aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/IntMap
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-09-22 13:42:36 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-09-22 13:42:36 +0000
commit980f8a26d5cb92de58a0b88e313701fe80f214bb (patch)
tree8cb5b04f3a783044415f1637da8366282f250f00 /theories/IntMap
parent171c7cbc624f399c306c00b9188810bb12f4957e (diff)
Deplacement de lemmes de IntMap vers ZArith
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@4440 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/IntMap')
-rw-r--r--theories/IntMap/Adalloc.v44
1 files changed, 0 insertions, 44 deletions
diff --git a/theories/IntMap/Adalloc.v b/theories/IntMap/Adalloc.v
index 32bebd257..e348cfafb 100644
--- a/theories/IntMap/Adalloc.v
+++ b/theories/IntMap/Adalloc.v
@@ -224,50 +224,6 @@ Section AdAlloc.
(** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)]
are in [dom m]: *)
- Lemma convert_xH : (convert xH)=(1).
- Proof.
- Reflexivity.
- Qed.
-
- Lemma positive_to_nat_mult : (p:positive) (n,m:nat)
- (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)).
- Proof.
- Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n).
- Rewrite (H (plus n n) m). Reflexivity.
- Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H.
- Trivial.
- Qed.
-
- Lemma positive_to_nat_2 : (p:positive)
- (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))).
- Proof.
- Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
- Qed.
-
- Lemma positive_to_nat_4 : (p:positive)
- (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))).
- Proof.
- Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
- Qed.
-
- Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)).
- Proof.
- Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2.
- Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity.
- Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
- Rewrite H. Reflexivity.
- Reflexivity.
- Qed.
-
- Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))).
- Proof.
- Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2.
- Rewrite positive_to_nat_4. Inversion H. Rewrite H1. Rewrite <- plus_Snm_nSm. Reflexivity.
- Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
- Inversion H. Rewrite H1. Reflexivity.
- Reflexivity.
- Qed.
-
Lemma nat_of_ad_double : (a:ad) (nat_of_ad (ad_double a))=(mult (2) (nat_of_ad a)).
Proof.
Induction a. Trivial.