aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-03-21 14:41:53 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-03-21 14:41:53 +0000
commit94d72b73a6db3918796ca1fa8cb4b21b793dc561 (patch)
tree8cebb2b802593e50c7b8154fd2a55ddafe3e76ed /theories/Init
parent637e67a78096cb59ae309329df7ddc6fc9a6149d (diff)
Init: some results in Type should rather be Defined than Qed
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13920 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Init')
-rw-r--r--theories/Init/Datatypes.v2
-rw-r--r--theories/Init/Specif.v14
2 files changed, 8 insertions, 8 deletions
diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v
index 9895bd30b..d7e4b1ff6 100644
--- a/theories/Init/Datatypes.v
+++ b/theories/Init/Datatypes.v
@@ -271,7 +271,7 @@ Hint Unfold CompSpec CompSpecT.
Lemma CompSpec2Type : forall A (eq lt:A->A->Prop) x y c,
CompSpec eq lt x y c -> CompSpecT eq lt x y c.
-Proof. intros. apply CompareSpec2Type; assumption. Qed.
+Proof. intros. apply CompareSpec2Type; assumption. Defined.
(** Identity *)
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v
index a871c4081..602507867 100644
--- a/theories/Init/Specif.v
+++ b/theories/Init/Specif.v
@@ -153,16 +153,16 @@ Section Choice_lemmas.
Proof.
intro H.
exists (fun z => proj1_sig (H z)).
- intro z; destruct (H z); trivial.
- Qed.
+ intro z; destruct (H z); assumption.
+ Defined.
Lemma Choice2 :
(forall x:S, {y:S' & R' x y}) -> {f:S -> S' & forall z:S, R' z (f z)}.
Proof.
intro H.
exists (fun z => projT1 (H z)).
- intro z; destruct (H z); trivial.
- Qed.
+ intro z; destruct (H z); assumption.
+ Defined.
Lemma bool_choice :
(forall x:S, {R1 x} + {R2 x}) ->
@@ -171,7 +171,7 @@ Section Choice_lemmas.
intro H.
exists (fun z:S => if H z then true else false).
intro z; destruct (H z); auto.
- Qed.
+ Defined.
End Choice_lemmas.
@@ -189,7 +189,7 @@ Section Dependent_choice_lemmas.
exists f.
split. reflexivity.
induction n; simpl; apply proj2_sig.
- Qed.
+ Defined.
End Dependent_choice_lemmas.
@@ -216,7 +216,7 @@ Proof.
intros A C h1 h2.
apply False_rec.
apply (h2 h1).
-Qed.
+Defined.
Hint Resolve left right inleft inright: core v62.
Hint Resolve exist exist2 existT existT2: core.