p2.
+ Definition UIP_ := forall x y p1, UIP_one_var_ x y p1.
(** Uniqueness of Reflexive Identity Proofs *)
- Definition UIP_refl_ :=
- forall (x:U) (p:x = x), p = eq_refl x.
+ Definition UIP_refl_one_var_ (x : U) :=
+ forall (p : x = x), p = eq_refl x.
+ Definition UIP_refl_ := forall x, UIP_refl_one_var_ x.
(** Streicher's axiom K *)
- Definition Streicher_K_ :=
- forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
+ Definition Streicher_K_one_var_ (x : U) (P : x = x -> Prop) :=
+ P (eq_refl x) -> forall p : x = x, P p.
+ Definition Streicher_K_ := forall x P, Streicher_K_one_var_ x P.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
- Lemma eq_rect_eq__eq_dep1_eq :
- Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
+ Lemma eq_rect_eq_one_var__eq_dep1_eq_one_var (p : U) (P : U -> Type) (y : P p) :
+ Eq_rect_eq_one_var p P y -> forall (x : P p), eq_dep1 p x p y -> x = y.
Proof.
intro eq_rect_eq.
simple destruct 1; intro.
rewrite <- eq_rect_eq; auto.
Qed.
+ Lemma eq_rect_eq__eq_dep1_eq :
+ Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
+ Proof (fun eq_rect_eq P p y x =>
+ @eq_rect_eq_one_var__eq_dep1_eq_one_var p P x (eq_rect_eq p P x) y).
- Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq.
+ Lemma eq_rect_eq_one_var__eq_dep_eq_one_var (p : U) (P : U -> Type) (x : P p) :
+ Eq_rect_eq_one_var p P x -> Eq_dep_eq_one_var P p x.
Proof.
intros eq_rect_eq; red; intros.
- apply (eq_rect_eq__eq_dep1_eq eq_rect_eq). apply eq_dep_dep1; trivial.
- Qed.
+ symmetry; apply (eq_rect_eq_one_var__eq_dep1_eq_one_var _ _ _ eq_rect_eq).
+ apply eq_dep_sym in H; apply eq_dep_dep1; trivial.
+ Qed.
+ Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq.
+ Proof (fun eq_rect_eq P p x y =>
+ @eq_rect_eq_one_var__eq_dep_eq_one_var p P x (eq_rect_eq p P x) y).
(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)
- Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_.
+ Lemma eq_dep_eq_one_var__UIP_one_var (x y : U) (p1 : x = y) :
+ Eq_dep_eq_one_var (fun y => x = y) x eq_refl -> UIP_one_var_ x y p1.
Proof.
intro eq_dep_eq; red.
- intros; apply eq_dep_eq with (P := fun y => x = y).
- elim p2 using eq_indd.
elim p1 using eq_indd.
+ intros; apply eq_dep_eq.
+ elim p2 using eq_indd.
apply eq_dep_intro.
Qed.
+ Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_.
+ Proof (fun eq_dep_eq x y p1 =>
+ @eq_dep_eq_one_var__UIP_one_var x y p1 (eq_dep_eq _ _ _)).
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
- Lemma UIP__UIP_refl : UIP_ -> UIP_refl_.
+ Lemma UIP_one_var__UIP_refl_one_var (x : U) :
+ UIP_one_var_ x x eq_refl -> UIP_refl_one_var_ x.
Proof.
- intro UIP; red; intros; apply UIP.
+ intro UIP; red; intros; symmetry; apply UIP.
Qed.
+ Lemma UIP__UIP_refl : UIP_ -> UIP_refl_.
+ Proof (fun UIP x p =>
+ @UIP_one_var__UIP_refl_one_var x (UIP x x eq_refl) p).
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
- Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_.
+ Lemma UIP_refl_one_var__Streicher_K_one_var (x : U) (P : x = x -> Prop) :
+ UIP_refl_one_var_ x -> Streicher_K_one_var_ x P.
Proof.
intro UIP_refl; red; intros; rewrite UIP_refl; assumption.
Qed.
+ Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_.
+ Proof (fun UIP_refl x P =>
+ @UIP_refl_one_var__Streicher_K_one_var x P (UIP_refl x)).
(** We finally recover from K the Invariance by Substitution of
Reflexive Equality Proofs *)
- Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq.
+ Lemma Streicher_K_one_var__eq_rect_eq_one_var (p : U) (P : U -> Type) (x : P p) :
+ Streicher_K_one_var_ p (fun h => x = rew -> [P] h in x)
+ -> Eq_rect_eq_one_var p P x.
Proof.
intro Streicher_K; red; intros.
- apply Streicher_K with (p := h).
+ apply Streicher_K.
reflexivity.
Qed.
+ Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq.
+ Proof (fun Streicher_K p P x =>
+ @Streicher_K_one_var__eq_rect_eq_one_var p P x (Streicher_K p _)).
(** Remark: It is reasonable to think that [eq_rect_eq] is strictly
stronger than [eq_rec_eq] (which is [eq_rect_eq] restricted on [Set]):
@@ -332,13 +363,14 @@ End Equivalences.
proof of inclusion of h-level n into h-level n+1; see hlevelntosn
in https://github.com/vladimirias/Foundations.git). *)
-Theorem UIP_shift : forall U, UIP_refl_ U -> forall x:U, UIP_refl_ (x = x).
+Theorem UIP_shift_one_var (X : Type) (x : X) :
+ UIP_refl_one_var_ X x -> forall y : x = x, UIP_refl_one_var_ (x = x) y.
Proof.
- intros X UIP_refl x y.
- rewrite (UIP_refl x y).
+ intros UIP_refl y.
+ rewrite (UIP_refl y).
intros z.
assert (UIP:forall y' y'' : x = x, y' = y'').
- { intros. apply eq_trans with (eq_refl x). apply UIP_refl.
+ { intros. apply eq_trans with (eq_refl x). apply UIP_refl.
symmetry. apply UIP_refl. }
transitivity (eq_trans (eq_trans (UIP (eq_refl x) (eq_refl x)) z)
(eq_sym (UIP (eq_refl x) (eq_refl x)))).
@@ -350,6 +382,9 @@ Proof.
(eq_sym (UIP (eq_refl x) (eq_refl x))))).
destruct z. unfold e. destruct (UIP _ _). reflexivity.
Qed.
+Theorem UIP_shift : forall U, UIP_refl_ U -> forall x:U, UIP_refl_ (x = x).
+Proof (fun U UIP_refl x =>
+ @UIP_shift_one_var U x (UIP_refl x)).
Section Corollaries.
@@ -357,16 +392,22 @@ Section Corollaries.
(** UIP implies the injectivity of equality on dependent pairs in Type *)
- Definition Inj_dep_pair :=
- forall (P:U -> Type) (p:U) (x y:P p), existT P p x = existT P p y -> x = y.
- Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair.
+ Definition Inj_dep_pair_one_var (P : U -> Type) (p : U) (x : P p) :=
+ forall (y : P p), existT P p x = existT P p y -> x = y.
+ Definition Inj_dep_pair := forall P p x, Inj_dep_pair_one_var P p x.
+
+ Lemma eq_dep_eq_one_var__inj_pair2_one_var (P : U -> Type) (p : U) (x : P p) :
+ Eq_dep_eq_one_var U P p x -> Inj_dep_pair_one_var P p x.
Proof.
intro eq_dep_eq; red; intros.
apply eq_dep_eq.
apply eq_sigT_eq_dep.
assumption.
Qed.
+ Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair.
+ Proof (fun eq_dep_eq P p x =>
+ @eq_dep_eq_one_var__inj_pair2_one_var P p x (eq_dep_eq P p x)).
End Corollaries.