diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2003-09-22 13:42:36 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2003-09-22 13:42:36 +0000 |
commit | 980f8a26d5cb92de58a0b88e313701fe80f214bb (patch) | |
tree | 8cb5b04f3a783044415f1637da8366282f250f00 /theories/IntMap | |
parent | 171c7cbc624f399c306c00b9188810bb12f4957e (diff) |
Deplacement de lemmes de IntMap vers ZArith
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@4440 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/IntMap')
-rw-r--r-- | theories/IntMap/Adalloc.v | 44 |
1 files changed, 0 insertions, 44 deletions
diff --git a/theories/IntMap/Adalloc.v b/theories/IntMap/Adalloc.v index 32bebd257..e348cfafb 100644 --- a/theories/IntMap/Adalloc.v +++ b/theories/IntMap/Adalloc.v @@ -224,50 +224,6 @@ Section AdAlloc. (** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)] are in [dom m]: *) - Lemma convert_xH : (convert xH)=(1). - Proof. - Reflexivity. - Qed. - - Lemma positive_to_nat_mult : (p:positive) (n,m:nat) - (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)). - Proof. - Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n). - Rewrite (H (plus n n) m). Reflexivity. - Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H. - Trivial. - Qed. - - Lemma positive_to_nat_2 : (p:positive) - (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))). - Proof. - Intros. Rewrite <- positive_to_nat_mult. Reflexivity. - Qed. - - Lemma positive_to_nat_4 : (p:positive) - (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))). - Proof. - Intros. Rewrite <- positive_to_nat_mult. Reflexivity. - Qed. - - Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)). - Proof. - Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. - Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity. - Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4. - Rewrite H. Reflexivity. - Reflexivity. - Qed. - - Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))). - Proof. - Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2. - Rewrite positive_to_nat_4. Inversion H. Rewrite H1. Rewrite <- plus_Snm_nSm. Reflexivity. - Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4. - Inversion H. Rewrite H1. Reflexivity. - Reflexivity. - Qed. - Lemma nat_of_ad_double : (a:ad) (nat_of_ad (ad_double a))=(mult (2) (nat_of_ad a)). Proof. Induction a. Trivial. |