diff options
author | Maxime Dénès <mail@maximedenes.fr> | 2017-06-13 17:35:22 +0200 |
---|---|---|
committer | Maxime Dénès <mail@maximedenes.fr> | 2017-06-13 17:35:22 +0200 |
commit | 91c67be4732a5281df9007cf505af251de62b9ea (patch) | |
tree | 4e94e84bef026fba8f1f670d18983a45739376c5 /theories/Init | |
parent | 40c862511a797ade64caf6aa26a486a63f67e617 (diff) | |
parent | 6547fc39a3d2a0e1b82921b0747c6eb2e76e6f3b (diff) |
Merge PR#385: Equality of sigma types
Diffstat (limited to 'theories/Init')
-rw-r--r-- | theories/Init/Logic.v | 120 | ||||
-rw-r--r-- | theories/Init/Specif.v | 401 | ||||
-rw-r--r-- | theories/Init/Tactics.v | 63 |
3 files changed, 580 insertions, 4 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index 3eefe9a84..4db11ae77 100644 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -313,8 +313,8 @@ Arguments eq_ind [A] x P _ y _. Arguments eq_rec [A] x P _ y _. Arguments eq_rect [A] x P _ y _. -Hint Resolve I conj or_introl or_intror : core. -Hint Resolve eq_refl: core. +Hint Resolve I conj or_introl or_intror : core. +Hint Resolve eq_refl: core. Hint Resolve ex_intro ex_intro2: core. Section Logic_lemmas. @@ -504,6 +504,11 @@ Proof. reflexivity. Defined. +Lemma eq_refl_map_distr : forall A B x (f:A->B), f_equal f (eq_refl x) = eq_refl (f x). +Proof. + reflexivity. +Qed. + Lemma eq_trans_map_distr : forall A B x y z (f:A->B) (e:x=y) (e':y=z), f_equal f (eq_trans e e') = eq_trans (f_equal f e) (f_equal f e'). Proof. destruct e'. @@ -522,6 +527,19 @@ destruct e, e'. reflexivity. Defined. +Lemma eq_trans_rew_distr : forall A (P:A -> Type) (x y z:A) (e:x=y) (e':y=z) (k:P x), + rew (eq_trans e e') in k = rew e' in rew e in k. +Proof. + destruct e, e'; reflexivity. +Qed. + +Lemma rew_const : forall A P (x y:A) (e:x=y) (k:P), + rew [fun _ => P] e in k = k. +Proof. + destruct e; reflexivity. +Qed. + + (* Aliases *) Notation sym_eq := eq_sym (compat "8.3"). @@ -575,7 +593,7 @@ Proof. assert (H : x0 = x1) by (transitivity x; [symmetry|]; auto). destruct H. assumption. -Qed. +Qed. Lemma forall_exists_coincide_unique_domain : forall A (P:A->Prop), @@ -587,7 +605,7 @@ Proof. exists x. split; [trivial|]. destruct H with (Q:=fun x'=>x=x') as (_,Huniq). apply Huniq. exists x; auto. -Qed. +Qed. (** * Being inhabited *) @@ -631,3 +649,97 @@ Qed. Declare Left Step iff_stepl. Declare Right Step iff_trans. + +Local Notation "'rew' 'dependent' H 'in' H'" + := (match H with + | eq_refl => H' + end) + (at level 10, H' at level 10, + format "'[' 'rew' 'dependent' '/ ' H in '/' H' ']'"). + +(** Equality for [ex] *) +Section ex. + Local Unset Implicit Arguments. + Definition eq_ex_uncurried {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1} + (pq : exists p : u1 = v1, rew p in u2 = v2) + : ex_intro P u1 u2 = ex_intro P v1 v2. + Proof. + destruct pq as [p q]. + destruct q; simpl in *. + destruct p; reflexivity. + Qed. + + Definition eq_ex {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1) + (p : u1 = v1) (q : rew p in u2 = v2) + : ex_intro P u1 u2 = ex_intro P v1 v2 + := eq_ex_uncurried P (ex_intro _ p q). + + Definition eq_ex_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) + (u1 v1 : A) (u2 : P u1) (v2 : P v1) + (p : u1 = v1) + : ex_intro P u1 u2 = ex_intro P v1 v2 + := eq_ex u1 v1 u2 v2 p (P_hprop _ _ _). + + Lemma rew_ex {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : exists p, Q x p) {y} (H : x = y) + : rew [fun a => exists p, Q a p] H in u + = match u with + | ex_intro _ u1 u2 + => ex_intro + (Q y) + (rew H in u1) + (rew dependent H in u2) + end. + Proof. + destruct H, u; reflexivity. + Qed. +End ex. + +(** Equality for [ex2] *) +Section ex2. + Local Unset Implicit Arguments. + + Definition eq_ex2_uncurried {A : Type} (P Q : A -> Prop) {u1 v1 : A} + {u2 : P u1} {v2 : P v1} + {u3 : Q u1} {v3 : Q v1} + (pq : exists2 p : u1 = v1, rew p in u2 = v2 & rew p in u3 = v3) + : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3. + Proof. + destruct pq as [p q r]. + destruct r, q, p; simpl in *. + reflexivity. + Qed. + + Definition eq_ex2 {A : Type} {P Q : A -> Prop} + (u1 v1 : A) + (u2 : P u1) (v2 : P v1) + (u3 : Q u1) (v3 : Q v1) + (p : u1 = v1) (q : rew p in u2 = v2) (r : rew p in u3 = v3) + : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3 + := eq_ex2_uncurried P Q (ex_intro2 _ _ p q r). + + Definition eq_ex2_hprop {A} {P Q : A -> Prop} + (P_hprop : forall (x : A) (p q : P x), p = q) + (Q_hprop : forall (x : A) (p q : Q x), p = q) + (u1 v1 : A) (u2 : P u1) (v2 : P v1) (u3 : Q u1) (v3 : Q v1) + (p : u1 = v1) + : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3 + := eq_ex2 u1 v1 u2 v2 u3 v3 p (P_hprop _ _ _) (Q_hprop _ _ _). + + Lemma rew_ex2 {A x} {P : A -> Type} + (Q : forall a, P a -> Prop) + (R : forall a, P a -> Prop) + (u : exists2 p, Q x p & R x p) {y} (H : x = y) + : rew [fun a => exists2 p, Q a p & R a p] H in u + = match u with + | ex_intro2 _ _ u1 u2 u3 + => ex_intro2 + (Q y) + (R y) + (rew H in u1) + (rew dependent H in u2) + (rew dependent H in u3) + end. + Proof. + destruct H, u; reflexivity. + Qed. +End ex2. diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v index 43a441fc5..95734991d 100644 --- a/theories/Init/Specif.v +++ b/theories/Init/Specif.v @@ -218,6 +218,407 @@ Proof. intros [[x y]];exists x;exact y. Qed. +(** Equality of sigma types *) +Import EqNotations. +Local Notation "'rew' 'dependent' H 'in' H'" + := (match H with + | eq_refl => H' + end) + (at level 10, H' at level 10, + format "'[' 'rew' 'dependent' '/ ' H in '/' H' ']'"). + +(** Equality for [sigT] *) +Section sigT. + Local Unset Implicit Arguments. + (** Projecting an equality of a pair to equality of the first components *) + Definition projT1_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v) + : projT1 u = projT1 v + := f_equal (@projT1 _ _) p. + + (** Projecting an equality of a pair to equality of the second components *) + Definition projT2_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v) + : rew projT1_eq p in projT2 u = projT2 v + := rew dependent p in eq_refl. + + (** Equality of [sigT] is itself a [sigT] (forwards-reasoning version) *) + Definition eq_existT_uncurried {A : Type} {P : A -> Type} {u1 v1 : A} {u2 : P u1} {v2 : P v1} + (pq : { p : u1 = v1 & rew p in u2 = v2 }) + : existT _ u1 u2 = existT _ v1 v2. + Proof. + destruct pq as [p q]. + destruct q; simpl in *. + destruct p; reflexivity. + Defined. + + (** Equality of [sigT] is itself a [sigT] (backwards-reasoning version) *) + Definition eq_sigT_uncurried {A : Type} {P : A -> Type} (u v : { a : A & P a }) + (pq : { p : projT1 u = projT1 v & rew p in projT2 u = projT2 v }) + : u = v. + Proof. + destruct u as [u1 u2], v as [v1 v2]; simpl in *. + apply eq_existT_uncurried; exact pq. + Defined. + + (** Curried version of proving equality of sigma types *) + Definition eq_sigT {A : Type} {P : A -> Type} (u v : { a : A & P a }) + (p : projT1 u = projT1 v) (q : rew p in projT2 u = projT2 v) + : u = v + := eq_sigT_uncurried u v (existT _ p q). + + (** Equality of [sigT] when the property is an hProp *) + Definition eq_sigT_hprop {A P} (P_hprop : forall (x : A) (p q : P x), p = q) + (u v : { a : A & P a }) + (p : projT1 u = projT1 v) + : u = v + := eq_sigT u v p (P_hprop _ _ _). + + (** Equivalence of equality of [sigT] with a [sigT] of equality *) + (** We could actually prove an isomorphism here, and not just [<->], + but for simplicity, we don't. *) + Definition eq_sigT_uncurried_iff {A P} + (u v : { a : A & P a }) + : u = v <-> { p : projT1 u = projT1 v & rew p in projT2 u = projT2 v }. + Proof. + split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT_uncurried ]. + Defined. + + (** Induction principle for [@eq (sigT _)] *) + Definition eq_sigT_rect {A P} {u v : { a : A & P a }} (Q : u = v -> Type) + (f : forall p q, Q (eq_sigT u v p q)) + : forall p, Q p. + Proof. intro p; specialize (f (projT1_eq p) (projT2_eq p)); destruct u, p; exact f. Defined. + Definition eq_sigT_rec {A P u v} (Q : u = v :> { a : A & P a } -> Set) := eq_sigT_rect Q. + Definition eq_sigT_ind {A P u v} (Q : u = v :> { a : A & P a } -> Prop) := eq_sigT_rec Q. + + (** Equivalence of equality of [sigT] involving hProps with equality of the first components *) + Definition eq_sigT_hprop_iff {A P} (P_hprop : forall (x : A) (p q : P x), p = q) + (u v : { a : A & P a }) + : u = v <-> (projT1 u = projT1 v) + := conj (fun p => f_equal (@projT1 _ _) p) (eq_sigT_hprop P_hprop u v). + + (** Non-dependent classification of equality of [sigT] *) + Definition eq_sigT_nondep {A B : Type} (u v : { a : A & B }) + (p : projT1 u = projT1 v) (q : projT2 u = projT2 v) + : u = v + := @eq_sigT _ _ u v p (eq_trans (rew_const _ _) q). + + (** Classification of transporting across an equality of [sigT]s *) + Lemma rew_sigT {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x & Q x p }) {y} (H : x = y) + : rew [fun a => { p : P a & Q a p }] H in u + = existT + (Q y) + (rew H in projT1 u) + (rew dependent H in (projT2 u)). + Proof. + destruct H, u; reflexivity. + Defined. +End sigT. + +(** Equality for [sig] *) +Section sig. + Local Unset Implicit Arguments. + (** Projecting an equality of a pair to equality of the first components *) + Definition proj1_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v) + : proj1_sig u = proj1_sig v + := f_equal (@proj1_sig _ _) p. + + (** Projecting an equality of a pair to equality of the second components *) + Definition proj2_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v) + : rew proj1_sig_eq p in proj2_sig u = proj2_sig v + := rew dependent p in eq_refl. + + (** Equality of [sig] is itself a [sig] (forwards-reasoning version) *) + Definition eq_exist_uncurried {A : Type} {P : A -> Prop} {u1 v1 : A} {u2 : P u1} {v2 : P v1} + (pq : { p : u1 = v1 | rew p in u2 = v2 }) + : exist _ u1 u2 = exist _ v1 v2. + Proof. + destruct pq as [p q]. + destruct q; simpl in *. + destruct p; reflexivity. + Defined. + + (** Equality of [sig] is itself a [sig] (backwards-reasoning version) *) + Definition eq_sig_uncurried {A : Type} {P : A -> Prop} (u v : { a : A | P a }) + (pq : { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v }) + : u = v. + Proof. + destruct u as [u1 u2], v as [v1 v2]; simpl in *. + apply eq_exist_uncurried; exact pq. + Defined. + + (** Curried version of proving equality of sigma types *) + Definition eq_sig {A : Type} {P : A -> Prop} (u v : { a : A | P a }) + (p : proj1_sig u = proj1_sig v) (q : rew p in proj2_sig u = proj2_sig v) + : u = v + := eq_sig_uncurried u v (exist _ p q). + + (** Induction principle for [@eq (sig _)] *) + Definition eq_sig_rect {A P} {u v : { a : A | P a }} (Q : u = v -> Type) + (f : forall p q, Q (eq_sig u v p q)) + : forall p, Q p. + Proof. intro p; specialize (f (proj1_sig_eq p) (proj2_sig_eq p)); destruct u, p; exact f. Defined. + Definition eq_sig_rec {A P u v} (Q : u = v :> { a : A | P a } -> Set) := eq_sig_rect Q. + Definition eq_sig_ind {A P u v} (Q : u = v :> { a : A | P a } -> Prop) := eq_sig_rec Q. + + (** Equality of [sig] when the property is an hProp *) + Definition eq_sig_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) + (u v : { a : A | P a }) + (p : proj1_sig u = proj1_sig v) + : u = v + := eq_sig u v p (P_hprop _ _ _). + + (** Equivalence of equality of [sig] with a [sig] of equality *) + (** We could actually prove an isomorphism here, and not just [<->], + but for simplicity, we don't. *) + Definition eq_sig_uncurried_iff {A} {P : A -> Prop} + (u v : { a : A | P a }) + : u = v <-> { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v }. + Proof. + split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig_uncurried ]. + Defined. + + (** Equivalence of equality of [sig] involving hProps with equality of the first components *) + Definition eq_sig_hprop_iff {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) + (u v : { a : A | P a }) + : u = v <-> (proj1_sig u = proj1_sig v) + := conj (fun p => f_equal (@proj1_sig _ _) p) (eq_sig_hprop P_hprop u v). + + Lemma rew_sig {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x | Q x p }) {y} (H : x = y) + : rew [fun a => { p : P a | Q a p }] H in u + = exist + (Q y) + (rew H in proj1_sig u) + (rew dependent H in proj2_sig u). + Proof. + destruct H, u; reflexivity. + Defined. +End sig. + +(** Equality for [sigT] *) +Section sigT2. + (* We make [sigT_of_sigT2] a coercion so we can use [projT1], [projT2] on [sigT2] *) + Local Coercion sigT_of_sigT2 : sigT2 >-> sigT. + Local Unset Implicit Arguments. + (** Projecting an equality of a pair to equality of the first components *) + Definition sigT_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v) + : u = v :> { a : A & P a } + := f_equal _ p. + Definition projT1_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v) + : projT1 u = projT1 v + := projT1_eq (sigT_of_sigT2_eq p). + + (** Projecting an equality of a pair to equality of the second components *) + Definition projT2_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v) + : rew projT1_of_sigT2_eq p in projT2 u = projT2 v + := rew dependent p in eq_refl. + + (** Projecting an equality of a pair to equality of the third components *) + Definition projT3_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v) + : rew projT1_of_sigT2_eq p in projT3 u = projT3 v + := rew dependent p in eq_refl. + + (** Equality of [sigT2] is itself a [sigT2] (forwards-reasoning version) *) + Definition eq_existT2_uncurried {A : Type} {P Q : A -> Type} + {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1} + (pqr : { p : u1 = v1 + & rew p in u2 = v2 & rew p in u3 = v3 }) + : existT2 _ _ u1 u2 u3 = existT2 _ _ v1 v2 v3. + Proof. + destruct pqr as [p q r]. + destruct r, q, p; simpl. + reflexivity. + Defined. + + (** Equality of [sigT2] is itself a [sigT2] (backwards-reasoning version) *) + Definition eq_sigT2_uncurried {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a }) + (pqr : { p : projT1 u = projT1 v + & rew p in projT2 u = projT2 v & rew p in projT3 u = projT3 v }) + : u = v. + Proof. + destruct u as [u1 u2 u3], v as [v1 v2 v3]; simpl in *. + apply eq_existT2_uncurried; exact pqr. + Defined. + + (** Curried version of proving equality of sigma types *) + Definition eq_sigT2 {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a }) + (p : projT1 u = projT1 v) + (q : rew p in projT2 u = projT2 v) + (r : rew p in projT3 u = projT3 v) + : u = v + := eq_sigT2_uncurried u v (existT2 _ _ p q r). + + (** Equality of [sigT2] when the second property is an hProp *) + Definition eq_sigT2_hprop {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q) + (u v : { a : A & P a & Q a }) + (p : u = v :> { a : A & P a }) + : u = v + := eq_sigT2 u v (projT1_eq p) (projT2_eq p) (Q_hprop _ _ _). + + (** Equivalence of equality of [sigT2] with a [sigT2] of equality *) + (** We could actually prove an isomorphism here, and not just [<->], + but for simplicity, we don't. *) + Definition eq_sigT2_uncurried_iff {A P Q} + (u v : { a : A & P a & Q a }) + : u = v + <-> { p : projT1 u = projT1 v + & rew p in projT2 u = projT2 v & rew p in projT3 u = projT3 v }. + Proof. + split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT2_uncurried ]. + Defined. + + (** Induction principle for [@eq (sigT2 _ _)] *) + Definition eq_sigT2_rect {A P Q} {u v : { a : A & P a & Q a }} (R : u = v -> Type) + (f : forall p q r, R (eq_sigT2 u v p q r)) + : forall p, R p. + Proof. + intro p. + specialize (f (projT1_of_sigT2_eq p) (projT2_of_sigT2_eq p) (projT3_eq p)). + destruct u, p; exact f. + Defined. + Definition eq_sigT2_rec {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Set) := eq_sigT2_rect R. + Definition eq_sigT2_ind {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Prop) := eq_sigT2_rec R. + + (** Equivalence of equality of [sigT2] involving hProps with equality of the first components *) + Definition eq_sigT2_hprop_iff {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q) + (u v : { a : A & P a & Q a }) + : u = v <-> (u = v :> { a : A & P a }) + := conj (fun p => f_equal (@sigT_of_sigT2 _ _ _) p) (eq_sigT2_hprop Q_hprop u v). + + (** Non-dependent classification of equality of [sigT] *) + Definition eq_sigT2_nondep {A B C : Type} (u v : { a : A & B & C }) + (p : projT1 u = projT1 v) (q : projT2 u = projT2 v) (r : projT3 u = projT3 v) + : u = v + := @eq_sigT2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r). + + (** Classification of transporting across an equality of [sigT2]s *) + Lemma rew_sigT2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop) + (u : { p : P x & Q x p & R x p }) + {y} (H : x = y) + : rew [fun a => { p : P a & Q a p & R a p }] H in u + = existT2 + (Q y) + (R y) + (rew H in projT1 u) + (rew dependent H in projT2 u) + (rew dependent H in projT3 u). + Proof. + destruct H, u; reflexivity. + Defined. +End sigT2. + +(** Equality for [sig2] *) +Section sig2. + (* We make [sig_of_sig2] a coercion so we can use [proj1], [proj2] on [sig2] *) + Local Coercion sig_of_sig2 : sig2 >-> sig. + Local Unset Implicit Arguments. + (** Projecting an equality of a pair to equality of the first components *) + Definition sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v) + : u = v :> { a : A | P a } + := f_equal _ p. + Definition proj1_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v) + : proj1_sig u = proj1_sig v + := proj1_sig_eq (sig_of_sig2_eq p). + + (** Projecting an equality of a pair to equality of the second components *) + Definition proj2_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v) + : rew proj1_sig_of_sig2_eq p in proj2_sig u = proj2_sig v + := rew dependent p in eq_refl. + + (** Projecting an equality of a pair to equality of the third components *) + Definition proj3_sig_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v) + : rew proj1_sig_of_sig2_eq p in proj3_sig u = proj3_sig v + := rew dependent p in eq_refl. + + (** Equality of [sig2] is itself a [sig2] (fowards-reasoning version) *) + Definition eq_exist2_uncurried {A} {P Q : A -> Prop} + {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1} + (pqr : { p : u1 = v1 + | rew p in u2 = v2 & rew p in u3 = v3 }) + : exist2 _ _ u1 u2 u3 = exist2 _ _ v1 v2 v3. + Proof. + destruct pqr as [p q r]. + destruct r, q, p; simpl. + reflexivity. + Defined. + + (** Equality of [sig2] is itself a [sig2] (backwards-reasoning version) *) + Definition eq_sig2_uncurried {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a }) + (pqr : { p : proj1_sig u = proj1_sig v + | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v }) + : u = v. + Proof. + destruct u as [u1 u2 u3], v as [v1 v2 v3]; simpl in *. + apply eq_exist2_uncurried; exact pqr. + Defined. + + (** Curried version of proving equality of sigma types *) + Definition eq_sig2 {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a }) + (p : proj1_sig u = proj1_sig v) + (q : rew p in proj2_sig u = proj2_sig v) + (r : rew p in proj3_sig u = proj3_sig v) + : u = v + := eq_sig2_uncurried u v (exist2 _ _ p q r). + + (** Equality of [sig2] when the second property is an hProp *) + Definition eq_sig2_hprop {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q) + (u v : { a : A | P a & Q a }) + (p : u = v :> { a : A | P a }) + : u = v + := eq_sig2 u v (proj1_sig_eq p) (proj2_sig_eq p) (Q_hprop _ _ _). + + (** Equivalence of equality of [sig2] with a [sig2] of equality *) + (** We could actually prove an isomorphism here, and not just [<->], + but for simplicity, we don't. *) + Definition eq_sig2_uncurried_iff {A P Q} + (u v : { a : A | P a & Q a }) + : u = v + <-> { p : proj1_sig u = proj1_sig v + | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v }. + Proof. + split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig2_uncurried ]. + Defined. + + (** Induction principle for [@eq (sig2 _ _)] *) + Definition eq_sig2_rect {A P Q} {u v : { a : A | P a & Q a }} (R : u = v -> Type) + (f : forall p q r, R (eq_sig2 u v p q r)) + : forall p, R p. + Proof. + intro p. + specialize (f (proj1_sig_of_sig2_eq p) (proj2_sig_of_sig2_eq p) (proj3_sig_eq p)). + destruct u, p; exact f. + Defined. + Definition eq_sig2_rec {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Set) := eq_sig2_rect R. + Definition eq_sig2_ind {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Prop) := eq_sig2_rec R. + + (** Equivalence of equality of [sig2] involving hProps with equality of the first components *) + Definition eq_sig2_hprop_iff {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q) + (u v : { a : A | P a & Q a }) + : u = v <-> (u = v :> { a : A | P a }) + := conj (fun p => f_equal (@sig_of_sig2 _ _ _) p) (eq_sig2_hprop Q_hprop u v). + + (** Non-dependent classification of equality of [sig] *) + Definition eq_sig2_nondep {A} {B C : Prop} (u v : @sig2 A (fun _ => B) (fun _ => C)) + (p : proj1_sig u = proj1_sig v) (q : proj2_sig u = proj2_sig v) (r : proj3_sig u = proj3_sig v) + : u = v + := @eq_sig2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r). + + (** Classification of transporting across an equality of [sig2]s *) + Lemma rew_sig2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop) + (u : { p : P x | Q x p & R x p }) + {y} (H : x = y) + : rew [fun a => { p : P a | Q a p & R a p }] H in u + = exist2 + (Q y) + (R y) + (rew H in proj1_sig u) + (rew dependent H in proj2_sig u) + (rew dependent H in proj3_sig u). + Proof. + destruct H, u; reflexivity. + Defined. +End sig2. + + (** [sumbool] is a boolean type equipped with the justification of their value *) diff --git a/theories/Init/Tactics.v b/theories/Init/Tactics.v index 7a846cd1b..aab385ef7 100644 --- a/theories/Init/Tactics.v +++ b/theories/Init/Tactics.v @@ -243,3 +243,66 @@ with the actual [dependent induction] tactic. *) Tactic Notation "dependent" "induction" ident(H) := fail "To use dependent induction, first [Require Import Coq.Program.Equality.]". + +(** *** [inversion_sigma] *) +(** The built-in [inversion] will frequently leave equalities of + dependent pairs. When the first type in the pair is an hProp or + otherwise simplifies, [inversion_sigma] is useful; it will replace + the equality of pairs with a pair of equalities, one involving a + term casted along the other. This might also prove useful for + writing a version of [inversion] / [dependent destruction] which + does not lose information, i.e., does not turn a goal which is + provable into one which requires axiom K / UIP. *) +Ltac simpl_proj_exist_in H := + repeat match type of H with + | context G[proj1_sig (exist _ ?x ?p)] + => let G' := context G[x] in change G' in H + | context G[proj2_sig (exist _ ?x ?p)] + => let G' := context G[p] in change G' in H + | context G[projT1 (existT _ ?x ?p)] + => let G' := context G[x] in change G' in H + | context G[projT2 (existT _ ?x ?p)] + => let G' := context G[p] in change G' in H + | context G[proj3_sig (exist2 _ _ ?x ?p ?q)] + => let G' := context G[q] in change G' in H + | context G[projT3 (existT2 _ _ ?x ?p ?q)] + => let G' := context G[q] in change G' in H + | context G[sig_of_sig2 (@exist2 ?A ?P ?Q ?x ?p ?q)] + => let G' := context G[@exist A P x p] in change G' in H + | context G[sigT_of_sigT2 (@existT2 ?A ?P ?Q ?x ?p ?q)] + => let G' := context G[@existT A P x p] in change G' in H + end. +Ltac induction_sigma_in_using H rect := + let H0 := fresh H in + let H1 := fresh H in + induction H as [H0 H1] using (rect _ _ _ _); + simpl_proj_exist_in H0; + simpl_proj_exist_in H1. +Ltac induction_sigma2_in_using H rect := + let H0 := fresh H in + let H1 := fresh H in + let H2 := fresh H in + induction H as [H0 H1 H2] using (rect _ _ _ _ _); + simpl_proj_exist_in H0; + simpl_proj_exist_in H1; + simpl_proj_exist_in H2. +Ltac inversion_sigma_step := + match goal with + | [ H : _ = exist _ _ _ |- _ ] + => induction_sigma_in_using H @eq_sig_rect + | [ H : _ = existT _ _ _ |- _ ] + => induction_sigma_in_using H @eq_sigT_rect + | [ H : exist _ _ _ = _ |- _ ] + => induction_sigma_in_using H @eq_sig_rect + | [ H : existT _ _ _ = _ |- _ ] + => induction_sigma_in_using H @eq_sigT_rect + | [ H : _ = exist2 _ _ _ _ _ |- _ ] + => induction_sigma2_in_using H @eq_sig2_rect + | [ H : _ = existT2 _ _ _ _ _ |- _ ] + => induction_sigma2_in_using H @eq_sigT2_rect + | [ H : exist2 _ _ _ _ _ = _ |- _ ] + => induction_sigma_in_using H @eq_sig2_rect + | [ H : existT2 _ _ _ _ _ = _ |- _ ] + => induction_sigma_in_using H @eq_sigT2_rect + end. +Ltac inversion_sigma := repeat inversion_sigma_step. |