diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2003-04-07 09:55:07 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2003-04-07 09:55:07 +0000 |
commit | 729375b88492cf72b122a26c49e46497545a3542 (patch) | |
tree | e27eeda68271f934de46dd299e356d2192015c66 /theories/Lists | |
parent | 007234026bd8a435fa44ed672b223a3b3c6f83a6 (diff) |
Cosmetique
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3855 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Lists')
-rwxr-xr-x | theories/Lists/Streams.v | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v index d63fcac2b..35d67e568 100755 --- a/theories/Lists/Streams.v +++ b/theories/Lists/Streams.v @@ -68,7 +68,7 @@ CoInductive EqSt : Stream->Stream->Prop := (** A coinduction principle *) -Meta Definition CoInduction proof := +Tactic Definition CoInduction proof := Cofix proof; Intros; Constructor; [Clear proof | Try (Apply proof;Clear proof)]. @@ -76,7 +76,7 @@ Meta Definition CoInduction proof := (** Extensional equality is an equivalence relation *) Theorem EqSt_reflex : (s:Stream)(EqSt s s). -(CoInduction EqSt_reflex). +CoInduction EqSt_reflex. Reflexivity. Qed. |