diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-03-21 14:41:53 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-03-21 14:41:53 +0000 |
commit | 94d72b73a6db3918796ca1fa8cb4b21b793dc561 (patch) | |
tree | 8cebb2b802593e50c7b8154fd2a55ddafe3e76ed /theories/Init | |
parent | 637e67a78096cb59ae309329df7ddc6fc9a6149d (diff) |
Init: some results in Type should rather be Defined than Qed
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13920 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/Init')
-rw-r--r-- | theories/Init/Datatypes.v | 2 | ||||
-rw-r--r-- | theories/Init/Specif.v | 14 |
2 files changed, 8 insertions, 8 deletions
diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v index 9895bd30b..d7e4b1ff6 100644 --- a/theories/Init/Datatypes.v +++ b/theories/Init/Datatypes.v @@ -271,7 +271,7 @@ Hint Unfold CompSpec CompSpecT. Lemma CompSpec2Type : forall A (eq lt:A->A->Prop) x y c, CompSpec eq lt x y c -> CompSpecT eq lt x y c. -Proof. intros. apply CompareSpec2Type; assumption. Qed. +Proof. intros. apply CompareSpec2Type; assumption. Defined. (** Identity *) diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v index a871c4081..602507867 100644 --- a/theories/Init/Specif.v +++ b/theories/Init/Specif.v @@ -153,16 +153,16 @@ Section Choice_lemmas. Proof. intro H. exists (fun z => proj1_sig (H z)). - intro z; destruct (H z); trivial. - Qed. + intro z; destruct (H z); assumption. + Defined. Lemma Choice2 : (forall x:S, {y:S' & R' x y}) -> {f:S -> S' & forall z:S, R' z (f z)}. Proof. intro H. exists (fun z => projT1 (H z)). - intro z; destruct (H z); trivial. - Qed. + intro z; destruct (H z); assumption. + Defined. Lemma bool_choice : (forall x:S, {R1 x} + {R2 x}) -> @@ -171,7 +171,7 @@ Section Choice_lemmas. intro H. exists (fun z:S => if H z then true else false). intro z; destruct (H z); auto. - Qed. + Defined. End Choice_lemmas. @@ -189,7 +189,7 @@ Section Dependent_choice_lemmas. exists f. split. reflexivity. induction n; simpl; apply proj2_sig. - Qed. + Defined. End Dependent_choice_lemmas. @@ -216,7 +216,7 @@ Proof. intros A C h1 h2. apply False_rec. apply (h2 h1). -Qed. +Defined. Hint Resolve left right inleft inright: core v62. Hint Resolve exist exist2 existT existT2: core. |