aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Lists/List.v
diff options
context:
space:
mode:
authorGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2014-02-03 11:11:38 +0100
committerGravatar Pierre Letouzey <pierre.letouzey@inria.fr>2014-02-07 11:50:26 +0100
commit009fb68f0578e462b817f50772e2fba8d58c4f0d (patch)
tree2dc5b41222371a3a3e3d0655130f056d6599fc10 /theories/Lists/List.v
parent8089dc960c9e8caf778907fd87be48d77b066433 (diff)
FinFun.v: results about injective/surjective/bijective fonctions over finite domains
+ Some extra results about NoDup, Fin.t, ...
Diffstat (limited to 'theories/Lists/List.v')
-rw-r--r--theories/Lists/List.v147
1 files changed, 129 insertions, 18 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index d5d58efc7..d282fe8c3 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -522,7 +522,6 @@ Section Elts.
simpl in *. apply IHn. auto with arith.
Qed.
-
(*****************)
(** ** Remove *)
(*****************)
@@ -1178,6 +1177,21 @@ End Fold_Right_Recursor.
| x :: tl => if f x then Some x else find tl
end.
+ Lemma find_some l x : find l = Some x -> In x l /\ f x = true.
+ Proof.
+ induction l as [|a l IH]; simpl; [easy| ].
+ case_eq (f a); intros Ha Eq.
+ * injection Eq as ->; auto.
+ * destruct (IH Eq); auto.
+ Qed.
+
+ Lemma find_none l : find l = None -> forall x, In x l -> f x = false.
+ Proof.
+ induction l as [|a l IH]; simpl; [easy|].
+ case_eq (f a); intros Ha Eq x IN; [easy|].
+ destruct IN as [<-|IN]; auto.
+ Qed.
+
(** [partition] *)
Fixpoint partition (l:list A) : list A * list A :=
@@ -1582,6 +1596,61 @@ Section Cutting.
End Cutting.
+(**********************************************************************)
+(** ** Predicate for List addition/removal (no need for decidability) *)
+(**********************************************************************)
+
+Section Add.
+
+ Variable A : Type.
+
+ (* [Add a l l'] means that [l'] is exactly [l], with [a] added
+ once somewhere *)
+ Inductive Add (a:A) : list A -> list A -> Prop :=
+ | Add_head l : Add a l (a::l)
+ | Add_cons x l l' : Add a l l' -> Add a (x::l) (x::l').
+
+ Lemma Add_app a l1 l2 : Add a (l1++l2) (l1++a::l2).
+ Proof.
+ induction l1; simpl; now constructor.
+ Qed.
+
+ Lemma Add_split a l l' :
+ Add a l l' -> exists l1 l2, l = l1++l2 /\ l' = l1++a::l2.
+ Proof.
+ induction 1.
+ - exists nil; exists l; split; trivial.
+ - destruct IHAdd as (l1 & l2 & Hl & Hl').
+ exists (x::l1); exists l2; split; simpl; f_equal; trivial.
+ Qed.
+
+ Lemma Add_in a l l' : Add a l l' ->
+ forall x, In x l' <-> In x (a::l).
+ Proof.
+ induction 1; intros; simpl in *; rewrite ?IHAdd; tauto.
+ Qed.
+
+ Lemma Add_length a l l' : Add a l l' -> length l' = S (length l).
+ Proof.
+ induction 1; simpl; auto with arith.
+ Qed.
+
+ Lemma Add_inv a l : In a l -> exists l', Add a l' l.
+ Proof.
+ intro Ha. destruct (in_split _ _ Ha) as (l1 & l2 & ->).
+ exists (l1 ++ l2). apply Add_app.
+ Qed.
+
+ Lemma incl_Add_inv a l u v :
+ ~In a l -> incl (a::l) v -> Add a u v -> incl l u.
+ Proof.
+ intros Ha H AD y Hy.
+ assert (Hy' : In y (a::u)).
+ { rewrite <- (Add_in AD). apply H; simpl; auto. }
+ destruct Hy'; [ subst; now elim Ha | trivial ].
+ Qed.
+
+End Add.
(********************************)
(** ** Lists without redundancy *)
@@ -1595,27 +1664,32 @@ Section ReDun.
| NoDup_nil : NoDup nil
| NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
- Lemma NoDup_remove_1 : forall l l' a, NoDup (l++a::l') -> NoDup (l++l').
+ Lemma NoDup_Add a l l' : Add a l l' -> (NoDup l' <-> NoDup l /\ ~In a l).
+ Proof.
+ induction 1 as [l|x l l' AD IH].
+ - split; [ inversion_clear 1; now split | now constructor ].
+ - split.
+ + inversion_clear 1. rewrite IH in *. rewrite (Add_in AD) in *.
+ simpl in *; split; try constructor; intuition.
+ + intros (N,IN). inversion_clear N. constructor.
+ * rewrite (Add_in AD); simpl in *; intuition.
+ * apply IH. split; trivial. simpl in *; intuition.
+ Qed.
+
+ Lemma NoDup_remove l l' a :
+ NoDup (l++a::l') -> NoDup (l++l') /\ ~In a (l++l').
+ Proof.
+ apply NoDup_Add. apply Add_app.
+ Qed.
+
+ Lemma NoDup_remove_1 l l' a : NoDup (l++a::l') -> NoDup (l++l').
Proof.
- induction l; simpl.
- inversion_clear 1; auto.
- inversion_clear 1.
- constructor.
- contradict H0.
- apply in_or_app; destruct (in_app_or _ _ _ H0); simpl; tauto.
- apply IHl with a0; auto.
+ intros. now apply NoDup_remove with a.
Qed.
- Lemma NoDup_remove_2 : forall l l' a, NoDup (l++a::l') -> ~In a (l++l').
+ Lemma NoDup_remove_2 l l' a : NoDup (l++a::l') -> ~In a (l++l').
Proof.
- induction l; simpl.
- inversion_clear 1; auto.
- inversion_clear 1.
- contradict H0.
- destruct H0.
- subst a0.
- apply in_or_app; right; red; auto.
- destruct (IHl _ _ H1); auto.
+ intros. now apply NoDup_remove.
Qed.
(** Alternative characterisations of being without duplicates,
@@ -1659,8 +1733,45 @@ Section ReDun.
intros i j Hi Hj E. apply eq_add_S, H; simpl; auto with arith. }
Qed.
+ (** Having [NoDup] hypotheses bring more precise facts about [incl]. *)
+
+ Lemma NoDup_incl_length l l' :
+ NoDup l -> incl l l' -> length l <= length l'.
+ Proof.
+ intros N. revert l'. induction N as [|a l Hal N IH]; simpl.
+ - auto with arith.
+ - intros l' H.
+ destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. }
+ rewrite (Add_length AD). apply le_n_S. apply IH.
+ now apply incl_Add_inv with a l'.
+ Qed.
+
+ Lemma NoDup_length_incl l l' :
+ NoDup l -> length l' <= length l -> incl l l' -> incl l' l.
+ Proof.
+ intros N. revert l'. induction N as [|a l Hal N IH].
+ - destruct l'; easy.
+ - intros l' E H x Hx.
+ destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. }
+ rewrite (Add_in AD) in Hx. simpl in Hx.
+ destruct Hx as [Hx|Hx]; [left; trivial|right].
+ revert x Hx. apply (IH l''); trivial.
+ * apply le_S_n. now rewrite <- (Add_length AD).
+ * now apply incl_Add_inv with a l'.
+ Qed.
+
End ReDun.
+(** NoDup and map *)
+
+(** NB: the reciprocal result holds only for injective functions,
+ see FinFun.v *)
+
+Lemma NoDup_map_inv A B (f:A->B) l : NoDup (map f l) -> NoDup l.
+Proof.
+ induction l; simpl; inversion_clear 1; subst; constructor; auto.
+ intro H. now apply (in_map f) in H.
+Qed.
(***********************************)
(** ** Sequence of natural numbers *)