aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Lists
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-10-13 14:39:51 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2009-10-13 14:39:51 +0000
commitaa49d0523c769de01bc66f0f2b9e663ff0731cd6 (patch)
tree77a7c3f3837275d62a50e750dfb24ad6dd8d19cd /theories/Lists
parent562c684cd19c37e04901743c73933ea12148940b (diff)
MSets: a new generation of FSets
Same global ideas (in particular the use of modules/functors), but: - frequent use of Type Classes inside interfaces/implementation. For instance, no more eq_refl/eq_sym/eq_trans, but Equivalence. A class StrictOrder for lt in OrderedType. Extensive use of Proper and rewrite. - now that rewrite is mature, we write specifications of set operators via iff instead of many separate requirements based on ->. For instance add_spec : In y (add x s) <-> E.eq y x \/ In x s. Old-style specs are available in the functor Facts. - compare is now a pure function (t -> t -> comparison) instead of returning a dependent type Compare. - The "Raw" functors (the ones dealing with e.g. list with no sortedness proofs yet, but morally sorted when operating on them) are given proper interfaces and a generic functor allows to obtain a regular set implementation out of a "raw" one. The last two points allow to manipulate set objects that are completely free of proof-parts if one wants to. Later proofs will rely on type-classes instance search mechanism. No need to emphasis the fact that this new version is severely incompatible with the earlier one. I've no precise ideas yet on how allowing an easy transition (functors ?). For the moment, these new Sets are placed alongside the old ones, in directory MSets (M for Modular, to constrast with forthcoming CSets, see below). A few files exist currently in version foo.v and foo2.v, I'll try to merge them without breaking things. Old FSets will probably move to a contrib later. Still to be done: - adapt FMap in the same way - integrate misc stuff like multisets or the map function - CSets, i.e. Sets based on Type Classes : Integration of code contributed by S. Lescuyer is on the way. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12384 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Lists')
-rw-r--r--theories/Lists/List.v59
-rw-r--r--theories/Lists/SetoidList2.v850
2 files changed, 908 insertions, 1 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index f2961635e..228661ec6 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -1874,8 +1874,65 @@ Section NatSeq.
End NatSeq.
+(** * Existential and universal predicates over lists *)
- (** * Exporting hints and tactics *)
+Inductive ExistsL {A} (P:A->Prop) : list A -> Prop :=
+ | ExistsL_cons_hd : forall x l, P x -> ExistsL P (x::l)
+ | ExistsL_cons_tl : forall x l, ExistsL P l -> ExistsL P (x::l).
+Hint Constructors ExistsL.
+
+Lemma ExistsL_exists : forall A P (l:list A),
+ ExistsL P l <-> (exists x, In x l /\ P x).
+Proof.
+split.
+induction 1; firstorder.
+induction l; firstorder; subst; auto.
+Qed.
+
+Lemma ExistsL_nil : forall A (P:A->Prop), ExistsL P nil <-> False.
+Proof. split; inversion 1. Qed.
+
+Lemma ExistsL_cons : forall A (P:A->Prop) x l,
+ ExistsL P (x::l) <-> P x \/ ExistsL P l.
+Proof. split; inversion 1; auto. Qed.
+
+
+Inductive ForallL {A} (P:A->Prop) : list A -> Prop :=
+ | ForallL_nil : ForallL P nil
+ | ForallL_cons : forall x l, P x -> ForallL P l -> ForallL P (x::l).
+Hint Constructors ForallL.
+
+Lemma ForallL_forall : forall A P (l:list A),
+ ForallL P l <-> (forall x, In x l -> P x).
+Proof.
+split.
+induction 1; firstorder; subst; auto.
+induction l; firstorder.
+Qed.
+
+
+(** * Inversion of predicates over lists based on head symbol *)
+
+Ltac is_list_constr c :=
+ match c with
+ | nil => idtac
+ | (_::_) => idtac
+ | _ => fail
+ end.
+
+Ltac invlist f :=
+ match goal with
+ | H:f ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | _ => idtac
+ end.
+
+
+
+(** * Exporting hints and tactics *)
Hint Rewrite
diff --git a/theories/Lists/SetoidList2.v b/theories/Lists/SetoidList2.v
new file mode 100644
index 000000000..78226cb5d
--- /dev/null
+++ b/theories/Lists/SetoidList2.v
@@ -0,0 +1,850 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+Require Export List.
+Require Export Sorting.
+Require Export Setoid Basics Morphisms.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Logical relations over lists with respect to a setoid equality
+ or ordering. *)
+
+(** This can be seen as a complement of predicate [lelistA] and [sort]
+ found in [Sorting]. *)
+
+Section Type_with_equality.
+Variable A : Type.
+Variable eqA : A -> A -> Prop.
+
+(** Being in a list modulo an equality relation over type [A]. *)
+
+Inductive InA (x : A) : list A -> Prop :=
+ | InA_cons_hd : forall y l, eqA x y -> InA x (y :: l)
+ | InA_cons_tl : forall y l, InA x l -> InA x (y :: l).
+
+Hint Constructors InA.
+
+(** TODO: it would be nice to have a generic definition instead
+ of the previous one. Having [InA = ExistsL eqA] raises too
+ many compatibility issues. For now, we only state the equivalence: *)
+
+Lemma InA_altdef : forall x l, InA x l <-> ExistsL (eqA x) l.
+Proof. split; induction 1; auto. Qed.
+
+Lemma InA_cons : forall x y l, InA x (y::l) <-> eqA x y \/ InA x l.
+Proof.
+ intuition. invlist InA; auto.
+Qed.
+
+Lemma InA_nil : forall x, InA x nil <-> False.
+Proof.
+ intuition. invlist InA.
+Qed.
+
+(** An alternative definition of [InA]. *)
+
+Lemma InA_alt : forall x l, InA x l <-> exists y, eqA x y /\ In y l.
+Proof.
+ intros; rewrite InA_altdef, ExistsL_exists; firstorder.
+Qed.
+
+(** A list without redundancy modulo the equality over [A]. *)
+
+Inductive NoDupA : list A -> Prop :=
+ | NoDupA_nil : NoDupA nil
+ | NoDupA_cons : forall x l, ~ InA x l -> NoDupA l -> NoDupA (x::l).
+
+Hint Constructors NoDupA.
+
+
+Ltac inv := invlist InA; invlist sort; invlist lelistA; invlist NoDupA.
+
+(** lists with same elements modulo [eqA] *)
+
+Definition equivlistA l l' := forall x, InA x l <-> InA x l'.
+
+(** lists with same elements modulo [eqA] at the same place *)
+
+Inductive eqlistA : list A -> list A -> Prop :=
+ | eqlistA_nil : eqlistA nil nil
+ | eqlistA_cons : forall x x' l l',
+ eqA x x' -> eqlistA l l' -> eqlistA (x::l) (x'::l').
+
+Hint Constructors eqlistA.
+
+(** Results concerning lists modulo [eqA] *)
+
+Hypothesis eqA_equiv : Equivalence eqA.
+
+Hint Resolve (@Equivalence_Reflexive _ _ eqA_equiv).
+Hint Resolve (@Equivalence_Transitive _ _ eqA_equiv).
+Hint Immediate (@Equivalence_Symmetric _ _ eqA_equiv).
+
+(** First, the two notions [equivlistA] and [eqlistA] are indeed equivlances *)
+
+Global Instance equivlist_equiv : Equivalence equivlistA.
+Proof.
+ firstorder.
+Qed.
+
+Global Instance eqlistA_equiv : Equivalence eqlistA.
+Proof.
+ constructor; red.
+ induction x; auto.
+ induction 1; auto.
+ intros x y z H; revert z; induction H; auto.
+ inversion 1; subst; auto. invlist eqlistA; eauto with *.
+Qed.
+
+(** Moreover, [eqlistA] implies [equivlistA]. A reverse result
+ will be proved later for sorted list without duplicates. *)
+
+Global Instance eqlistA_equivlistA : subrelation eqlistA equivlistA.
+Proof.
+ intros x x' H. induction H.
+ intuition.
+ red; intros.
+ rewrite 2 InA_cons.
+ rewrite (IHeqlistA x0), H; intuition.
+Qed.
+
+(** InA is compatible with eqA (for its first arg) and with
+ equivlistA (and hence eqlistA) for its second arg *)
+
+Global Instance InA_compat : Proper (eqA==>equivlistA==>iff) InA.
+Proof.
+ intros x x' Hxx' l l' Hll'. rewrite (Hll' x).
+ rewrite 2 InA_alt; firstorder.
+Qed.
+
+(** For compatibility, an immediate consequence of [InA_compat] *)
+
+Lemma InA_eqA : forall l x y, eqA x y -> InA x l -> InA y l.
+Proof.
+ intros l x y H H'. rewrite <- H; auto.
+Qed.
+Hint Immediate InA_eqA.
+
+Lemma In_InA : forall l x, In x l -> InA x l.
+Proof.
+ simple induction l; simpl; intuition.
+ subst; auto.
+Qed.
+Hint Resolve In_InA.
+
+Lemma InA_split : forall l x, InA x l ->
+ exists l1, exists y, exists l2,
+ eqA x y /\ l = l1++y::l2.
+Proof.
+induction l; intros; inv.
+exists (@nil A); exists a; exists l; auto.
+destruct (IHl x H0) as (l1,(y,(l2,(H1,H2)))).
+exists (a::l1); exists y; exists l2; auto.
+split; simpl; f_equal; auto.
+Qed.
+
+Lemma InA_app : forall l1 l2 x,
+ InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
+Proof.
+ induction l1; simpl in *; intuition.
+ inv; auto.
+ elim (IHl1 l2 x H0); auto.
+Qed.
+
+Lemma InA_app_iff : forall l1 l2 x,
+ InA x (l1 ++ l2) <-> InA x l1 \/ InA x l2.
+Proof.
+ split.
+ apply InA_app.
+ destruct 1; generalize H; do 2 rewrite InA_alt.
+ destruct 1 as (y,(H1,H2)); exists y; split; auto.
+ apply in_or_app; auto.
+ destruct 1 as (y,(H1,H2)); exists y; split; auto.
+ apply in_or_app; auto.
+Qed.
+
+Lemma InA_rev : forall p m,
+ InA p (rev m) <-> InA p m.
+Proof.
+ intros; do 2 rewrite InA_alt.
+ split; intros (y,H); exists y; intuition.
+ rewrite In_rev; auto.
+ rewrite <- In_rev; auto.
+Qed.
+
+
+
+Section NoDupA.
+
+Lemma NoDupA_app : forall l l', NoDupA l -> NoDupA l' ->
+ (forall x, InA x l -> InA x l' -> False) ->
+ NoDupA (l++l').
+Proof.
+induction l; simpl; auto; intros.
+inv.
+constructor.
+rewrite InA_alt; intros (y,(H4,H5)).
+destruct (in_app_or _ _ _ H5).
+elim H2.
+rewrite InA_alt.
+exists y; auto.
+apply (H1 a).
+auto.
+rewrite InA_alt.
+exists y; auto.
+apply IHl; auto.
+intros.
+apply (H1 x); auto.
+Qed.
+
+Lemma NoDupA_rev : forall l, NoDupA l -> NoDupA (rev l).
+Proof.
+induction l.
+simpl; auto.
+simpl; intros.
+inv.
+apply NoDupA_app; auto.
+constructor; auto.
+intro; inv.
+intros x.
+rewrite InA_alt.
+intros (x1,(H2,H3)).
+intro; inv.
+destruct H0.
+rewrite <- H4, H2.
+apply In_InA.
+rewrite In_rev; auto.
+Qed.
+
+Lemma NoDupA_split : forall l l' x, NoDupA (l++x::l') -> NoDupA (l++l').
+Proof.
+ induction l; simpl in *; intros; inv; auto.
+ constructor; eauto.
+ contradict H0.
+ rewrite InA_app_iff in *.
+ rewrite InA_cons.
+ intuition.
+Qed.
+
+Lemma NoDupA_swap : forall l l' x, NoDupA (l++x::l') -> NoDupA (x::l++l').
+Proof.
+ induction l; simpl in *; intros; inv; auto.
+ constructor; eauto.
+ assert (H2:=IHl _ _ H1).
+ inv.
+ rewrite InA_cons.
+ red; destruct 1.
+ apply H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; auto.
+ apply H; auto.
+ constructor.
+ contradict H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; intuition.
+ eapply NoDupA_split; eauto.
+Qed.
+
+Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y ->
+ NoDupA (x::l) -> NoDupA (l1++y::l2) ->
+ equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
+Proof.
+ intros; intro a.
+ generalize (H2 a).
+ rewrite !InA_app_iff, !InA_cons.
+ inv.
+ assert (SW:=NoDupA_swap H1). inv.
+ rewrite InA_app_iff in H0.
+ split; intros.
+ assert (~eqA a x) by (contradict H3; rewrite <- H3; auto).
+ assert (~eqA a y) by (rewrite <- H; auto).
+ tauto.
+ assert (OR : eqA a x \/ InA a l) by intuition. clear H6.
+ destruct OR as [EQN|INA]; auto.
+ elim H0.
+ rewrite <-H,<-EQN; auto.
+Qed.
+
+End NoDupA.
+
+
+
+Section Fold.
+
+Variable B:Type.
+Variable eqB:B->B->Prop.
+Variable st:Equivalence eqB.
+Variable f:A->B->B.
+Variable i:B.
+Variable Comp:Proper (eqA==>eqB==>eqB) f.
+
+Lemma fold_right_eqlistA :
+ forall s s', eqlistA s s' ->
+ eqB (fold_right f i s) (fold_right f i s').
+Proof.
+induction 1; simpl; auto with relations.
+apply Comp; auto.
+Qed.
+
+(** [ForallL2] : specifies that a certain binary predicate should
+ always hold when inspecting two different elements of the list. *)
+
+Inductive ForallL2 (R : A -> A -> Prop) : list A -> Prop :=
+ | ForallNil : ForallL2 R nil
+ | ForallCons : forall a l,
+ (forall b, In b l -> R a b) ->
+ ForallL2 R l -> ForallL2 R (a::l).
+Hint Constructors ForallL2.
+
+(** [NoDupA] can be written in terms of [ForallL2] *)
+
+Lemma ForallL2_NoDupA : forall l,
+ ForallL2 (fun a b => ~eqA a b) l <-> NoDupA l.
+Proof.
+ induction l; split; intros; auto.
+ invlist ForallL2. constructor; [ | rewrite <- IHl; auto ].
+ rewrite InA_alt; intros (a',(Haa',Ha')).
+ exact (H0 a' Ha' Haa').
+ invlist NoDupA. constructor; [ | rewrite IHl; auto ].
+ intros b Hb.
+ contradict H0.
+ rewrite InA_alt; exists b; auto.
+Qed.
+
+Lemma ForallL2_impl : forall (R R':A->A->Prop),
+ (forall a b, R a b -> R' a b) ->
+ forall l, ForallL2 R l -> ForallL2 R' l.
+Proof.
+ induction 2; auto.
+Qed.
+
+(** The following definition is easier to use than [ForallL2]. *)
+
+Definition ForallL2_alt (R:A->A->Prop) l :=
+ forall a b, InA a l -> InA b l -> ~eqA a b -> R a b.
+
+Section Restriction.
+Variable R : A -> A -> Prop.
+
+(** [ForallL2] and [ForallL2_alt] are related, but no completely
+ equivalent. For proving one implication, we need to know that the
+ list has no duplicated elements... *)
+
+Lemma ForallL2_equiv1 : forall l, NoDupA l ->
+ ForallL2_alt R l -> ForallL2 R l.
+Proof.
+ induction l; auto.
+ constructor. intros b Hb.
+ inv.
+ apply H0; auto.
+ contradict H1; rewrite H1; auto.
+ apply IHl.
+ inv; auto.
+ intros b c Hb Hc Hneq.
+ apply H0; auto.
+Qed.
+
+(** ... and for proving the other implication, we need to be able
+ to reverse and adapt relation [R] modulo [eqA]. *)
+
+Hypothesis R_sym : Symmetric R.
+Hypothesis R_compat : Proper (eqA==>eqA==>iff) R.
+
+Lemma ForallL2_equiv2 : forall l,
+ ForallL2 R l -> ForallL2_alt R l.
+Proof.
+ induction l.
+ intros _. red. intros a b Ha. inv.
+ inversion_clear 1 as [|? ? H_R Hl].
+ intros b c Hb Hc Hneq.
+ inv.
+ (* b,c = a : impossible *)
+ elim Hneq; eauto.
+ (* b = a, c in l *)
+ rewrite InA_alt in H0; destruct H0 as (d,(Hcd,Hd)).
+ rewrite H, Hcd; auto.
+ (* b in l, c = a *)
+ rewrite InA_alt in H; destruct H as (d,(Hcd,Hd)).
+ rewrite H0, Hcd; auto.
+ (* b,c in l *)
+ apply (IHl Hl); auto.
+Qed.
+
+Lemma ForallL2_equiv : forall l, NoDupA l ->
+ (ForallL2 R l <-> ForallL2_alt R l).
+Proof.
+split; [apply ForallL2_equiv2|apply ForallL2_equiv1]; auto.
+Qed.
+
+Lemma ForallL2_equivlistA : forall l l', NoDupA l' ->
+ equivlistA l l' -> ForallL2 R l -> ForallL2 R l'.
+Proof.
+intros.
+apply ForallL2_equiv1; auto.
+intros a b Ha Hb Hneq.
+red in H0; rewrite <- H0 in Ha,Hb.
+revert a b Ha Hb Hneq.
+change (ForallL2_alt R l).
+apply ForallL2_equiv2; auto.
+Qed.
+
+(** Two-argument functions that allow to reorder their arguments. *)
+Definition transpose (f : A -> B -> B) :=
+ forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
+
+(** A version of transpose with restriction on where it should hold *)
+Definition transpose_restr (R : A -> A -> Prop)(f : A -> B -> B) :=
+ forall (x y : A) (z : B), R x y -> eqB (f x (f y z)) (f y (f x z)).
+
+Variable TraR :transpose_restr R f.
+
+Lemma fold_right_commutes_restr :
+ forall s1 s2 x, ForallL2 R (s1++x::s2) ->
+ eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
+Proof.
+induction s1; simpl; auto; intros.
+reflexivity.
+transitivity (f a (f x (fold_right f i (s1++s2)))).
+apply Comp; auto.
+apply IHs1.
+invlist ForallL2; auto.
+apply TraR.
+invlist ForallL2; auto.
+apply H0.
+apply in_or_app; simpl; auto.
+Qed.
+
+Lemma fold_right_equivlistA_restr :
+ forall s s', NoDupA s -> NoDupA s' -> ForallL2 R s ->
+ equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
+Proof.
+ simple induction s.
+ destruct s'; simpl.
+ intros; reflexivity.
+ unfold equivlistA; intros.
+ destruct (H2 a).
+ assert (InA a nil) by auto; inv.
+ intros x l Hrec s' N N' F E; simpl in *.
+ assert (InA x s') by (rewrite <- (E x); auto).
+ destruct (InA_split H) as (s1,(y,(s2,(H1,H2)))).
+ subst s'.
+ transitivity (f x (fold_right f i (s1++s2))).
+ apply Comp; auto.
+ apply Hrec; auto.
+ inv; auto.
+ eapply NoDupA_split; eauto.
+ invlist ForallL2; auto.
+ eapply equivlistA_NoDupA_split; eauto.
+ transitivity (f y (fold_right f i (s1++s2))).
+ apply Comp; auto. reflexivity.
+ symmetry; apply fold_right_commutes_restr.
+ apply ForallL2_equivlistA with (x::l); auto.
+Qed.
+
+Lemma fold_right_add_restr :
+ forall s' s x, NoDupA s -> NoDupA s' -> ForallL2 R s' -> ~ InA x s ->
+ equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
+Proof.
+ intros; apply (@fold_right_equivlistA_restr s' (x::s)); auto.
+Qed.
+
+End Restriction.
+
+(** we now state similar results, but without restriction on transpose. *)
+
+Variable Tra :transpose f.
+
+Lemma fold_right_commutes : forall s1 s2 x,
+ eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
+Proof.
+induction s1; simpl; auto; intros.
+reflexivity.
+transitivity (f a (f x (fold_right f i (s1++s2)))); auto.
+apply Comp; auto.
+Qed.
+
+Lemma fold_right_equivlistA :
+ forall s s', NoDupA s -> NoDupA s' ->
+ equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
+Proof.
+intros; apply fold_right_equivlistA_restr with (R:=fun _ _ => True);
+ repeat red; auto.
+apply ForallL2_equiv1; try red; auto.
+Qed.
+
+Lemma fold_right_add :
+ forall s' s x, NoDupA s -> NoDupA s' -> ~ InA x s ->
+ equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
+Proof.
+ intros; apply (@fold_right_equivlistA s' (x::s)); auto.
+Qed.
+
+End Fold.
+
+Section Remove.
+
+Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
+
+Lemma InA_dec : forall x l, { InA x l } + { ~ InA x l }.
+Proof.
+induction l.
+right; auto.
+intro; inv.
+destruct (eqA_dec x a).
+left; auto.
+destruct IHl.
+left; auto.
+right; intro; inv; contradiction.
+Qed.
+
+Fixpoint removeA (x : A) (l : list A) : list A :=
+ match l with
+ | nil => nil
+ | y::tl => if (eqA_dec x y) then removeA x tl else y::(removeA x tl)
+ end.
+
+Lemma removeA_filter : forall x l,
+ removeA x l = filter (fun y => if eqA_dec x y then false else true) l.
+Proof.
+induction l; simpl; auto.
+destruct (eqA_dec x a); auto.
+rewrite IHl; auto.
+Qed.
+
+Lemma removeA_InA : forall l x y, InA y (removeA x l) <-> InA y l /\ ~eqA x y.
+Proof.
+induction l; simpl; auto.
+split.
+intro; inv.
+destruct 1; inv.
+intros.
+destruct (eqA_dec x a); simpl; auto.
+rewrite IHl; split; destruct 1; split; auto.
+inv; auto.
+destruct H0; transitivity a; auto.
+split.
+intro; inv.
+split; auto.
+contradict n.
+transitivity y; auto.
+rewrite (IHl x y) in H0; destruct H0; auto.
+destruct 1; inv; auto.
+right; rewrite IHl; auto.
+Qed.
+
+Lemma removeA_NoDupA :
+ forall s x, NoDupA s -> NoDupA (removeA x s).
+Proof.
+simple induction s; simpl; intros.
+auto.
+inv.
+destruct (eqA_dec x a); simpl; auto.
+constructor; auto.
+rewrite removeA_InA.
+intuition.
+Qed.
+
+Lemma removeA_equivlistA : forall l l' x,
+ ~InA x l -> equivlistA (x :: l) l' -> equivlistA l (removeA x l').
+Proof.
+unfold equivlistA; intros.
+rewrite removeA_InA.
+split; intros.
+rewrite <- H0; split; auto.
+contradict H.
+apply InA_eqA with x0; auto.
+rewrite <- (H0 x0) in H1.
+destruct H1.
+inv; auto.
+elim H2; auto.
+Qed.
+
+End Remove.
+
+
+
+(** Results concerning lists modulo [eqA] and [ltA] *)
+
+Variable ltA : A -> A -> Prop.
+Hypothesis ltA_strorder : StrictOrder ltA.
+Hypothesis ltA_compat : Proper (eqA==>eqA==>iff) ltA.
+
+Hint Resolve (@StrictOrder_Transitive _ _ ltA_strorder).
+
+Notation InfA:=(lelistA ltA).
+Notation SortA:=(sort ltA).
+
+Hint Constructors lelistA sort.
+
+Lemma InfA_ltA :
+ forall l x y, ltA x y -> InfA y l -> InfA x l.
+Proof.
+ destruct l; constructor. inv; eauto.
+Qed.
+
+Global Instance InfA_compat : Proper (eqA==>eqlistA==>iff) InfA.
+Proof.
+ intros x x' Hxx' l l' Hll'.
+ inversion_clear Hll'.
+ intuition.
+ split; intro; inv; constructor.
+ rewrite <- Hxx', <- H; auto.
+ rewrite Hxx', H; auto.
+Qed.
+
+(** For compatibility, can be deduced from [InfA_compat] *)
+Lemma InfA_eqA :
+ forall l x y, eqA x y -> InfA y l -> InfA x l.
+Proof.
+ intros l x y H; rewrite H; auto.
+Qed.
+Hint Immediate InfA_ltA InfA_eqA.
+
+Lemma SortA_InfA_InA :
+ forall l x a, SortA l -> InfA a l -> InA x l -> ltA a x.
+Proof.
+ simple induction l.
+ intros. inv.
+ intros. inv.
+ setoid_replace x with a; auto.
+ eauto.
+Qed.
+
+Lemma In_InfA :
+ forall l x, (forall y, In y l -> ltA x y) -> InfA x l.
+Proof.
+ simple induction l; simpl; intros; constructor; auto.
+Qed.
+
+Lemma InA_InfA :
+ forall l x, (forall y, InA y l -> ltA x y) -> InfA x l.
+Proof.
+ simple induction l; simpl; intros; constructor; auto.
+Qed.
+
+(* In fact, this may be used as an alternative definition for InfA: *)
+
+Lemma InfA_alt :
+ forall l x, SortA l -> (InfA x l <-> (forall y, InA y l -> ltA x y)).
+Proof.
+split.
+intros; eapply SortA_InfA_InA; eauto.
+apply InA_InfA.
+Qed.
+
+Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
+Proof.
+ induction l1; simpl; auto.
+ intros; inv; auto.
+Qed.
+
+Lemma SortA_app :
+ forall l1 l2, SortA l1 -> SortA l2 ->
+ (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
+ SortA (l1 ++ l2).
+Proof.
+ induction l1; simpl in *; intuition.
+ inv.
+ constructor; auto.
+ apply InfA_app; auto.
+ destruct l2; auto.
+Qed.
+
+Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
+Proof.
+ simple induction l; auto.
+ intros x l' H H0.
+ inv.
+ constructor; auto.
+ intro.
+ apply (StrictOrder_Irreflexive x).
+ eapply SortA_InfA_InA; eauto.
+Qed.
+
+
+(** Some results about [eqlistA] *)
+
+Section EqlistA.
+
+Lemma eqlistA_length : forall l l', eqlistA l l' -> length l = length l'.
+Proof.
+induction 1; auto; simpl; congruence.
+Qed.
+
+Global Instance app_eqlistA_compat :
+ Proper (eqlistA==>eqlistA==>eqlistA) (@app A).
+Proof.
+ repeat red; induction 1; simpl; auto.
+Qed.
+
+(** For compatibility, can be deduced from app_eqlistA_compat **)
+Lemma eqlistA_app : forall l1 l1' l2 l2',
+ eqlistA l1 l1' -> eqlistA l2 l2' -> eqlistA (l1++l2) (l1'++l2').
+Proof.
+intros l1 l1' l2 l2' H H'; rewrite H, H'; reflexivity.
+Qed.
+
+Lemma eqlistA_rev_app : forall l1 l1',
+ eqlistA l1 l1' -> forall l2 l2', eqlistA l2 l2' ->
+ eqlistA ((rev l1)++l2) ((rev l1')++l2').
+Proof.
+induction 1; auto.
+simpl; intros.
+do 2 rewrite app_ass; simpl; auto.
+Qed.
+
+Global Instance rev_eqlistA_compat : Proper (eqlistA==>eqlistA) (@rev A).
+Proof.
+repeat red. intros.
+rewrite (app_nil_end (rev x)), (app_nil_end (rev y)).
+apply eqlistA_rev_app; auto.
+Qed.
+
+Lemma eqlistA_rev : forall l1 l1',
+ eqlistA l1 l1' -> eqlistA (rev l1) (rev l1').
+Proof.
+apply rev_eqlistA_compat.
+Qed.
+
+Lemma SortA_equivlistA_eqlistA : forall l l',
+ SortA l -> SortA l' -> equivlistA l l' -> eqlistA l l'.
+Proof.
+induction l; destruct l'; simpl; intros; auto.
+destruct (H1 a); assert (InA a nil) by auto; inv.
+destruct (H1 a); assert (InA a nil) by auto; inv.
+inv.
+assert (forall y, InA y l -> ltA a y).
+intros; eapply SortA_InfA_InA with (l:=l); eauto.
+assert (forall y, InA y l' -> ltA a0 y).
+intros; eapply SortA_InfA_InA with (l:=l'); eauto.
+clear H3 H4.
+assert (eqA a a0).
+ destruct (H1 a).
+ destruct (H1 a0).
+ assert (InA a (a0::l')) by auto. inv; auto.
+ assert (InA a0 (a::l)) by auto. inv; auto.
+ elim (StrictOrder_Irreflexive a); eauto.
+constructor; auto.
+apply IHl; auto.
+split; intros.
+destruct (H1 x).
+assert (InA x (a0::l')) by auto. inv; auto.
+rewrite H9,<-H3 in H4. elim (StrictOrder_Irreflexive a); eauto.
+destruct (H1 x).
+assert (InA x (a::l)) by auto. inv; auto.
+rewrite H9,H3 in H4. elim (StrictOrder_Irreflexive a0); eauto.
+Qed.
+
+End EqlistA.
+
+(** A few things about [filter] *)
+
+Section Filter.
+
+Lemma filter_sort : forall f l, SortA l -> SortA (List.filter f l).
+Proof.
+induction l; simpl; auto.
+intros; inv; auto.
+destruct (f a); auto.
+constructor; auto.
+apply In_InfA; auto.
+intros.
+rewrite filter_In in H; destruct H.
+eapply SortA_InfA_InA; eauto.
+Qed.
+
+Implicit Arguments eq [ [A] ].
+
+Lemma filter_InA : forall f, Proper (eqA==>eq) f ->
+ forall l x, InA x (List.filter f l) <-> InA x l /\ f x = true.
+Proof.
+clear ltA ltA_compat ltA_strorder.
+intros; do 2 rewrite InA_alt; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; exists y; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; intuition.
+ rewrite (H _ _ H0); auto.
+destruct H1 as (y,(H0,H1)); exists y; rewrite filter_In; intuition.
+ rewrite <- (H _ _ H0); auto.
+Qed.
+
+Lemma filter_split :
+ forall f, (forall x y, f x = true -> f y = false -> ltA x y) ->
+ forall l, SortA l -> l = filter f l ++ filter (fun x=>negb (f x)) l.
+Proof.
+induction l; simpl; intros; auto.
+inv.
+rewrite IHl at 1; auto.
+case_eq (f a); simpl; intros; auto.
+assert (forall e, In e l -> f e = false).
+ intros.
+ assert (H4:=SortA_InfA_InA H1 H2 (In_InA H3)).
+ case_eq (f e); simpl; intros; auto.
+ elim (StrictOrder_Irreflexive e).
+ transitivity a; auto.
+replace (List.filter f l) with (@nil A); auto.
+generalize H3; clear; induction l; simpl; auto.
+case_eq (f a); auto; intros.
+rewrite H3 in H; auto; try discriminate.
+Qed.
+
+End Filter.
+End Type_with_equality.
+
+
+Hint Constructors InA eqlistA NoDupA sort lelistA.
+
+Section Find.
+
+Variable A B : Type.
+Variable eqA : A -> A -> Prop.
+Hypothesis eqA_equiv : Equivalence eqA.
+Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
+
+Fixpoint findA (f : A -> bool) (l:list (A*B)) : option B :=
+ match l with
+ | nil => None
+ | (a,b)::l => if f a then Some b else findA f l
+ end.
+
+Lemma findA_NoDupA :
+ forall l a b,
+ NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
+ (InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (a,b) l <->
+ findA (fun a' => if eqA_dec a a' then true else false) l = Some b).
+Proof.
+set (eqk := fun p p' : A*B => eqA (fst p) (fst p')).
+set (eqke := fun p p' : A*B => eqA (fst p) (fst p') /\ snd p = snd p').
+induction l; intros; simpl.
+split; intros; try discriminate.
+invlist InA.
+destruct a as (a',b'); rename a0 into a.
+invlist NoDupA.
+split; intros.
+invlist InA.
+compute in H2; destruct H2. subst b'.
+destruct (eqA_dec a a'); intuition.
+destruct (eqA_dec a a'); simpl.
+contradict H0.
+revert e H2; clear - eqA_equiv.
+induction l.
+intros; invlist InA.
+intros; invlist InA; auto.
+destruct a0.
+compute in H; destruct H.
+subst b.
+left; auto.
+compute.
+transitivity a; auto. symmetry; auto.
+rewrite <- IHl; auto.
+destruct (eqA_dec a a'); simpl in *.
+left; split; simpl; congruence.
+right. rewrite IHl; auto.
+Qed.
+
+End Find.